用户名: 密码: 验证码:
石油开采区多环芳烃多介质环境行为及其生态风险研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济的快速发展,未来石油供需矛盾突出,我国势必要动用更多的陆地石油地质储量以提高原油产量,这无疑会导致石油开采区逐步向低丰度、低渗透率、低产能贫矿或尾矿储量的石油资源地区转移,由此将引发更多的累积污染和更严峻的石油开采生态风险。对此,查明石油开采污染源头、掌握石油开采产生的典型污染物的迁移转化规律及其生态风险效应,将会为减少源头污染、实现清洁生产,以及污染治理与控制提供科学依据。陆地石油开采过程中产生的多环芳烃(Polycyclic aromatic hydrocarbons, PAHs)等污染物通过轻烃挥发、落地原油、含油废水排放等方式进入到大气、水体、土壤等多介质环境系统中,势必会对石油开采区及其周边环境产生无法忽视的生态影响。然而,现有研究多为针对石油开采污染物对水体、土壤或沉积物单一环境介质污染规律、机理研究,且对风险评价过程中存在的不确定性通常采用概率分析方法进行表征,而针对污染物在石油开采区多介质环境迁移转化规律及生态风险评价,并采用多种不确定性表征方法对生态风险评价中存在的不确定性进行综合定量表征的研究成果较少。本论文对选定的典型陆地石油开采区PAHs多介质环境迁移转化规律、源解析进行了初步研究,研究了土壤介质中PAHs时空分布规律,评价了土壤污染现状,揭示了土壤发光菌毒性与污染物来源间的关系,评价了研究区域内PAHs的动态综合生态风险,并建立了定量表征生态风险评价过程中多种不确定性的方法。
     通过对研究区域多介质环境(大气、水、土壤、沉积物)建立稳态、动态及区间动态多介质逸度模型,研究陆地石油开采区PAHs多介质迁移转化、归趋及源解析等环境行为。研究结果表明,石油开采过程中产生的PAHs多以落地原油形式进入环境系统,并以土壤中降解为主要输出途径,土壤介质是PAHs的主要归宿。多介质环境中PAHs的苯环构成结构研究表明,空气相中多为大于4环的PAHs,水中多为2-3环PAHs,土壤中多为3环PAHs,沉积物中多为3-4环PAHs。基于本研究开发的区间动态多介质逸度模型,对1985-2010年间PAHs动态源解析结果表明,大气和土壤介质中PAHs的主要来源是高温燃烧,而水和沉积物介质中PAHs的主要来源是生物质和煤的燃烧。同时,随着陆地石油开采强度的不断增大,PAHs的来源逐渐倾向于石油源的释放。
     研究表明,土壤介质是PAHs的主要归宿。因此,本研究应用主成分分析、人工神经网络等方法建立不同来源PAHs土壤发光菌生物毒性神经网络模型对土壤生物毒性进行源解析,并对不同来源PAHs对生物毒性的贡献进行定量表征。模型模拟结果显示,不同PAHs来源对土壤生物毒性的贡献分别为:交通源占13.2%、石油源占37.4%、煤燃烧占36.0%、焦油源占13.4%。此外,基于土壤介质实际采样测试分析结果,对土壤介质中PAHs的空间分布规律及污染等级进行评价,确定影响土壤PAHs污染等级的因素包括井场落地油情况、开采量、开采年限及其周边环境因素(植被状况、土壤类型等)等。计算得到研究区域内重污染、中污染及轻污染采样点分别占8.02%,8.02%和2.29%。
     本研究以区间动态多介质逸度模型模拟结果为基础数据,结合模糊理论、概率分析等不确定性表征方法,通过构建模糊的环境质量标准和模糊的健康风险判定标准,构建基于区间动态多介质逸度模型的动态多介质生态风险评价方法框架,并利用所建方法对1985-2020年间研究区域内的PAHs进行动态多介质综合生态风险评价。评价结果显示,NAP和ANY具有最高的环境质量风险,均达到中等风险或低-中风险。进一步将环境质量风险评价结果与PAHs源解析相结合可以看出,本文研究区域中环境质量风险主要来自石油开采和焦炭。此外,1985-2020年间16种PAHs人体健康风险评价结果表明NAP和4环以上PAHs具有较高的人体健康风险,主要来自人体对土壤介质的暴露(>90%),包括土壤摄食(35%),吸入土壤颗粒(35%),皮肤接触土壤(25%)。最后,通过构建模糊规则库,对研究区域内PAHs综合生态风险水平进行表征,NAP、BaA、CHR、BbF、BkF、BaP、IPY和DBA具有“非常高”综合生态风险,应采取全部可能的措施来处理石油开采场地。
With the rapid development of national economy, serious contradiction between oil supply and demand would appear in the future, then China needs to use more onshore oil geological reserves to increase crude oil production, this must result in the petroleum exploitation area transfers to low permeability, low yield, and low abundance area, it must bring more cumulative pollution and worsening ecological risk. Thus, find out the oil pollution source and master the typical petroleum pollutant migration transformation rule and their ecological risk could provide scientific evidence for cleaner production and pollution management and control for petroleum exploitation pollution. The pollutants such as polycyclic aromatic hydrocarbon (PAHs) would enter into air, water, and soil compartment in the process of petroleum exploitation. However, the investigation focus more on the organic pollutant derived from petroleum exploitation in the individual environmental media such as water and soil, and lack of the multimedia environmental pollutant and risk assessment in the onshore oilfield. In this study, the multimedia transport, fate, and source apportionment of PAHs in the onshore oilfield were investigated, and then the spatial distribution and pollutant grade of PAHs in the soil compartment were studied to reveal the relationship between the soil luminescent bacteria biological toxicity and the pollutant sources, the dynamic multimedia integrated ecological risks of16PAHs were assessed in the study area, and the quantitative characterization method of uncertainty in the ecological risk was established.
