用户名: 密码: 验证码:
水库诱发地震时空演化特征及其动态响应机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水库诱发地震(Reservoir-induced seismicity,简称RIS)是由水库蓄水或排水过程引发的一类特殊的地震活动。由于其震中位置一般邻近重要的水利工程设施,且震源浅、震中烈度高,往往具有很大的破坏性,可造成大坝及附近建筑物的破坏和人员伤亡。因此,RIS不仅是水利水电工程研究的重要内容,也是地震学、区域构造稳定性和环境工程地质研究的重要内容之一。
     20世纪60年代世界上接连发生水库诱发6级以上强震以后,RIS很快引起社会各界的广泛关注,特别是上世纪80年代以来,RIS逐渐成为地学界研究的热门和前瞻性课题之一。经过半个世纪的探索,人们对RIS的地震学特征、易于诱发地震的地质构造条件、诱震机理及预测评价方法等方面的认识取得了一定的进步,但由于RIS本身的复杂性,目前尚存在着许多问题,例如:(1)前人大多从统计资料来归纳RIS的共性,总结其规律。此方法虽有实用的一面,但并不能从根本上解释RIS成因机制。此外,研究程度较高的几个典型水库都处于剪切或拉张构造应力环境中,目前尚缺少对处于挤压构造应力环境中诱震水库进行详细解剖的实例。因此,亟需跨越震例统计分析的局限,面向挤压构造应力环境的诱震水库,利用多学科的手段和方法,开展多方位的综合研究,探索挤压环境条件下RIS成因机制及诱震主控性因素,丰富RIS理论体系。(2)当前,对RIS力学机制虽然有了一些定性的认识,但对水库水位变化过程中,诱发地震活动在不同时、空尺度上对库体荷载及水库附加水头压力扩散的动态响应机制的认识尚不清晰。倘若能从这方面得到一些由定性到定量的揭示,无疑对RIS诱发机制的探索而言将是一项创新性的工作。(3)在定量化研究方面,前人大多是在半无限弹性介质的假设下,利用格林函数和孔隙压力扩散方程求解应力场和流体压力场,定量讨论断层库仑应力变化对库体荷载及附加水头压力扩散的静态响应问题。这一方法虽然便捷,但在处理复杂介质域时却有很大的局限性。同时,由于他们多采用了简化的地质模型,忽视了发震库区地质构造及水文地质结构复杂性及岩体力学性质与渗透性能不均匀性对RIS的重要影响,因此,很难对发生在围岩体中的中小RIS进行定量化分析。
     正是基于以上存在的问题,本文以库水加卸载过程中RIS的时空演化特征及动态响应机制研究为切入点,在系统收集全球最新RIS震例资料,分析其空间分布与时间响应基本特征的基础上,以处于挤压构造背景的紫坪铺水库为重点,较为深入地研究了库区的地质构造及水文地质结构条件、水库蓄水后小震活动的时空演化特征,剖析了小震分布与局部地质构造条件的关系;以先进的岩体介质变形与流体渗流耦合及断层稳定性理论为指导,利用有限元方法计算了水库蓄水过程中弹性附加应力场、有效附加应力场、孔隙压力和断层稳定性的动态变化,研究了RIS对库水加卸载及渗透过程动态响应的力学机制,分析了RIS孕发的主控性因素;并结合前人的研究,对紫坪铺水库蓄水与“5.12”汶川大震可能的关联性问题进行了初步的讨论。此研究不仅有助于丰富构造流体动力学的理论体系和拓宽RIS孕育发生机理研究的思路,同时对于区域稳定性评价及RIS预测也有重要的参考价值。
     一、主要研究内容及取得的成果与认识
    
     (一)初步分析了全球RIS空间分布与时间响应的基本特征
     1.在空间分布上,RIS主要集中在水库周缘10 km范围之内,并局限于特定的库段丛集分布。当库区具备一定的地质构造与水文地质条件时,诱发地震活动会随着水库蓄、放水过程中的水位变化而发生迁移,笔者对迁移类型进行了归纳。
     2.对于不同地区或不同水库,诱发地震活动的时间响应存在着差异,总体上:在水库蓄水后1年以内,RIS初次响应占据一定的优势,而绝大部分诱发主震活动发生在水库初始蓄水1年以后;对长时间的水库蓄水历程而言,“混合响应”是RIS活动表现形式的主体,而“快速响应”和“滞后响应”仅是在一定的时间段内反应的阶段性现象;RIS响应与水库水位变化的关系十分复杂多样,既存在正相关关系,又有负相关性,同时在某种程度上表现出了较高震级的RIS对水位变化速率的依赖。
     3.RIS时空分布受发震库区地形地貌与局部地质构造条件、岩性条件、水文地质条件等方面的先存内因的控制,事实上,它们对RIS时空分布的控制作用并不是截然分开的,其间存在着相互依存、辩证统一的关系。
     (二)建立了针对RIS定量化研究的数理模型,完善了有限元求解程序
     1.RIS的发生不仅与库底先存断层等大型结构面有关,而且还受控于断层与围岩的组合形式,以及围岩体的岩石组合、岩性变化反映的岩体力学性质与渗透性能不均匀性。基于此认识,本文将RIS诱发机制的定量化模型分为2个层次:一是以孔隙介质为载体的流体渗流对岩体变形和稳定性的影响,由流-固耦合形式的岩体变形与孔隙渗流模型进行描述,此模型可反映岩体力学性质与渗透性能的不均匀性及其对库水加卸载的变形响应上的差异;二是对断层相关的RIS定量研究则将水库附加水头压力沿断层面(区)的扩散与断层库仑应力变化联系起来。两种形式模型的结合将能对RIS定量研究提供一个相对宏观的力学框架。
     2.根据Galerkin有限元理论,推导了“弱积分”形式的有限元公式,并利用有限元程序自动生成软件FEPG编写了计算程序。完善了针对RIS问题的有限元求解方法,尝试解决了以往RIS定量研究中难以处理库区复杂介质条件的问题。
     (三)分析了紫坪铺库区及邻近区域地质构造与水文地质结构条件,建立了二维地质模型
     1.紫坪铺库区位于青藏高原东缘龙门山造山带的中段,茂县-汶川、北川-映秀、通济场、安县-灌县和广元-大邑5条主干断裂控制了本区的基本构造格架。库区附近的主干断裂都不同程度的具有使地表水体向深部渗流的通道性。在断裂的深部,可能是一种上盘破碎带导水、下盘地层及断层核阻水的“上导下阻型”的新的渗透结构类型,这种断裂渗透结构对孔隙压力变化下断裂的力学响应具有重要的影响。
     2.在地质构造单元上,紫坪铺库体座落于龙门山前缘拆离带内。主滑脱面发育在三叠系雷口坡组和嘉陵江组的弱地层中,滑脱面上、下沉积地层组成及构造变形程度、变形样式等都存在着显著的差异。
     3.岩体渗透稳定性差异在很大程度上导致了诱发地震活动对岩性条件的依赖。依据谷德振等对岩体结构的分类标准,将研究区的岩体结构分为整体结构、层状结构和散体结构三种类型,岩体渗透稳定性分为高、中、低三个类别。