     The multimedia environmental transport, fate, and source apportionment of PAHs in onshore oilfield were investigated through the established steady-state, dynamic-state, and interval dynamic multimedia fugacity (IDMF) model, including air, water, soil, and sediment compartment. The modeling results showed that, the primarily input pathway of PAHs enter the multimedia environments is crude oil spills on the soil, while the output pathway was the degradation of PAHs in the soil compartment. Soil was identified as the dominate sink of PAHs. The ring size distribution indicated that compounds containing more than four rings were dominant in air, two-and three-ring compounds were prevalent in water, three ring compounds were mainly in soil, and four-ring compounds were predominant in sediment. The dynamic source apportionment was taken on basis of the constructed IDMF model, it was demonstrated that high temperature combustion was the major source of PAHs in the air and soil, while biomass and coal combustion were attributed to water and sediment compartments. Besides, the modeling results showed a tended to be from petroleum sources as evidenced by the accumulation effect of PAHs and continuous oil exploitation.
     The previous result has showed that, soil compartment was the main sink of PAHs in the multimedia environments. Hence, the methods of principal component analysis (PC A) and artificial neural network (ANN) were applied to identify the sources of PAHs in the soil contaminants, and an ANN model was established to investigate the contribution of the PAHs to soil biotoxicity. The modeling results revealed that the contamination sources included traffic emissions (13.2%), petroleum-related source (37.4%), coal combustion (36.0%), and coke oven source (13.4%). Besides, spatial distribution and pollution grade of PAHs in the soils were analysised based on the actual sampling and analysis of the collected soils from the six oil wells in the study oilfield. Relevant effect factors of the concentrations level were concluded as condition of ground oil, exploitation scale, exploitation time, and surrounding environment (including vegetation condition, primitive soil types, etc.). Soil pollution grade of the six oil wells were also evaluated through the method of a modified Nemerow Index Method. The evaluation result showed that the percentages of heavy pollution, moderate pollution, and slight pollution were8.02%,8.02%, and2.29%, respectively.
     Finally, the IDMF model assisted dynamic multimedia integrated ecological risk assessment (IDMF-DMIERA) approach framework was developed. The approach framework was on basis of the modeling results of IDMF model, combining with the uncertainty representation approaches of interval parameter, fuzzy theory, and probability analysis. And then the developed IDMF-DMIERA approach was applied to assess the PAHs dynamic ecological risk in the study area, simulated from1975-2020. The assessment results demonstrated that the highest environmental quality risk come from NAP and ANY, achieved by medium risk level of low-medium risk level. Combined the environmental quality risk assessment results and the PAH source apportionment, it was found that the environmental risks in this study mainly result from petroleum spills and coke oven, which are in accordance with the regional characteristic of the petrochemical industry base of China. Meanwhile, the dynamic multimedia human health risk of16PAHs was assessed during1985-2020, it was represented that the human health in the study area mainly from the human exposure to the soil compartment (>90%), including soil ingestion (35%), inhalation of soil particles (35%), and the skin exposure to the soil (25%). And the fuzzy rule base was constructed in order to characterize the PAHs dynamic multimedia integrated ecological risk level, the assessment results demonstrated that the "very high" ecological risk exists in NAP, BaA, CHR, BbF, BkF, BaP, IPY, and DBA, all possible measures should be taken to treat the ecological risk in the oilfield.
引文
[1]Odeyemi O, Ogunseitan O A. Petroleum industry and its pollution potential in Nigeria [J]. Oil and Petrochemical Pollution,1985,2(3):223-229.
    [2]Fitzmaurice V. Legal control of pollution from North Sea petroleum development [J]. Marine Pollution Bulletin,1978,9(6):153-156.
    [3]王连生。环境健康化学[M]。北京:科学出版社,1994。
    [4]苏增建,李敏,王颖。应用物理技术处理油田采油废水的研究[J]。安徽农业科学,2007,35(6):1742-1744。
    [5]Baek S O, Field R A, Goldstone M E, et al. A review of atmospheric polycyclic aromatic hydrocarbons:Sources, fate and behavior [J]. Water Air and Soil Pollution, 1991,60:279-300.
    [6]Harrison R M, Smith D J T, Luhana L. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham. UK [J]. Environmental Science and Technology,1996,30(3):825-832.
    [7]Khalili N R, Scheff P A, Holsen T M. PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions [J]. Atmospheric Environment,1995,29:533-542.
    [8]Xu S S, Liu W X, Tao S. Emission of polycyclic aromatic hydrocarbons in China [J]. Environmental Science and Technology,2006,40:702-708.
    [9]Miton L L. Analytical chemistry of polycyclic aromatioc compound [M]. INC.1981, 17-40.
    [10]Wilcke W. Polycyclic aromatic hydrocarbons (PAHs) in soil-a review [J]. Journal of Plant Nutrition and Soil Science,2000,163(3):229-248.
    [11]IARC. Evaluation of the carcinogenic risk of chemicals to humans-polycyclic aromatic compounds. Part Ⅰ:chemical, environmental and experimental data [R]. 1983,32. World Health Organization, Lyons, France.
    [12]WHO. Environmental Health Criteria 210:Principles for the assessment of risks to human health from exposure to chemicals [R]. Geneva.2000.
    [13]Santodonato J. Review of The Estrogenic and antiestrogenic activity of polycyclic aromatic hydrocarbons:Relationship to carcinogenicity [J]. Chemosphere,1997,34: 835-848.
    [14]Panther B, Hooper M, Tapper N. A comparison of air particulate matter and associated polycyclic aromatic hydrocarbons in some tropical and temperate urban environments [J]. Atmospheric Environment,1999,33:4087-4099.
    [15]Tamamura S, Sato T, Ota Y, et al. Long-range transport of polycyclic aromatic hydrocarbons (PAHs) from the eastern Asian continent to Kanazawa, Japan with Asian dust [J]. Atmospheric Environment,2007,41:2580-2593.
    [16]杨复沫,贺克斌,马永亮,等。北京PM2.5浓度的变化特征及其与PM10、TSP的关系[J]。中国环境科学,2002,22(6):506-510。
    [17]李新荣,李本纲,陶澍,等。天津地区的人群对多环芳烃的暴露[J]。环境科学学报,2005,25(7):989-993。
    [18]Kaneyasu N, Takada H. Seasonal variations of sulfate, carbonaceous species (black carbon and polycyclic aromatic hydrocarbons), and trace elements in fine atmospheric aerosols collected at subtropical islands in the East China Sea [J]. Journal of Geophysical Research-Atmospheres,2004,109 (D6):Art. No. D06211.