     4.在前人研究的基础上,运用比较构造学和解析构造学的理论和方法,对研究区深浅构造组合特征进行了解析,建立了研究区二维地质构造与水文地质结构模型。
     (四)研究了紫坪铺水库蓄水过程中RIS时空演化特征,分析了小震分布与地质构造及岩体渗透稳定性的关系
     1.自1970年有较为可靠的现代小震监测记录以来,至紫坪铺水库蓄水之前,库区及邻近区域的中、小地震活动在空间分布上非常分散,时间分布上也未表现出明显的周期性变化规律。
     2.利用紫坪铺水库台网2004年8月16日至2008年5月10日期间记录小震的精定位数据,分析了水库蓄水后地震活动的时空演化规律,发现:
     (1)紫坪铺水库蓄水后,小震活动明显呈现出条带状分布和丛集分布的特点。震中大多分布于库岸周边10 km范围以内且平行于主构造线呈NE向优势分布;小震活动在水库西南侧、东北侧和坝址下游9~18 km的都江堰市幸福乡、中兴镇和聚源镇一带丛集分布,在库体覆盖区地震活动非常少,几乎为空白区。随水库蓄、放水过程的变化,小震活动亦表现出一定程度的震中迁移特征。
     (2)紫坪铺水库蓄水后,小震震源深度优势分布在4~10 km范围内,在通济场断裂与安县-灌县断裂的深部汇聚区域震源分布最为密集。同时,小震活动主要集中发生在脆性程度高、渗透稳定性低的碳酸盐岩地层中,而在岩性较软弱、渗透稳定性高的三叠系须家河组砂泥岩和煤系地层中很少有地震发生。
     3.水库西南侧和东北侧两个丛集区的小震活动可能属于“快速响应型”诱发地震活动,而都江堰小震群活动可能属于“滞后响应型”水库诱发地震。
     (五)揭示了RIS时空演化与库水加卸载及渗透过程的动态响应关系,初步搞清了RIS孕发的主控性因素
     1.RIS的发生与库水加卸载及渗透过程中库底岩体有效应力的变化密切相关。在以挤压为主的构造应力环境中,库体荷载作用的结果一般会使库底断层更趋向稳定,而水库附加水头压力扩散的效应则是促使断层趋向失稳,正是这个矛盾双方相互制约与平衡的动态过程,控制了断层库仑应力变化的取向,从而决定了RIS时空演化的规律。从紫坪铺水库蓄水后小震活动的特征来看,亦表明了RIS时空演化受控于ΔCFS的动态变化过程。
     2.RIS的诱发条件和因素十分复杂,其中有些与地壳的内动力地质作用有关,也有一些与地表的外动力地质作用关系密切。在影响RIS孕发的诸多因素中,孕震区应变能积累达到临界状态是构造型RIS发生的先决条件,库区断裂渗透结构和岩体渗透稳定性是RIS诱发的主控性内因,水库水位变化幅度是直接影响RIS发生的重要外在条件。当地震孕育过程本身进入临界不稳定状态后,是诱发因子和构造动力学因子的相互作用,共同推动了RIS的孕发过程。研究同时表明,由于库区所处的构造应力环境的不同、发震构造尺度的差异及岩体性质的各向异性,造成了孕震构造达到破裂临界状态的条件亦有所不同,依此合理解释了弱震区或中等震区RIS的发生机率反而较高这一客观现象。
     3.孔隙压扩散与诱发地震活动之间存在着相互促进与制约的关系。诱发地震序列初期的微震既是对水库蓄水的响应,又是一种反馈因素,它们为更大规模释放构造应变能的积累创造了条件。
     (六)尝试性探讨了紫坪铺水库蓄水与汶川“5.12”大震可能的相关性问题
     从地表水体能够下渗的最大深度、水库蓄水后库区及附近区域的波速异常、汶川地震序列与典型中强水库诱发地震序列的差异以及弹性介质条件假设下震源处的断层库仑应力变化等方面,对汶川8.0级大地震与紫坪铺水库蓄水可能的关联性问题进行了初步的讨论。分析认为:从目前掌握的资料来看,尚未发现汶川8.0级大震与紫坪铺水库蓄水有关系的直接证据;由于汶川大地震的成核区域在地下约19 km深处的脆韧性转换带内,对于此深度范围内断裂渗透结构的变化、流体状态及其运移特征等,目前我们还知之甚少。因此,对它们之间相关性更为全面的认识依赖于上述研究取得突破性的进展。
     二、研究取得的主要进展
     1.本项研究综合了地质学、地震学和力学等多学科的方法,体现出集成性、前瞻性的特色,为挤压为主的构造应力环境中RIS综合研究的探索提供了一个范例。
     2.发现了紫坪铺水库蓄水后,小震活动主要集中发生在脆性程度高、渗透稳定性低的碳酸盐岩地层中,而在岩性较软弱、渗透稳定性高的三叠系须家河组砂泥岩和煤系地层中很少有地震发生的现象,进一步证实了RIS对岩体渗透稳定性的依赖。
     3.充分考虑了库底先存断层、断层与围岩的组合形式,以及围岩体的岩石组合、岩性变化反映的岩体力学性质与渗透性能不均匀性等对RIS的影响,将RIS诱发机制的定量化模型分为2个层次,建立了相对宏观的定量评价的力学框架,尝试解决了以往难以处理库区复杂介质条件的问题。
     4.基于岩体介质变形与流体渗流耦合及断层稳定性理论进行了有限元数值模拟,分析了水库蓄水过程中弹性附加应力场、有效附加应力场、孔隙压力和断层稳定性的动态变化,揭示了紫坪铺水库诱发地震的可能成因及诱震主控性因素。进一步证实了挤压为主的构造应力环境中,库体荷载作用一般使库底断层更趋向稳定,水库附加水头压力扩散的效应是促使断层趋向失稳。认为这两个因素相互制约与平衡的动态过程控制了断层库仑应力变化的取向与RIS时空演化的规律。
Reservoir-induced seismicity (RIS), which is generated in the process of reservoir storage or drainage, is a special kind of earthquakes. Because these shocks generally occur near important water conservancy establishments and commonly with low focal depth and high seismic intensity, sometimes they can cause very big destructiveness, and may cause personnel casualties and damage of the dams and buildings nearby. Therefore RIS is not only an important study of the water conservancy and hydropower project field, but also one of important contents in seismology, regional geological stability and environmental engineering geology.
     After several reservoir-induced earthquakes with M≥6 occurred one after another in the world in the 1960s, RIS had quickly drawn the society's widespread attention, especially from the 1980s, it has gradually become one of the focused and forward-looking topics in the geoscience field. Through half a century’s exploratory study, many a progress have been achieved in such aspects as seismological characteristics, conditions of geological structure being prone to induce seismic activities, mechanism, forecasting and assessing methods for RIS, and so on. While RIS is so complex that there are still a lot of difficult problems at present. For instance, previous studies mostly focused on summing up commonness and rules of RIS from statistical data. Although this method is practical, it still can not explain the origin mechanism of RIS fundamentally. Furthermore, several representative reservoirs studied in relatively high degree were all in extensional or shearing tectonic environments, there has still been short of the detailedly studied example in the compressional tectonic stress environment. Therefore, it needs to break the limitation of statistical analysis, and choose some typical reservoirs which are relatively rich in basic data and have relatively perfect reservoir earthquake monitoring station networks, utilizing multi-disciplinary methods to conduct synthetic study in multi-aspects, to explore the generation mechanism and main controlling factors of RIS, to enrich RIS system info. Presently, although there have been some qualitative understandings of RIS mechanism, it is still not clear what is the dynamic response mechanism of the RIS activities in space-time that responds the process of reservoir water body load-unloading and additional water pressure diffusion. If some revelations can be obtained from qualitative analysis to quantitative study in this aspect, certainly, it will be an innovative work for RIS mechanism's exploration. In the quantitative study, mainly based on the semi-infinitely elastic medium supposition, the previous work has discussed the static response problems for fault Coulomb stress changes responding to reservoir water body loading and additional water pressure diffusion by using the Green’s function and the pore pressure diffusion equation to solve the stress field and fluid pressure field. Although this method is very convenient, it has a very big limitation when processing complex media condition. At the same time, because they mostly used simplified geological models, and neglected the important influence of those, including complexities of geologic structure and hydrogeology structure, asymmetries of rock-mass’s mechanical properties and permeability, they can hardly quantitatively analyze the small-medium RIS occurring in surrounding rock-mass.
     According to the above problems, this thesis focuses on the study of evolution characteristics in space-time and dynamic response mechanism of RIS, systematically collects the newest data of global RIS cases, and analyzes the basic features of them in spatial distribution and time response. Taking the Zipingpu reservoir for an example, which is in the compressional tectonic stress environment, this work has studied the geological structure and hydrogeological conditions of the reservoir area, characteristics of swarm earthquake evolution in space-time after reservoir storage impounding, and the relationship between the distribution of swarm earthquakes and the local geological structure. According to the advanced theory of rock-mass deformation and fluid flow coupling and fault stability and using the finite elemental method, the elastic additional stress field, effective additional stress field, pore pressure and fault stability during the process of reservoir storage impounding were calculated. The major induced factors of RIS and the relationship between the evolvement of RIS in space-time and the process of reservoir water body load-unloading and water infiltration were studied. Combined with previous study, the possible relationship between Zipingpu reservoir storage impounding and the Wenchuan earthquake was attempted to be discussed. This study will be not only helpful for enriching the theoretical system of structure fluid dynamics and broadening thinkings of RIS mechanism research, but also have an important reference value for regional stability evaluation and RIS forecast.
     1.Main research contents and results
     (1) Analysis on basic characteristics of spatial distribution and time response of global RIS
     ⅰ. In the spatial distribution, RIS mainly concentrated in the range of 10 km away from the reservoir margin and confined to a particular segment of the reservoir. When a certain condition of geological structure and hydrogeological conditions are met in the reservoir region, the activities of RIS will migrate with the changes of water level during water storage and drainage. The types of migration have been summed up in this thesis.
     ⅱ. The time responses of RIS are different from region to region and from reservoir to reservoir. In general, RIS’s initial response is dominant when the reservoir is filled less than 1 year, while most of the main earthquakes of RIS occur in more than 1 year after the reservoir initial storage. The“mixture response”is the main form of RIS activities for the long process of reservoir storage, while the“rapid response”and“delayed response”are only a periodic phenomenon. RIS response has very complex and diverse relationships with the reservoir water level changes, which can be positive correlation or negative correlation, and higher magnitude of RIS shows certain dependence on the rate of water level changes.
     ⅲ. RIS spatial and temporal distribution is controlled by the existing internal causes including local terrain features, geological structure, lithologic and hydrogeological conditions in the reservoir area. In fact, all these causes that influenc the spatial and temporal distribution of RIS are interdependent and dialectical united and can not be completely separated.
     (2) Establishment of the mathematical model for the quantitative study of RIS and improvement of the finite element solving procedure
     ⅰ.The incidence of RIS is not only in connection with pre-existing large-scale faults under the reservoir area, but also controlled by the combination form of faults and their surrounding rock-mass, rock-mass composition, and heterogeneity of mechanical properties and penetrating quality reflected by the lithologic changes. Based on this understanding, a mathematical model for RIS is divided into two levels in this paper: One is the rock-mass distortion and stability influenced by liquid seepage in porous rock media, which is described by a solid-liquid coupling modal. This model can reflect the heterogeneity of mechanical properties and penetrating quality in surrounding rock-masses and their deformation differences in response to the process of reservoir water body loading and unloading. The other is a fault-related quantitative model for RIS, which is described by the linkage between additional reservoir water pressure diffusion along the faults and change of Coulomb failure stress on fault plane. The combination of two forms of modeling approach provides a comparatively macro-mechanical framework for RIS quantitative study.
     ⅱ. According to Galerkin’s finite element theory, the“weak integral”form of finite element formulation has been deduced, and a calculation program has been compiled utilizing the finite element program automatically generating software FEPG. An attempt is made to solve the difficult problem of dealing with complex media conditions in quantitative studies.
     (3) Construction of a two-dimensional geological model based on analysis of the geological structure and hydrogeological conditions in the Zipingpu reservoir and adjacent regions
     ⅰ. The Zipingpu reservoir is located in the middle of the Longmenshan orogenic belt in the eastern edge of the Qinghai-Tibet plateau. Five major faults including the Maoxian-Wenchuan, Beichuan-Yingxiu, Tongjichang, Anxian-Guanxian and Guangyuan-Dayi controls the basic structure frame of the study area., The main faults near the reservoir area can provide a leak path for the surface water flowing into the deep crust to various degrees. At deep depths of these faults, there may be a new permeability structure type, which is water-conductive in hanging wall strata and water-resisting in footwall strata. This fault permeability structure has an important influence on the mechanical response under a changing pore pressure.
     ⅱ. In the geological tectonic units, the Zipingpu reservoir lies in the frontal detachment zone of the Longmenshan system. In the vertical direction, the detachment zone is separated by the sedimentary formation of the Leikoupo group and Jialingjiang group of Triassic as a slide plane. The formation composition, tectonic deformation degrees and styles are significantly different between the upper part and lower part.
     ⅲThe cause of induced seismic activities depending on the lithologic conditions is mainly influenced by the difference of permeability stability of rock-mass. According to Gu Dezhen’s classification standard, the rock-mass structure in the studied area can be divided into three types, which are integral structure, layered structure and unconsolidated structure, and the permeability stability of rock-mass can be divided into 3 types which are high, medium and low.
     ⅳ. Based on previous research and combined with the theory and methods of comparative tectonics and analytical tectonics, a two-dimensional geological model has been built up by analyzing the structural characteristics in upper and lower formations in the study area.
     (4) Evolution characteristics of RIS in space-time during the process of reservoir storage impounding and the relationship between small earthquake distribution and geological structure and permeability stability of rock-mass in the Zipingpu reservoir area
     ⅰ. From 1970, when small earthquakes could be relatively reliably monitored in the study area, to the time of Zipingpu reservoir storage impounding, the middle-small earthquakes taking place in Zipingpu reservoir area and its adjacent regions were scattered in spatial distribution, and also did not show obviously cyclical variation in time distribution.