    [19]Maliszewska-Kordybach B. Polycyclic aromatic hydrocarbons in agricultural soils in Poland:Preiliminary proposals for criteria to evaluate the level of soil contamination [J]. Applied Geochemistry,1996,11(1-2):121-127.
    [20]Knopp D, Martin S, Virpi V, et al. Determination of polycyclic aromatic hydrocarbons in contaminated water and soil samples by immunological and chromatographic methods [J]. Environmental Science and Technology,2000,34: 2035-2041.
    [21]Liu Y, Zhu L, Shen X. Polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air of Hangzhou, China [J]. Environmental Science and Technology,2001, 35:840-844.
    [22]Otvos E, Kozak I O, Fekete J, et al. Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in mosses (Hypnum cupressiforme) in Hungray [J]. Science of the Total Environment,2004,330:89-99.
    [23]Buehler S S, Hites R A. The Great Lakes' integrated ATMOSPHERIC DEPOSITION network [J]. Environmental Science and Technology,2002,36: 354A-359A.
    [24]Daly G L, Wania F. Organic contaminants in mountains [J]. Environmental Science and Technology,2005,39:385-398.
    [25]Hafner W D, Carlson D L, Hites R A. Influence of local human population on atmospheric polycyclic aromatic hydrocarbon concentrations [J]. Evrironmental Science and Technology,2005,39(19):7374-7379.
    [26]Jones K C, Grimmer G, Johnston A E. Changes in the polynuclear aromatic hydrocarbon content of wheat grain and pasture grassland over the last century from one site in the U.K[J]. Science of the Total Environment,1989,78:117-130.
    [27]Macdonald R W, Barrie L A, Bidleman T F, et al. Contaminants in the Canadian Arctic:5 years of progress in understanding sources, occurrence and pathways [J]. Science of the Total Environment,2000,254:93-234.
    [28]Behymer T D, Hites R A. Photolysis of polycyclic aromatic hydrocarbons adsorbed on fly ash [J]. Environmental Science and Technology,1988,22:1311-1319.
    [29]Muri G, Wakeham S G, Rose N L. Records of atmospheric delivery of pyrolysis-derived pollutants in recent mountain lake sediments of the Julian Alps (NW Slovenia) [J]. Environmental Pollution,2006,139:461-468.
    [30]Louchouarn P, Chillrud S N, Houel S, et al. Elemental and molecular evidence of soot-and char-derived black carbon inputs to New York City's atmosphere during the 20th century [J]. Environmental Science and Technology,2007,41:82-87.
    [31]Boffetta P, Jourenkova N, Gustavsson P. Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons [J]. Cancer Causes and Control,1997,8:444-472.
    [32]Choi H, Jedrychowski W, Spengler J, et al. International studies of prenatal exposure to polycyclic aromatic hydrocarbons and fetal growth [J]. Environmental Health Perspectives,2006,114:1744-1751.
    [33]Keith L H, Telliard W A. Priority pollutants:I-a perspective view [J]. Environmental Science and Technology,1979,13:416-423.
    [34]张鹏新,Aagaard Per。土壤中污染物迁移模型在油田环境影响评价中的应用[J]。油气田环境保护,2005,15(4):49-61。
    [35]Qin X S, Huang G H, He L. Simulation and optimization technologies for petroleum waste management and remediation process control [J]. Journal of Environmental Management,2009,90(1):54-76.
    [36]程金香,马俊杰,王伯铎,等。石油开发工程生态环境影响分析与评价[J]。环境科学与技术,2004,27(6):64-65。
    [37]耿春香,张秀霞。西北地区油田开发对生态环境影响的几点分析[J]。环境保护科学,2003,29(1):40-41。
    [38]赵天石。大庆经济转型成本问题的战略研究[J]。大庆社会科学,2005,(2):11-12。
    [39]王西琴,李力。辽河三角洲湿地退化及其保护对策[J]。生态环境,2006,15(3):650-653。
    [40]王继富,刘兴土,陈建军。大庆市湿地退化的生态表征与保护对策研究[J]。湿地科学,2005,3(2):143-148。
    [41]张学佳,纪巍,康志军,等。石油类污染物在土壤中的吸附与迁移特性[J]。中国石油大学胜利学院学报,2008,22(3):20-26。
    [42]吕志萍,程龙飞。石油污染土壤中石油含量对玉米的影响[J]。油气田环境保护,2001,11(1):36-37。
    [43]王洪涛,罗剑,李雨松,等。石油污染物在土壤中运移的数值模拟初探[J]。环境科学学报,2000,20(6):755-760。
    [44]Mackay D. Multimedia environmental models the fugacity approach [M]. Chlelsea: USA:Lewis Publishers,1991.
    [45]Mackay D. Finding fugacity feasible [J]. Environmental Science and Technology, 1979,13(10):1218-1223.
    [46]Mackay D, Paterson S. Calculating fugacity [J]. Environmental Science and Technology,1981,15(9):1006-1014.
    [47]Mackay D. Correlation of bioconcentration factors [J]. Environmental Science and Technology,1982,16(5):274-278.
    [48]Mackay D, Joy M, Paterson S. A quantitative water, air, sediment interaction (QWASI) fugacity model for describing the fate of chemicals in lakes[J]. Chemosphere,1983a(12):981-997.
    [49]Mackay D, Paterson S, Joy M. A quantitative water, air, sediment interaction (QWASI) fugacity model for describing the fate of chemicals in rivers [J]. Chemosphere,1983b(12):1193-1208.
    [50]Ling H, Diamond M, Mackay D. Application of the QWASI fugacity/aquivalence model to assessing sources and fate of contaminants in Hamilton Harbour [J]. Journal of Great Lakes Research,1993,19(3):582-602.
    [51]Holysh M, Paterson S, Mackay D. Assessment of the environmental fate of linear alkybenzenesulphonates [J]. Chemosphere,1986,20:153-170.
    [52]Calamari D, Vighi M, Bacci E. The use of terristrial plant biomass as a parameter in the fugacity model [J]. Chemosphere,1987,16:2359-2364.