     ⅱ. Making use of the accurate seismic data which were relocated by the double difference location method from August 16, 2004 to May 10, 2008 recorded by the Zipingpu reservoir network, the characteristics of swarm earthquake evolution in space-time after the reservoir storage impounding have been analyzed and found that:
     (ⅰ) After Zipingpu reservoir storage impounding, the activity of small earthquakes in the spatial distribution exhibited banded or cluster distribution characteristics. Most epicenters were concentrated within 10 km range away from the reservoir margin, and predominantly distributed in NE direction parallel to the main structure line. The small earthquakes were clustered in the northeast and southwest of the reservoir, and also in 9~18 km downstream of the dam site which is adjacent to Xingfu, Zhongxing and Juyuan town of Dujiangyan city. While in the reservoir water body covered area, there was little earthquakes. The small earthquakes also shows characteristics of seismic migration accompanying with water level changes with reservoir’s being loaded or unloaded.
     (ⅱ) After Zipingpu reservoir storage impounding, the source depths of small earthquakes were preponderantly distributed in the range of 4~10 km under the ground, and the deep pooling area of the Tongjichang fault and Anxian-guanxian fault was most intensive. Meanwhile, the small earthquakes mainly occurred in the carbonate rock-masses with high brittle lithology and low infiltration stability, but there were little earthquakes occurred in the Triassic Xujiahe sand mudstone and coal measure strata which were relatively weak in lithology and high in infiltration stability.
     ⅲ. For the responding speed of RIS, the small earthquakes in the southwest and northeast seismic cluster area of the reservoir maybe belong to“rapid responsing type”, and the Dujiangyan small seismic swarm maybe fall into“delay responsive”induced seismicity.
     (5) Major induced factors of RIS and the relationship between the evolution of RIS in space-time and the process of reservoir water body load-unloading and water infiltration
     ⅰ. RIS is closely related to the change of effective additional stress in rock-masses under the reservoir body. In dominant compressional tectonic stress environment, the result of reservoir water body loading tends to make the faults more stable, while the effect of additional water pressure diffusion tends to promote instability of the faults. It is the dynamic process, in which two contradiction sides restrict and balance each other, that controls the orientation of Coulomb failure stress changes, and determines the characteristics of RIS evolution. The characteristics of small earthquakes after Zipingpu reservoir storage impounding also indicates that the evolution of RIS in space-time is controlled by the dynamic process ofΔCFS.
     ⅱ. The inducing conditions and factors of RIS are very complicated, some of which are connected with endogenic geological process of the crust, and others closely related to exogenic process. Among those factors which probably affect RIS’s pregnancy and occurrence, the precondition is accumulated elastic strain energy in a seismogenic zone having reached critical state. the principal internal controlling factors are features of fault permeability structure and permeability stability of rock-mass in the reservoir area, and the change scope of water level is the importantly external condition which can directly influence RIS. When the seismic pregnant process having reached critical state, it is the interaction between inducing factors and tectonic dynamic factors that impells the process of RIS’s pregnancy and occurrence.The study has also indicated that because of differences in tectonic stress environment, seismogenic structure scale, and aeolotropy of rock-mass, the critical states of seismogenic structure are different too. According to that, the objective phenomenon that there is relatively high occurrence probability of RIS in a seismic zone of weak-middle activity can be reasonably interpreted.
     ⅲ. There is a mutually stimulative and restrictive relationship between pore presses diffusion and RIS. The microseisms in the initial period of induced seismic sequence were not only a response to the reservoir storage, but also one kind of feedback factor, and created conditions for the large-scale release of elastic strain energy.
     (6) Possible correlation between the Zipingpu reservoir storge impounding and the“5.12”Wenchuan earthquake
     The possible correlation between the Zipingpu reservoir storge impounding and the“5.12”Wenchuan M8.0 earthquake has been discussed tentatively based on the analysis, including the lower limit depth of ground surface water’s seepage, the P wave velocity abnormlies in the reservoir area and its vicinities after storage impounding, the differences in characteristics of seismic sequence between the Wenchuan M8.0 earhquake and representative RIS,ΔCFS near the epicenter on the assumption of elastic media condition, and so on. The analysis suggests that there is no direct evidence to prove the obvious relationship between the Zipingpu reservoir storage impounding and the“5.12”Wenchuan earthquake. The nuclear region of this great shock located in the brittle-ductile transition zone about 19 km under the ground, and scientists have realized little about the changes of fault permeability structure, state and transportation characteristics of the liquid at that depth. Therefore, a more comprehensive understanding about this relationship will rely on unprecedented progress in the above research fields.
     2. Main progresses of this study
     (1) Multi-disciplinary methods have been synthesized, such as geology, seismology, mechanics, and so on, and integral and forward-looking studying characteristics has also been incarnated. The thesis will provide a typical model for RIS synthetic study in the future.
     (2) It has been discovered that the small earthquakes mainly occurred in the carbonate rock-masses with high brittle lithology and low infiltration stability, but there were little earthquakes occurred in the Triassic Xujiahe sand mudstone and coal measure strata which are relatively weak in lithology and high in infiltration stability. RIS’s depending on permeable stability of rock-mass has been further proved.
     (3) The incidence of RIS is not only in connection with pre-existing large-scale faults under the reservoir area, but also controlled by the combination form of faults and their surrounding rock-mass, rock-mass composition, and heterogeneity of mechanical properties and penetrating quality reflected by the lithologic changes. Based on this understanding, a mathematical model for RIS is divided into two levels in this paper, the combination of two forms of modeling approach provides a comparatively macro-mechanical framework for RIS quantitative study. An attempt is made to solve the difficult problem of dealing with complex media conditions in quantitative studies.
     (4) Based on the coupling theory of solid deformation and liquid seepage and fault stability theory, the dynamic changes of elastic additional stress field, effective additional stress field, pore pressure and fault stability have been calculated and analyzed. Major induced factors and the possibile causes for RIS ocuuring after the Zipingpu resevior impounding have been discovered. It has been approved futher that In dominant compressional tectonic stress environment, the result of reservoir water body loading tends to make the faults more stable, while the effect of additional water pressure diffusion tends to promote instability of the faults. It is the dynamic process, in which two contradiction sides restrict and balance each other, that controls the orientation of Coulomb failure stress changes, and determines the characteristics of RIS evolution.