    [53]Mackay D, Diamond M. Application of the QWASI (Quantitative Water Air Sediment Interaction) fugacity model to the dynamics of organic and inorganic chemicals in lakes [J]. Chemosphere,1989,18(7-8):1343-1365.
    [54]Guardo A, Calamari D, Zanin G, et al. A fugacity model of pesticide runoff to surface water:development and validation [J]. Chemosphere,1994,28(3):511-531.
    [55]Woodfine D, Macleod M, Mackay D. A regionally segmented national scale multimedia contaminant fate model for Canada with GIS data input and display [J]. Environmental Pollution,2002,119(3):341-355.
    [56]Diamond M L, Mackay D, Poulton D J, et al. Assessing chemical behavior and developing remedial actions using a mass balance model of chemical fate in the Bay of Quinte [J]. Water Research,1996,30(2):405-421.
    [57]Sharpe S, Mackay D. A framework for evaluating bioaccumulation in food webs [J]. Environmental Science and Technology,2000,34(12):2373-2379.
    [58]Stiver W, Mackay D. Linear superposition in modeling contaminant behavior in aquatic systems [J]. Water Research,1995,29(1):329-335.
    [59]Paraiba L C, Bru R, Carrasco J M. Level Ⅳ fugacity model depending on temperature by a periodic control system [J]. Ecological Modelling,2002,147(3): 221-232.
    [60]张丽,戴树桂。多介质环境逸度模型研究进展[J]。环境科学与技术,2005,28(1):97-99。
    [61]Kilic S G, Aral M M. A fugacity based continuous and dynamic fate and transport model for river networks and its application to Altamaha river [J]. Science of the Total Environment,2009,407(12):3855-3866.
    [62]Lang C, Tao S, Wang X, et al. Seasonal variation of polycyclic aromatic hydrocarbons (PAHs) in Pearl River Delta region, China [J]. Atmospheric Environment,2007,41(37):8370-8379.
    [63]Wania F, Mackay D. A global distribution model for persistent organic chemicals [J]. Science of the Total Environment,1995,161:211-232.
    [64]Mackay D, Paterson S, Cheung B, et al. Evaluating the environmental behavior of chemicals with a Level III fugacity model [J]. Chemosphere,1985,14(1):335-374.
    [65]Brooke D, Matthiessen P. Development and validation of a modified fugacity model of pesticide leaching from farmland [J]. Pesticide Science,1991,31(3): 349-361.
    [66]Wania F, Semkin R, Hoff J T, et al. Modelling the fate of non-polar organic chemicals during the melting of an Arctic snowpack [J]. Hydrological Processes, 1999,13(14-15):2245-2256.
    [67]叶常明,雷志芳,王杏君,等。除草剂阿特拉津的多介质环境行为[J]。环境科学,2001,22(2):69-73。
    [68]曹红英,曹军,徐福留,等。天津地区六六六的归宿和跨界面迁移[J]。环境化学,2003,22(6):548-554。
    [69]Fryer M E, Collins C D. Model intercomparison for the uptake of organic chemicals by plants [J]. Environmental Science and Technology,2003,37(8):1617-1624.
    [70]赵南霞,王鹏,郑彤,等。松花江有机毒物环境归宿模型及程序设计[J]。哈尔滨工业大学学报,2001,33(4):479-480。
    [71]Clark B, Henry J G, Mackay D. Fugacity analysis and model of organic chemical fate in a sewage treatment plant [J]. Environmental Science and Technology,1995, 29:1488-1494.
    [72]David A P, Miriam L D. Application of the multimedia urban model to compare the fate of SOCs in an urban and forested watershed [J]. Environmental Science and Technology,2002,36(5):1004-1013.
    [73]郭栋生,袁小英,吴弢,等。万家寨引黄工程引水终端水质预测分析[J]。环境化学,2002,21(3):276-282。
    [74]Cousins I T, Mackay D. Strategies for including vegetation compartments in multimedia models [J]. Chemosphere,2001,44(4):643-654.
    [75]Helm P A, Diamond M L, Semkin R, et al. A mass balance model describing multiyear fate of organochl orine compounds in a high Arctic lake [J]. Environmental Science and Technology,2002,36(5):996-1003.
    [76]Breivik K L, Wania F. Evaluating a model of the historical behavior of two hexachorocyclohexanes in the Baltic sea environment [J]. Environmental Science and Technology,2002,36:1014-1023.
    [77]Clark T, Clark K, Paterson S, et al. Wildlife monitoring, modeling, and fugacity. Indicators of chemical contamination [J]. Environmental Science and Technology, 1988,22(2):120-127.
    [78]Connolly J P, Pedersen C J. A thermodynamic-based evaluation of organic chemical accumulation in aquatic organisms [J]. Environmental Science and Technology,1988,22(1):99-103.
    [79]Campfens J, Mackay D. Fugacity-based model of PCB bioaccumulation in complex aquatic food webs [J]. Environmental Science and Technology,1997,31(2): 577-583.
    [80]Hellou J, Mackay D, Fowler B. Bioconcentration of polycyclic aromatic compounds from sediments to muscle of finfish [J]. Environmental Science and Technology,1995,29(10):2555-2560.
    [81]Resendes J, Shiu W Y, Mackay D. Sensing the fugacity of hydrophobic organic chemicals in aqueous systems [J]. Environmental Science and Technology,1992, 26(12):2381-2387.
    [82]叶常明。多介质环境污染研究[M]。北京:科学出版社,1997。
    [83]Wania F, Mclachlan M S. Estimating the influence of forests on the overall fate of semivolatile organic compounds using a multimedia fate model [J]. Environmental Science and Technology,2001,35(3):582-590.
    [84]Booty W G, Wong I W S. Application of a fugacity model for assessing chemical fate in ecodistricts of southern Ontario [J]. Ecological Modelling,1996,84(1-3): 245-263.
    [85]Luo Y, Yang X. A multimedia environmental model of chemical distribution:fate, transport, and uncertainty analysis [J]. Chemosphere,2007,66(8):1396-1407.
    [86]Thomas G, Sweetman A J, Ockenden W A, et al. Air-pasture transfer of PCBs [J]. Environmental Science and Technology,1998,32(7):936-942.