引文
Ajeet P P, Chadha R K. 2003. Surface loading and triggered earthquakes inthe Koyna-Warna region, western India[J]. Physics of the Earth and Planetary Interiors, 139: 207~223
    Allegre C J, Minster J F. 1978. Quantitative method of trace element behavior in magmatic processes. Earth Planet Sci Lett, 38: 1~25
    Amos N, Byerlee J D. 1973. An exact effective stress law for elastic deformation[J]. J Geophys Res, 76(26): 6414~6419
    Astiz L, Shearer P M, Agnew D. 2000. Precise relocations and stress change calculations for the Upland earthquake sequence in southern California[J]. J Geophys Res, 105: 2937~2953
    Bear J. 1993. Flow and contaminant transport in fractured rock[M]. San Dieo: Aeademic Pr Inc
    Beard J S, Lofgren G E. 1991. Dehydration melting and water-saturated melting of basaltic and and esitic green stones and amphibolites at 1.3 and 6.9 kb. J Petrol, 32: 365~402
    Beck J L. 1976. Weight-induced stresses and the recent seismicity at Lake Oroville, Califonia[J]. Bull, Seismol. Sor. Am, 66: 1121~1131
    Bell M L, et al. 1976. The effects of pore pressure in reservoir induced seismicity[J]. Eos Am. Geophys. Union, Trans, 57(4): 289
    Bell M . L, et al. 1977. Strength changes due to reservoir-induced pore pressure and stresses and its application to Lake Oroville[J].Eos Am. Geophys. Union, Trans, 58(6): 437
    Bell M L, et al. 1978. Strength changes due to reservoir-induced pore pressure and stresses and application to Lake Oroville[J].J. Geophys. Res., 83 (B9), 4469~4483
    Biot M A. 1942. General Theory of Three-dimension-consolidation[J]. Jour Appl Phys, 12: 155~164
    Biot M A. 1955. Theory of elasticity and consolidation for a porous anistropic solid[J]. Jour. Appl Phys, 26: 182~191
    Biot M A. 1956. General solution of the equation of elasticity and consolidation for porous material[J]. Jour Appl Mech, 78: 91~96
    Biot M A. 1972. Theory of finite deformation of porous solid[J], Iniana Univ Math, 21: 507~620
    Burchfiel B C. 2004. New technology: new geological challenges[J]. Gsa Today, 14 (2): 4~9
    Carder D S. 1945. Seismic investigations in the Boulder Dam area, 1940-1944, and the influence of reservoir loading on earthquake activity[J]. Bull. Seismol. Soc. Am., 35: 175~192
    Carder D S. 1970. Reservoir loading and local earthquakes[J]. Geol. Soc. Am. Bull., 81(8): 51~61
    Carroll M M, Katsube N. 1983.The role of Terzaghi effective stress in linearly elastic deformation[J]. Journal of Energy Resources Technology, 105: 509~511
    Castle R O, et al. 1980. Tectonic state, its significance and characterization in the assessment of seismic effects associatedwith reservoir impounding[J]. Eng. Geol., 15(1-2), 53~99
    Caskey S J, Wesnousky S G. 1997. Static stress changes and earthquake triggering during the 1954 Fairview Peak and Dixie Valley earthquakes, central Nevada[J]. Bull seism soc Amer, 87: 521~527
    Clark M K, Royden L H. 2000. Topographic ooze: building the eastern margin of Tibet by lower crustal flow. Geology[J], 28: 703~706.
    Costa E, Vendeville B C. 2002. Experimental insights on the geometry and kinematics of fold-and-thrust belts above weak,viscous evaporitic decollement. J Struct Geol, 24: 1729~1739
    Dirks P H G M, Wilson C J L, Chen S F, et a1. 1994. Tectonic evolution of the NE margin of the Tibet-an Plateau: evidence from the central Longmen Mountains, Sichuan Province, China[J]. Southeast Asian Earth Sci., 9: 181~192.
    Erling F, Rune M H, Per H, et al. 1992. Petroleum related rock mechanics. New York: Elsevier Science Publishers B V, 38~39
    Evans M D. 1966. Man made earthquakes in Denver[J]. Geotimes, 10:11~17
    Felix W, William L.E. 2000. A Double~difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California[J]. Bulletin of the Seismological Society of America, 90(6): 1353~1368
    Geertsma J. 1957. The effect of fluid pressure decline on volumetric changes of porous rocks[J]. Trans AIME, 210(1): 331~340
    Gibowicz S J, Droste Z K, Ibrahim R M, et al. 1983. A microearthquake survey in the Abu~Simbel area in Egypt[J]. Eng. Geo. J., 19(2): 95~109
    Guha S K, Patil D N. 1990. Large Water-Reservoir-related Induced Seismicity[J]. Gerland Beitrage zur Geophysik, 99: 265
    Gupta H K, Rastogi B K, Narain H. 1972a. Common features of the reservoir associated seismic activities[J]. Bull. Seismol. Soc. Am., 62: 481~492
    Gupta H K, Rastogi B K, Narain H. 1972b. Some Discriminary Characteristics of Earthquakes near the Kariba, Kremasta and Koyna Artificial Lakes[J]. Bull. Seismol. Soc. Am., 62: 493
    Gupta H K, et al. 1976. Continued seismic activity at the Koyna reservoir site, India[J]. Eng. Geol.; 10(2-4), 307~313
    Gupta H K. 1983. Induced Seismicity Hazard Mitigation through Water Level Manipulation at Koyna, India: A Suggestion[J]. Bull. Seismol. Soc. Am., 73(2): 679~682
    Gupta H K. 1985. The present status of reservoir induced seismicity investigations with special emphasis on Koyna earthquakes[J]. Tectonophysics, 118(3~4): 257~279
    Gupta H K. 1990. Artificial Water Reservoirs and Earthquakes: A World-Wide Status[J]. Gerland Beitrage zur Geophysik, 99: 221
    Gupta H K. 2002. A review of recent studies of triggered earthquakes by artificial water reservoirs with special emphasis on earthquakes in Koyna, India[J]. Ear. Sci. Rew.,58: 279~310
    Grouph D I, Gouph W I. 1970a. Stress and deflection in the lithosphere near Lake Karaba[J]. Geophys. J.,21: 65~78
    Grouph D I, Gouph W I. 1970b. Load-induced earthquakes at Lake Kariba[J]. Geophys. J.,21:79~101
    Hainzl S, Ogata Y. 2005. Detecting fluid signals in seismicity data through statistical earthquake modeling[J]. J. Geophys. Res., 110, B05S07, 1029~2004
    Harris R A, Simpson D W. 1992. Changes in static stress on southern California faults after the 1992 Landers earthquake[J]. Nature, 360:251~254
    Healy J H, Rubey W W, Griggs D T, et al. 1968. The Denver Earthquakes. Scince N. Y, 161: 1301~1310
    Hubbert M K, Rubey W W. 1959. Role of fluid pressure in mechanics of overthrust faulting[J]. Bull. Geol. Soc. Am., 4: 115~166
    Jonathan S C, James P E, Craig B F. Fault zone architecture and permeability structure. Geology, 1996, 24(11): 1025~1027
    Johannes W, Holtz F. 1996. Petrogenesis and experiment petrology of granitic rocks. Berlin: Springer, 1~254
    Kanamori H, Rivera L. 2004. Static and Dynamic Scaling Relations for Earthquakes and their implications for Rupture Speed and Stress Drop[J]. Bull. Seismol. Soc. Am., 94(1): 314~319
    Keith C M, et al. 1982. Induced seismicity and style of deformation at Nurek Reservoir, Tadjik SSR[J]. Journal of Geophysical Research. 87(6), 4609~4624
    Kerr R A, Stone R. 2009 A Human Trigger for the Great Quake of Sichuan?[J]. Science, 323(5912): 322
    Klemperer S L. 2006. Crustal flow in Tibet: geological evidence for the physical state of Tibetan lithosphere, in Channel Flow, Ductile Extrusion and Exhumation of Lower Mid-Crust in Continental Collision Zones. Searle M P, Law R D, ed. Geol Soc London, 268: 39~70.