    [87]Lun R, Lee K, de Marco L, et al. A model of the fate of polycyclic aromatic hydrocarbons in the Saguenay Fjord, Canada [J]. Environmental Toxicology and Chemistry,1998,17(2):333-341.
    [88]戴树桂,鲍明亮,胡国臣,等。有毒化学品研究与管理技术[M]。上海:上海科学普及出版社,1992。
    [89]Misra V, Jaffery F N, Viswanathan P N. Risk assessment of water pollutants [J]. Environmental Monitoring and Assessment,1994,29(1):29-40.
    [90]Staples C. A, Gulledge W. An environmental fate, exposure and risk assessment of ethylene oxide from diffuse emissions [J]. Chemosphere,2006,65(4):691-698.
    [91]Bru R, Maria C J, Costa P L. Unsteady state fugacity model by a dynamic control system [J]. Applied Mathematical Modelling,1998,22(7):485-494.
    [92]敖江婷。Ⅳ级逸度模型对典型有机污染物环境行为的动态模拟[D]。大连:大连理工大学,2008。
    [93]曹红英,梁涛,陶澍。1950年以来BHC在杭州环境中积累、迁移与残留动态的模拟研究[J]。环境科学学报,2005,25(4):475-482。
    [94]孙洪波,杨桂山,苏伟忠,等。生态风险评价研究进展[J]。生态学杂志,2009,28(2):335-341。
    [95]殷浩文。生态风险评价[M]。上海:华东理工大学出版社,2001。
    [96]USEPA (United States Environmental Protection Agency), Guidelines for ecological risk assessment, EPA/630/R-95/002F, MB, Washington, D.C. United States,1998.
    [97]陈辉,刘劲松,曹宇,等。生态风险评价研究进展[J]。生态学报,2006,26(5):1558-1566。
    [98]Great B D O T. A guide to risk assessment and risk management for environmental protection. London:HMSO,1995.
    [99]毛小苓,刘阳生。国内外环境风险评价研究进展[J]。应用基础与工程科学学报,2003,11(3):266-273。
    [100]蔡文贵,林钦,贾晓平,等。考洲洋重金属污染水平与潜在生态危害综合评价[J]。生态学杂志,2005,24(3):343-347。
    [101]王胜强,孙津生,丁辉。海河沉积物重金属污染及潜在生态风险评价[J]。环境工程,2005,23(2):62-64。
    [102]张路,范成新,鲜启鸣,等。太湖底泥和疏竣堆场中持久性有机污染物的分布及潜在生态风险[J]。湖泊科学,2007,19(1):18-24。
    [103]赵肖,张娅兰,李适宇。滴滴涕对太湖经济鱼类危害的生态风险[J]。生态学杂志,2008,27(2):295-299。
    [104]刘文新,栾兆坤,汤鸿霄。乐安江沉积物中金属污染的潜在生态风险评价[J]。生态学报,1999,19(2):206-211。
    [105]曾辉,刘国军。基于景观结构的区域生态风险分析[J]。中国环境科学,1999,19(5):454-457。
    [106]陈鹏,潘晓玲。干旱区内陆流域区域景观生态风险分析——以阜康三工河流域为例[J]。生态学杂志,2003,22(4):116-120。
    [107]肖杨,毛显强。区域景观生态风险空间分析[J]。中国环境科学,2006,26(5): 623-626。
    [108]荆玉平,张树文,李颖。基于景观结构的城乡交错带生态风险分析[J]。生态学杂志,2008,27(2):229-234。
    [109]贡璐,鞠强,潘晓玲。博斯腾湖区域景观生态风险评价研究[J]。干旱区资源与环境,2007,21(1):27-31。
    [110]张宏英。石油化工项目环境风险评价的探讨[J]。环境科学与管理,2006,31(3):27-28。
    [111]曹云者,施烈焰,李丽和,等。石油烃污染场地环境风险评价与风险管理[J]。生态毒理学报,2007,2(3):265-272。
    [112]刘娟。胜利油田开发中的生态环境保护研究[D]。北京:中国石油大学,2007。
    [113]姜永海,韦尚正,席北斗,等。PAHs在我国土壤中的污染现状及其研究进展[J]。生态环境学报,2008,18(3):1176-1181。
    [114]Kisic I, Mesic S, Basic F, et al. The effect of drilling fluids and crude oil on some chemical characteristics of soil and crops [J]. Geoderma,2009,149(3-4):209-216.
    [115]Asia I O, Jegede S I, Jegede D A, et al. The effects of petroleum exploration and production operations on the heavy metals contents of soil and groundwater in the Niger Delta [J]. Journal of Physical Sciences,2007,2(10):271-275.
    [116]宋玉芳,周启星,宋雪英,等。石油污灌土壤污染物的残留与生态毒理[J]。生态学杂志,2004,23(5):61-66。
    [117]李兴伟。石油类有机污染物在土壤中迁移数值模拟[D]。大庆:大庆石油学院,2005。
    [118]楚伟华。石油污染物在土壤中迁移及转化研究[D]。大庆:大庆石油学院,2006。
    [119]刘晓艳,史鹏飞,孙德智,等。大庆土壤中石油类污染物迁移模拟[J]。中国石油大学学报:自然科学版,2006,30(2):120-124。
    [120]陈家军,王红旗,奚成刚,等。大庆油田开发中石油类污染物对地下水环境影响模拟分析[J]。应用生态学报,2001,12(1):113-116。
    [121]Solomon K, Giesy J, Jones P. Probabilistic risk assessment of agrochemicals in the environment [J]. Crop Protection,2000,19(8):649-655.
    [122]Burmaster D E, Hull D A. Using lognormal distributions and lognormal probability plots in probabilistic risk assessments [J]. Human and Ecological Risk Assessment,1997,3(2):235-255.
    [123]Zolezzi M, Cattaneo C, Tarazona J V. Probabilistic ecological risk assessment of 1, 2,4-trichlorobenzene at a former industrial assessment of 1,2,4-trichlorobenzene at a former industrial [J]. Environmental Science and Technology,2005,39(9): 2920-2926.