    Leith W S, Simpson D W. Alvarez W. 1981. Structure and Permeability:Geologic Controls on Induced Seismicity at Nurek Reservoir, Tadjikistan[J]. Geolgy, 9: 440
    Lewis R W, Schrefler B A. 1987. The finite element method in the deformation and consolidation of porous media[M]. Wiley, Chichester.
    Lewis R W. 1989. Finite element modeling of two-phase heat and fluid flow in deforming porous media[J]. Trans. Porous Media, 4: 319~334
    Lomnilz C. 1974. Earthquake and Reservoir Impounding: State of the Art[J]. Eng. Geol., 8: 191
    Malcolm F S. 1991. A Relationship between Joint Intensity and Induced Seismicity at Lake Keowee, Northwestern South Carolina[J]. Bulle. Assoc. Eng. Geol., 28: 7
    Mao Y P,Li Z X, Xiao H B. et al. 2008. Research on faulting response to reservoir-induced seismicity[J]. Joul. Seismo. Res., 31(1): 42~50
    Masuda K, Nishizawa O, Kusunose K, et al. 1990. Positive feed back fracture process induced by nonuniform high pressure water flow in dilatant granite[J]. J Geophys Res, 95(B13): 21583~21592
    Mekkawi M, Grasso J R, Schnegg P A. 2004. A long-lasting relaxation of seismicity at Aswan Reservoir, Egypt, 1982-2001[J]. Bull. Seismo. Soc. Am., 94(2): 479~492
    Meng Q, Hu J, Wang E, et al. 2006. Late Cenozoic denudation by large-magnitude landslides in the eastern edge of TibetanPlateau[J]. Earth Planet Sci Lett, 243: 252~267.
    Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia: Effect of a continental collision, Science, 199: 419~426
    Mohamed A, Megume M. 1995. Earthquake activity in the Aswan region, Egypt[J]. Pure and Applied Geophysics, 145(1): 69~86
    Mohr O. 1882. Uber die Darstellung des Spannungszustandes und des Deformationszustands eines Korperelementes [M]. Zivilingenieur: [s.n.], 113~142
    Mohr O. 1900. Welche Umstande bedingen die Elastizitatsgrenze und den bruch eines materials[J]. Zeitschrift des vereins Deutscher Ingenieure, 44:1524~1530
    Nikolaev N I. 1974. Tectonic conditions favourable for causing earthquakes occurring in connection with reservoir filling[J]. Eng. Geol., 8: 171
    Oda M. 1986. An equivalent continumn model for Coupled stress and fluid flow analysis in jointed in rock masses[J]. Water Resource Res, 25(13): 1845~1856.
    Okada Y. 1992. Internal deformation due to shear and tensile faults in a half space[J]. Bull seism soc Amer, 82:1018~1040
    Packer D R, et al., 1979. Reservoir induced seismicity; III, Summary and implications for occurrence of RIS[J]. Geol. Soc. Am., Abstr. Programs, 11(7): 490
    Pei D Z. 1992. Characteristics of Small Earthquakes and Stress Field: A Study of Reservoir Induced Seismicity in Quebec[J]. Soil Dynamics & Earthquake Eng, 11(4): 193~202
    Robinson R. 1994. Shallow subduction tectonies and fault interaction: The Weber, New Zealand, earthquake sequence of 1990~1992[J]. J Geophys Res, 99:9663~9676
    Royden L H, Burchfiel B C, King R W, et al. 1997. Surface deformation and lower crustal flow in eastern Tibet[J]. Science, 276: 788~790.
    RothéJ P. 1970. Seismic artificiels (man-made earthquakes)[J]. Tectonophysics, 9: 215~238
    Settari A, Puchyr P J. 1990. Patially decoupled modeling of hydraulic fracturing process[J]. SPE Production Engineering February, 25~33
    Shen Z K, Zhao C, Yin A, et al. Contemporary crustal deformation in east Asia constrained by Global Position System measure~ments. J Geophys Res, 2000, 105: 5721~5734
    Sibson R H, et al. 1975.Seismic pumping-a hydrothermal fluid transport mechanism[J]. Jour Geol Sci, 31(6):653~656.
    Simpson D W. 1976. Seismicity Changes Associated with Reservoir loading[J]. Eng. Geol., 10: 123~150
    Simpson D W, Negmatullaev S K. 1981. Induced Seismicity at Nurek Reservoir[J]. Bull. Seismol. Soc. Am., 71: 1561
    Simpson D W, Leith W S. 1988a. Induced seismicity at Toktogul Reservoir, Soviet entral Asian. U. S[J]. Geo. Surv., No.14-08-0001-G1188, 32
    Simpson D W, Leith W S, et al. 1988b. Reservoir-induced seismicity[J]. Bull. Seismol. Soc. Am.78: 2025~2040
    Simpson D W, Leith W S, Scholz C H. 1988c, Two types of reservoir-induced seismicity[J], Bull. Seismol. of America,78(6): 2025~2040
    Simpson D W, et al. 1990b. Induced seismicity and changes in water level at Aswan Reservoir, Egypt[J]. Gerlands Beitrage Zur Geophysik, 99(3): 191~204
    Stagg K G, Zienkiewicz O C. 1969. Rock Mechanics in Engineering Practice. London: Allen & Unwin Ltd
    Skempton A W. 1948. The effective stresses in satuated clays strained at constant volume[J]. Proc 7th Int Congr App Mech, 1: 374~378
    Sommaruga A. 1999. Decollement tectonics in the Jura foreland fold-and-thrust belt. Mari Petrol Geol, 16: 111~134
    Talwani, P, et al. 1980. The August 25, 1979 Lake Jocassee earthquake and its implications on reservoir induced earthquakes[J]. Am. Geophys. Union, TRANS; 61(17), 293
    Talwani, P, et al. 1981. Induced seismicity and earthquake prediction studies in south Carolina[J]. Open-File Report-U. S. Geological Survey, of 81~0093
    Talwani P, Acree S. 1985. Pore Pressure Diffusion and the Mechanism of Reservoir~Induced Seismicity[J]. Pure & Appl. Geophys., 122(6): 947~965
    Verrujit A. 1969. Elastic storage of aquifers[A].In: flow through porous media. edited by De Wiest R J M, New York: Tiho Wiley
    Wang C Y, Han W B, Wu J P, et al. 2007. Crustal structure beneath the eastern margin of the Tibetan plateau and its tectonic implications[J]. J Geophys Res, 112.