    [124]刘志全,李丽和,李秀金,等。石油化工污染土壤中萘的生态风险评价[J]。 中国环境科学,2006,26(6):746-750。
    [125]徐琳瑜,陈家军,王红旗。油田开发的一种区域风险评价方法及应用[J]。应用基础与工程科学学报,1999,7(3):252-258。
    [126]臧淑英,梁欣,冯仲科。黑龙江省大庆市生态风险评价研究[J]。北京林业大学学报,2005,27(S2):58-62。
    [127]李丽和,曹云者,李秀金,等。典型石油化工污染场地多环芳烃土壤指导限值的获取与风险评价[J]。环境科学研究,2007,20(1):30-35。
    [128]USEPA. Method 8270C Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS). Revision 3 ed. United States Environmental Protection Agency,1996.
    [129]USEPA. Method 8275A Semivolatile Organic Compounds (PAHs and PCBs) in Soils/Sludges and Solid Wastes Using Thermal Extraction/Gas Chromatography/Mass Spectrometry (TE/GC/MS). Revision 1 ed. United States Environmental Protection Agency,1996.
    [130]杜显元。石油开采区土壤污染物源解析、毒性及快速检测法研究[D]。北京:华北电力大学,2012。
    [131]信晶。土壤中重金属与多环芳烃对发光菌毒性及QSAR研究[D]。北京:华北电力大学,2011。
    [132]信晶,杜显元,李兴春,等。一种利用明亮发光杆菌快速测定石油污染土壤生物毒性的方法[J]。中国环境监测,2011(3):24-27。
    [133]张树才,张巍,王开颜,等。北京东南郊大气TSP中多环芳烃的源解析[J]。环境科学学报,2007(3):452-458。
    [134]刘爱霞,郎印海,薛荔栋,等。沉积物中有机污染物生态风险分析方法研究[J]。海洋湖沼通报,2009(3):17-23。
    [135]杨建丽,刘征涛,周俊丽,等。中国主要河口沉积物中PCBs潜在生态风险研究[J]。2009(9):187-190。
    [136]Southworth G R. The role of volatilization in removing polycyclic aromatic hydrocarbons from aquatic environment [J]. Bulletin of Environmental Contamination and Toaxicology,1979,21:507-514.
    [137]张永清,费红琳,丁凯。修正Cp_EA_PLS用于多环芳烃光解半衰期QSAR的研究[J]。计算机与应用化学,2009,(4):499-500。
    [138]谭文捷,丁爱中,王金生。硫酸盐还原条件下多环芳烃在土壤中的迁移转化[J]。环境科学研究。2009(2):236-240。
    [139]Haritash A K, Kaushik C P. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons(PAHs):a review [J]. Journal of Hazardous Materials,2009,169(1-3): 1-15.
    [140]曹红英,曹军,徐福留,等。天津地区六六六的归宿和跨界面迁移[J]。环境化学,2003,22(6):548-554。
    [141]郭创新,梁年生,景雷,等。自适应鲁棒BP算法及其应用研究[J]。模式识别与人工智能,1996,9(1):78-86。
    [142]樊宇红,任长明,李建峰。基于B-P神经网络的非线性系统预测控制的研究[J]天津大学学报,1999,32(6):720-723。
    [143]Basheer L A, Hajmeer M. Artificial neural networks:fundamentals, computing, design and application [J]. Fuel,2000,43:3-31.
    [144]顾凡及,李训经,阮炯。动态神经元的网络模型Ⅰ.模型和算法[J]。生物物理学报,1992,8(2):339-345。
    [145]殷春根,骆仲映,倪明江。煤的工业分析与元素分析的BP神经网络预测模型[J]。燃料化学学报,1999,27(5):408-414。
    [146]张立明。人工神经网络的模型及其应用[M]。上海:复旦大学出版社,1995。
    [147]刘延年,冯纯伯,乔新。多层前向BP网络函数逼近能力的研究[J]。南京航空航天大学学报,1994(S1):191-195。
    [148]祝慧娜。基于区间数的水环境健康风险模糊综合评价[D]。长沙:湖南大学,2009。
    [149]田裘学。健康风险评价的基本内容与方法[J]。甘肃环境研究与监测,1997,10(4):32-36。
    [150]成先娟。不确定型层次分析法排序方法的研究[D]。广西:广西大学,2006。
    [151]李政文。区间数不确定多属性决策方法研究[D]。四川:西南交通大学,2010。
    [152]扬纶标,高英仪。模糊数学-原理及应用工科研究生用书[M]。广州:华南理工出版社,2001。
    [153]Sahoo B, Lohani A K, Sahu R K. Fuzzy multiobjective and linear programming based management models for optimal land-water-crop system [J]. Water Resource Management,2006,20:931-948.
    [154]Morre R E. Interval analysis [M]. Prentice-Hall, New York,1966.
    [155]Huang G H, Morre R D. Grey linear programming, its solving approach, and its application [J]. International Journal of Systems Sciences,1993,24:159-172.
    [156]Zhang S C, Zhang W, Wang K Y, et al. Concentration characteristics and influencing factors of atmospheric polycyclic aromatic hydrocarbons in TSP in the southeastern suburb of Beijing, China [J]. Environmental Science,2007,28(3): 460-465.
    [157]Mackay D, Paterson S. Evaluating the multimedia fate of organic chemicals:a level Ⅲ fugacity model [J]. Environmental Science and Technology,1991,25: 427-436.
    [158]中国青年报。2009年大庆原油产量超4000万吨[EB/OL]。北京:2010, www.zqb. cyol.com。
    [159]陈常青。大庆油田特殊开采工艺废液环境风险评估与研究[D]。大庆:大庆石油学院,2009。
    [160]张厚勇。炼油废水中苯系物和多环芳烃的分布规律研究及环境风险评价[D]。山东:山东大学,2008。
    [161]张兴儒,张士权。油气田开发建设与环境影响[M]。北京:石油工业出版社,1998。
    [162]何剑刚。大庆地区生态风险评价[D]。哈尔滨:东北林业大学,2004。
    [163]Cao H Y, Liang T, Tao S, et al. Simulating the temporal changes of OCP pollution in Hangzhou, China[J]. Chemosphere 2007,67:1335-1345.