    Wang Q, Zhang P Z, Freymueller T J, et al. 2001. Present day crustal deformation in China constrained by Global Position System[J]. Science, 294: 574~577
    Westergard H M, Askins A W. 1934. Deformation of Earth's Surface due to Weight of Boulder Reservoir[J]. Denver. Colo. Tech. Mem., 4: 22
    Withers R J, et al. 1978. Time evolution of stress under an artificial lake and its implication for induced seismicity[J]. Can. J. Earth Sci., 15(9): 1526~1534
    Zhu W, Wong T F. 1997. The transition from brittle faulting to cataclastic flow: permeability evolution. J. Geophys, 102(B2): 3027~3041
    Zhu W, Wang X, Cheng Z, et al. 2000. Crustal motion of Chinese mainland monitored by GPS[J]. Science in China, Ser D,43(4): 394~400
    曹华.2006.东江水库诱发地震探讨[J].大坝与安全,1:21~22
    常宝琦,梁纪彬.1992.水库诱发地震最大震级的预测[J].华南地震,12(1):74~79
    常宝琦.1987.预测水库诱发地震的两个数学模式[J].西北地震学报,9(1):86~102
    车用太,鱼金子.2006.地震地下流体学[M].北京:气象出版社
    陈国光,计凤桔,周荣军,等.2007.龙门山断裂带晚第四纪活动性分段的初步研究.地震地质,29(3):657~673
    陈九辉,刘启元,李顺成,等.2009汶川Ms8.0地震余震序列重新定位及其地震构造研究[J].地球物理学报,52(2):390~397.
    陈学忠,尹祥础.1995.水库地震主震前加卸载响应比的变化特征[J].西北地震学报,11(4):361~367
    陈翰林.2009a.龙滩水库诱发地震的特征和机理研究[D].中国地震局地震预测研究所博士论文
    陈翰林,赵翠萍,修济刚,等.2009b.龙滩水库地震精定位及活动特征研究[J].地球物理学报,52(8):2035~2043
    陈勉,陈至达.1999.多重孔隙介质的有效应力定律[J].应用数学和力学,20(11):1121~1127
    陈蜀俊,苏爱军,罗登贵.2004.长江三峡水库诱发地震的成因类型[J].大地测量与地球动力学,24(2):70~73
    陈蜀俊,姚运生,曾佐勋.2005.三峡水库蓄水对库区孕震环境及潜在震源影响研究[J].大地测量与地球动力学,25(3):116~120
    陈益明.1985.柘林水库地震及其震源机制[J].地震,4:35~41
    陈运泰,许力生,张勇,等.2008.2008年5月12日汶川特大地震震源特性分析报告[R].http:// www.csi.ac.cn/ sichuan/ chenyuntai.pdf (in Chinese)
    陈颙.1988.地壳岩石的力学性能[M].北京:地震出版社
    陈颙.2009.汶川地震是由水库蓄水引起的吗?[J].中国科学D辑:地球科学,39(3):257~259
    程万正,阮祥,张致伟.2009.汶川8.0级地震序列及震型判定[J].地震,29(1):15~25
    崔作舟,陈纪平,吴苓.1996.阿尔泰-台湾岩石圈地学断面综合研究:花石峡-邵阳深部地壳的结构和构造[M].北京:地质出版社,49~168
    丁原章.1989.水库诱发地震[M].北京:地震出版社
    丁原章,曾宪译,陈益明.1982.新丰江水库区诱发地震的余震活动[J].地震地质,4(1):23~30
    范晓.2008.汶川大地震地下的奥秘[N].中国国家地理,6:36
    高锡铭.1980.汉江丹江口水库的地震活动[A].见:丹江口水库诱发地震文集[C].北京:地震出版社,80~89
    郭飚,刘启元,陈九辉,,等. 2009.川西龙门山及邻区地壳上地幔远震P波层析成像[J].地球物理学报,52(2):346~355.
    郭铭奎.1994.四川省铜街子电站水库诱发地震[J].四川地震,(2):12~23
    郭永刚,常廷改,苏克忠.2008.汶川8.0级特大地震与紫坪铺水库蓄水关系的讨论[J].震灾防御技术,3(3):259~265
    郭培兰,姚宏,袁媛.2006.龙滩水库地震危险性分析[J].高原地震,18(4):18~24
    龚宇,伍先国.1996.铜街子电站水库诱发地震的判定及最大可能诱发地震震级的估计[J].四川地震,3:48~56
    谷德振.1979.岩体工程地质力学基础[M].北京:科学出版社
    光耀华.1996.大化岩滩梯级水库诱发地震特征[J].水力发电学报,4:45~53
    韩晓光,饶扬誉.2004.长江三峡水库巴东库段地震成因分析[J].大地测量与地球动力学,24(2):74~77
    缑兰兰,张子凤,陈勇.2006.采用地震台网遥测资料分析研究恰甫其海水库诱发地震[J].水利水电技术,37(11):61~63
    胡平,陈献程,胡毓良.1997.湖南东江水库诱发地震[J].地球物理学报,40(1):66~77
    胡先明.2003.大桥水库诱发4.4级水库地震前的地震学异常[J].地震地磁观测与研究,24(3):14~19
    胡先明.2004.冕宁大桥水库诱发地震研究[J].大地测量与地球动力学,24(2):88~91
    胡先明.2007.紫坪铺水库蓄水前天然地震活动[J].四川地震,2:16~21
    胡先明,陈巨鹏.2009.水库诱发地震的水二级相变孕震模型[J].地震地质,31(1):724~737
    胡毓良,陈献程,张忠连,等.1986.浙江湖南镇水库的诱发地震[J].地震地质,8(4):1~25
    黄河生,魏柏林,曾宪泽,等.1991.新丰江水库区l989年l1月26日4.5级地震的主要特征[J].华南地震,11(2):68~73
    姜朝松,彭万里,王绍晋,等.1990.乌江渡水库地震诱震条件及成因[J].地震学报,12(1):94~102
    金文正,汤良杰,杨克明,等.2007.川西龙门山褶皱冲断带分带性变形特征[J].地质学报,81(8):1072~1080
    金文正,汤良杰,杨克明,等.2008.龙门山冲断带构造特征研究主要进展及存在问题探讨[J].地质论评,54(1):37~46
    蒋国芳.1987.利用地震转换求取四川地壳厚度的初步尝试[J].四川地震,3:36~41
    孔祥言.1999.高等渗流力学[M].合肥:中国科学技术大学出版社
    李华晔.1999.水库诱发地震与环境关系的研究(一)[J].华北水利水电学院学报,20(1):31~36
    李敏,汪雍熙,“紫坪铺水库与5.12汶川大地震有关系吗?”,http: //www.xys.org/ xys/ ebooks/ others/ science/ misc/ wenchuan502.txt
    李明诚.2000.石油与天然气运移研究综述.石油勘探与开发,27(4):3~10
    李月,2008.松潘-阿坝及东缘龙门山地区构造特征及动力学分析[D].中国石油大学博士学位论文
    李永莉,秦嘉政,董天禹,等.2004.澜沧江漫湾电站水库诱发地震分析[J].地震地磁观测与研究,25(3):51~57
    李祖武.1981.水库地震与地质构造的关系[J].地震地质,3(2):61~69
    李智武,刘树根,陈洪德,等.2008.龙门山冲断带分段-分带性构造格局及其差异变形特征[J].成都理工大学学报(自然科学版),35(4):440~454
    黎水泉,徐秉业.2001.双重孔隙介质流固耦合理论模型[J].水动力学研究与进展,16(4):460~466
    雷建设,赵大鹏,苏金蓉.2009.龙门山断裂带地壳精细结构与汶川地震发震机理[J].地球物理学报,52(2):339~345
    雷兴林,马胜利,闻学泽,等.2008.地表水体对断层应力与地震时空分布影响的综合分析-以紫坪铺水库为例.地震地质,30(4):1046~1064
    梁青槐,高士钧,曾心传.1995.水库诱发地震机制研究[J].华南地震,15(1):74~77
    林茂炳.1994.初论龙门山推覆构造带的基本结构样式[J].成都理工学院学报,21(3):1~7
    林茂炳,马永旺.1995.论龙门山彭灌杂岩体的构造属性[J].成都理工学院学报,22(1):42~46.