    [164]洪岩,朴丰源,王艳艳,等。东北某市大气颗粒物和多环芳烃类化合物浓度及分布特点[J]。中国冶金工业医学杂志,2008,25(3):278-279。
    [165]刘广民,尹莉莉,刘子靖,等。扎龙湿地沉积物垂向剖面中多环芳烃分布特征[J]。环境科学研究,2008,21(3):36-39。
    [166]Liu G M, Yin L L, Liu Z J, et al. Distributional characteristics of polycyclic aromatic hydrocarbons in vertical section of sediments from Zhalong wetland [J]. Research of Environmental Science,2008,21:36-39.
    [167]Li Q, Zhu T, Qiu X, et al. Evaluating the fate of p,p'-DDT in Tianjin, China using a non-steady-state multimedia fugacity model [J]. Ecotoxicology and Environmental Safety,2006,63(2):196-203.
    [168]Cohen Y, Cooter E J. Multimedia environmental distribution of toxics (mend-tox): part ii, software implementation and case studies [J]. Laboratory and Animal Investigation,200,26(2):87-101.
    [169]Ao J T, Chen J W, Tian F L, et al. Application of a level Ⅳ fugacity model to simulate the long-term fate of hexachlorocyclohexane isomers in the lower reach of Yellow River basin, China [J]. Chemosphere,2009,74(3):370-376.
    [170]Zhang Q, Crittenden J C, Shonnard D, et al. Development and evaluation of an environmental multimedia fate model CHEMGL for the Great Lakes region [J]. Chemosphere,2003,50(10):1377-1397.
    [171]Fiedler H, Scheringer M, Wania F. Multimedia models of global transport and fate of persistent organic pollutants [M], Springer Berlin, Heidelberg,2003.
    [172]Finizio A, Vighi M, Sandroni D. Determination of n-octanol/water partition coefficient (Kow) of pesticide critical review and comparison of methods [J]. Chemosphere,1997,34(1):131-161.
    [173]Yu Y, Xu J, Wang P. Sediment-porewater partition of polycyclic aromatic hydrocarbons (PAHs) from Lanzhou Reach of Yellow River, China [J]. Journal of Hazardous Materials,2009,165(1-3):494-500.
    [174]Alves D L R F, Ferreira M M C. QSPR models of boiling point, octanol-water partition coefficient and retention time index of polycyclic aromatic hydrocarbons [J]. Journal of Molecular Structure,2003,663(1-3):109-126.
    [175]Huang G H, Morre R D. Grey linear programming, its solving approach, and its application [J]. International Journal of Systems Science,1993,24:159-172.
    [176]Neff J M. Polycyclic aromatic hydrocarbons in the aquatic environment sources fates and biological effects [M]. Applied Science, London,1979.
    [177]Soclo H H, Garrigues P H, Ewald M. Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments:case studies in Cotonou (Benin) and Aquitaine (France) areas [J]. Marine Pollution Bulletin,2000,40:387-396.
    [178]Baumard P, Budzinski H, Garrigues P. Polycyclic aromatic hydrocarbons in sediments and mussels of the western Mediterranean Sea [J]. Environmental Toxicology and Chemistry,1998,17:765-776.
    [179]段东勇,陈丙珍,何小荣。侦破神经网络训练中矛盾样本的模糊数学方法[J]。计算机与应用化学,1997,(3):181-184。
    [180]Alese B K, Olojo O J, Adewale O S, et al. Factor analytic approach to computer network/information security awareness in South-Western Nigeria [J]. Pacific Journal of Science and Technology,2007,8 (2):351-366.
    [181]Larsen S B, Karakashev D, Angelidaki I, et al. Ex-situ bioremediation of polycyclic aromatic hydrocarbons in sewage sludge [J]. Journal of Hazardous Materials,2009,164(2-3):1568-1572.
    [182]Liu Y, Chen L, Huang Q H, et al. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Huangpu River, Shanghai, China [J]. Science of the Total Environment,2009,407:2931-2938.
    [183]Larsen R K, Baker J E. Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere:a comparison of three methods [J]. Environmental Science and Technology,2003,37:1873-1881.
    [184]Vesna R, Jasna R, Ivana R, et al. Neural network modeling of dissolved oxygen in the Gruza reservoir, Serbia [J]. Ecological Modelling,2010,221:1239-1244.
    [185]Keller G, Wrack B. Statistics for Managers and Economists [M].6th Edition. Duxbury Press,2002.
    [186]Chenard J F, Caissie D. Stream temperature modelling using artificial neural networks:Application on Catamaran Brook, New Brunswick, Canada [J]. Hydrological Process,2008,22(17):3361-3372.
    [187]Robert H N. Kolmogorov's mapping neural network existence theorem[C]. Proceedings of 1st IEEE International Joint Conference on Neural Networks.1987, 3:11-14.
    [188]杨利华。缺失数据的处理方法研究及应用[D]。景德镇:景德镇陶瓷学院,2011。
    [189]Toth E, Brath A, Montanari A. Comparison of short-term rainfall prediction models for real-time flood forecasting [J]. Journal of Hydrology,2000,239: 132-147.
    [190]邹乔,王瑶,杜显元,等。内梅罗指数法在石油开采区土壤PAHs污染分级评价中的应用[J]。安徽农业科学,2011,39:7350-7353。
    [191]Li J B, Huang G H, Zeng G M, et al. An integrated fuzzy-stochastic modeling approach for risk assessment of groundwater contamination [J]. Journal of Environmental Management,2007,82:173-188.
    [192]Environment Canada Toxic substances management policy:Persistence and bioacccumulation criteria, En 40-499/2-1995E, Final Report. Ottawa, O.N. Canada, 1995.
    [193]Webster E, Mackay D, Wania F. Evaluation environmental persistence [J]. Environmental Toxicology and Chemistry 1998,17:2148-2158.
    [194]CCME (Canadian Council of Ministers of the Environment). Interim Canadian Environmental Quality Criteria for Contaminated Sites. Report CCME EPC2-CS34, Winnipeg, MB,1991.
    [195]CCME (Canadian Council of Ministers of the Environment). Guidance Document on the Management of Contaminated Sites in Canada, Winnipeg, MB,1997.
    [196]BRGM (Bureau de Recherche Geologiques et Minieres). French Approach to Contaminated-Land Management:Revision 1, Orleans Cedex, France,2003.
    [197]KDHE (Kansas Department of Health and Environment). Risk-based Standards for Kansas Risk Manual-4th Version, Topeka, KS,2007.
    [198]NJDEPE (New Jersey Department of Environment and Energy). Cleanup Standards for Contaminated Sites, Trenton, NJ,1992.
    [199]MDEQ (Mississippi Department of Environmental Quality). Risk Evaluation Procedures for Voluntary Cleanup and Redevelopment of Brownfield, Jackson, MS, 2002.
    [200]SCDEP (State of Connecticut Regulation of Department of Environmental Protection). Regulation Concerning Remediation Standard,1996.
    [201]Working Group on Polycyclic Aromatic Hydrocarbons, Ambient Air Pollution by Polycyclic Aromatic Hydrocarbons (PAH),2001.
    [202]CCME (Canadian Council of Ministers of the Environment). Canadian Sediment Quality Guidelines for the Protection of Aquatic Life, Winnipeg, MB,1991.
    [203]SMDE (State of Maryland Department of the Environment). Cleanup Standards for Soil and Groundwater, Annapolis, MD,2008.
    [204]J. O'Riordan. Ambient water quality criteria for polycyclic aromatic hydrocarbons (PAHs), Ministry of Environment, Lands and Parks, Victoria, BC,2007, http://www.env.gov.bc.ca/wat/wq/BCguidelines/pahs/pahs_over.html.
    [205]WQCC (Water Quality Control Commission). State of New Mexico Standards for Interstate and Intrastate Surface Waters (20.6.4 NMAC), Santa Fe, NM,2011.
    [206]CCME (Canadian Council of Ministers of the Environment). A Protocol for the Derivation of Environmental and Human Health Soil Quality Guidelines, Winnipeg, MB,1996.
    [207]WDNR (Wisconsin Department of Natural Resources). Bureau for Remediation and Redevelopment, Soil Cleanup Levels for Polycyclic Aromatic Hydrocarbons (PAHs) Interim Guidance:Technical Resources Section, Madison, WI,1997.
    [208]NMED (New Mexico Environment Department). Technical Background Document for Development of Soil Screening Levels Revision 5.0, Santa Fe, NM, 2009.
    [209]CEHT (Center for Environmental Human Toxicology). University of Florida Gainesville, Technical Report:Development of Cleanup Target Levels (CTLs) for Chapter 62-777, F. A. C. Prepared for the Division of Waste Management Florida Department of Environmental Protection, Tallahassee, FL,2005.
    [210]Ministry of Environment and Energy, Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario, Toronto, ON,1993.
    [211]Zuo Q, Duan Y H, Yang Y, et al. Source apportionment of polycyclic aromatic hydrocarbons in surface soil in Tianjin, China [J]. Environmental Pollution,2007, 147:303-310.
    [212]Duval M M, Friedlander S K. Source resolution of polycyclic aromatic hydrocarbons in the Los Angeles atmospheres. Application of a CMB with first order decay. Washington, DC,1981.
    [213]USEPA. Guideling for carcinogen risk assessment [EB/OL]. http://www.epa.gov /raf/publications/pdfs/CA%20GUIDELINES_1986.PDF.
    [214]USEPA. Guidelines for carcinogen risk assessment (EPA/630/P-03/001B) [EB/OL]. http://www.epa.gov/IRIS/cancer032505.pdf.
    [215]国家环保部。污染场地风险评估技术导则(征求意见稿)。
    [216]中华人民共和国主席令第二十八号。中华人民共和国劳动法。1995。
    [217]黑龙江省体育局。2010年黑龙江省第三次国民体质监测公报[EB/OL]。http://govinfo.nlc.gov.cn/hljfz/xxgk/tyj/201209/t20120910_2597774.htm?classid=4 43。
    [218]谌宏伟,陈鸿汉,刘菲,等。污染场地健康风险评价的实例研究[J]。地学前缘,2006,13(1):232-235。
    [219]胡焱弟,张力,白志鹏,等。交通协警多环芳烃暴露与健康风险的初步研究[J]。环境与健康杂志,2007,24(2):66-69。
    [220]王宗爽,段小丽,刘平,等。环境健康风险评价中我国居民暴露参数探讨[J]。环境科学研究,2009,22(10):1164-1170。
    [221]王国庆,骆永明,宋静,等。土壤环境质量指导值与标准研究Ⅳ.保护人体健康的土壤苯并[a]芘的临界浓度[J]。土壤学报,2007,44(4):603-611。
    [222]于云江。环境污染的健康风险评估与管理技术[M]。北京:中国环境科学出版社,2011。
    [223]Hu Y, Wen J Y, Wang D Z, et al. An interval dynamic multimedia fugacity (IDMF) model for environmental fate of PAHs and their source apportionment in an oilfield, China. Chemistry and Ecology,2013, DOI:10.1080/02757540.2013.769968.
    [224]李新荣,赵同科,张文新,等。区域环境中多环芳烃的皮肤接触暴露水平[J]。环境化学,2010,29(5):898-903。
    [225]邓绍坡,骆永明,宋静,等。电子废弃物拆解地_PM(10)中多氯联苯、镉和铜含量调查及人体健康风险评估[J]。环境科学研究,2010,23(6):733-740。
    [226]罗飞,宋静,潘云雨,等。典型滴滴涕废弃生产场地污染土壤的人体健康风险评估研究术[J]。土壤学报,2012,49(1):26-35。
    [227]Nisbet C, LaGoy P. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs) [J]. Regulatory Toxicology and Pharmacology,1992,16: 290-300.
    [228]USEPA. Methods for measuring the acute toxicity of effluents to freshwater and marine organisms Office of Research and Development, Washington, DC,1993, EPA/600/4-90/027F1993.
    [229]Tsai P J, Shih T S, Chen H L, et al. Assessing and predicting the exposures ofp olycyclic aromatic hydrocarbons (PAHs) and their carcinogenic potencies from vehicle engine exhausts to highway toll station workers [J]. Atmospheric Environment,2004,38:333-343.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700