    刘春平,林娟华.2008.龙门山造山带彭灌杂岩体形成模式研究[J].内蒙古石油化工,19:1~4
    刘峰.1999.水口水库诱震的环境条件和库区垂直形变特征[J].华南地震,19(4):77~81
    刘和甫,梁慧社,蔡立国,等.1994.川西龙门山冲断系构造样式与前陆盆地演化[J].地质学报,68(2):101~118
    刘素梅.2005.丹江口水库续建工程诱发地震研究[D].武汉理工大学博士论文
    刘树根.1993.龙门山冲断带与川西前陆盆地的形成演化[M].成都:成都科技大学出版社
    刘树根,罗志立,戴苏兰.1995.龙门山冲断带的隆升和川西前陆盆地的沉降[J].地质学报, 69(3):205~213.
    刘树根,田小彬,李智武,等2008.龙门山中段构造特征与汶川地震[J]成都理工大学学报(自然科学版),35(4):388~396
    刘树根,李智武,曹俊兴,等.2009.龙门山陆内复合造山带的四维结构构造特征[J].地质科学,44(4):1151~1180
    刘启元,陈九辉,李顺成,等.2008.汶川Ms 8.0地震川西流动地震台阵观测数据的初步分析[J].地震地质,30(3):584~596
    刘启元,李昱,陈九辉,等.2009.汶川Ms 8.0地震地壳上地幔S波速度结构的初步研究[J].地球物理学报,52(2):309~319
    卢显,张晓东,周龙泉,等.2010.紫坪铺水库库区地震精定位研究及分析.地震,30(2):10~19
    罗志立,龙学明.1992.龙门山造山带的崛起和川西前陆盆地的沉降[J].四川地质学报,12(1):204~218
    罗志立,雍自权,刘树根,等.2008.四川汶川大地震与C型俯冲的关系和防震减灾的建议[J].成都理工大学学报(自然科学版),35(4):337~346
    楼海,王椿镛.2003.川滇地区重力异常的小波分解与解释[J].地震学报,2003,27(5):515~523
    楼海,王椿镛,吕智勇,等.2008.2008年汶川Ms8.0级地震的深部构造环境—远震P波接收函数和布格重力异常的联合解释[J].中国科学D辑:地球科学,38(10):1207~1220
    马宏生,张国民,周龙泉,等.2008.川滇地区中小震重新定位与速度结构的联合反演研究[J].地震,28(2):29~38
    马永旺,王国芝,胡新伟.1996.“彭灌杂岩”推覆体的构造变形特征[J].四川地质学报,16(2):110~114.
    毛玉平,王洋龙,李朝才.2004.小湾库区水库诱发地震的地质环境分析[J].地震研究,27(4):339~343
    毛玉平,艾永平,李志祥.2008.水库诱发地震研究[M].北京:地震出版社
    廖武林,张丽芬,姚运生.2009.三峡水库地震活动特征研究[J].地震地质,31(4):707~714
    彭美凤,林世敏,林松键.1997.水口水库地震及其活动特征[J].华南地震,17(2):83~89
    秦四清,张倬元.1995.水库诱震机制新理论的探索-断层带弱化与岩体软化效应诱震理论[J].工程地质学报,3(1):35~44
    荣建东,耿爱玲.1997.丹江口水库区地震观测30年[J].地壳形变与地震,17(4):83~88《四川地震资料汇编》编辑组编.1981.四川地震资料汇编[M].成都:四川人民出版社
    孙洁,晋光文,白登海,等.2003.青藏高原东缘地壳上地幔电性结构探测及其大地构造意义[J].中国科学D辑:地球科学,33(增刊):173~180
    孙叶,谭成轩.1995.中国现今区域构造应力场与地壳运动趋势分析[J].地质力学学报,1(3):1~2
    隋欣,杨志峰.2004.李家峡水库蓄水后区域地震活动特征及危险性分析[J].安全与环境学报,4(6):50~53
    宋鸿彪.1994.龙门山造山带地质和地球物理资料的综合解释[J].成都理工学院学报,21(2):79~88
    宋金,蒋海昆.2009.三峡库区微震活动的衰减与激发[A].见:中国地震学会成立三十年学术研讨会论文摘要集[C],18
    沈立英.1989.渗流与新丰江水库地震[J].华南地震,2:92~101
    沈照理,王焰新,2002.水-岩相互作用研究的回顾与展望[J]].地球科学-中国地质大学学报,27(2):127~133
    汤良杰,杨克明,金文正,等.2008.龙门山冲断带多层次滑脱带与滑脱构造变形[J].中国科学(D辑),38(增刊Ⅰ):30~40
    王妙月,杨懋源,胡毓良,等.1976.新丰江水库地震的震源机制及其成因初步探讨[J].地球物理学报,19(1):1~17
    王椿镛,吴建平,楼海,等.2003.川西藏东地区的地壳P波速度结构[J].中国科学D辑:地球科学,33(增刊):181~189
    王椿镛,吴建平,楼海,等.2006.青藏高原东部壳幔速度结构和地幔变形场的研究[J].地学前缘,13:350~359
    王椿镛,楼海,吕智勇,等.2008.青藏高原东部地壳上地幔S波速度结构-下地壳流的深部环境[J].中国科学D辑:地球科学,38(1):22~32
    王清云,高士钧.2003.丹江口水库诱发地震研究[J].大地测量与地球动力学,23(1):103~106
    王绳祖.2002.青藏高原岩石圈多层应力场[J].地震,22(3):21~26
    王世昌,刘耀炜,张培华.2006.小浪底水库诱发地震的危险性分析[J],地震地磁观测与研究,27(2):9~15
    王绪本,余年,朱迎堂,等.2008.龙门山逆冲构造带大地电磁测深初步成果[J].成都理工大学学报(自然科学版),35(4):398~403.
    王绪本,朱迎堂,赵锡奎,等.2009.青藏高原东缘龙门山逆冲构造深部电性结构特征[J].地球物理学报,2009,52(2):564~571
    王晓青,丁香,张飞宇,等.2009.水库地震的综合概率增益预测法研究[J].地震地质,31(4):738~746
    王云基.2001.四川紫坪铺水库区水文地质与工程地质条件研究[J].四川地震,99(2):6~13
    王自明.2002.油藏热流固耦合模型研究及应用初探[D].西南石油学院博士论文
    万永芳,叶东华,陈大庆.2008.广东新丰江地区地震研究[J].华南地震,28(2):59~66
    万永革,吴忠良,周公威,等.2000.几次复杂地震中不同破裂事件之间的“应力触发”问题[J].地震学报,22(6):568~576
    魏柏林,刘燕萍,叶秀薇.2008.湖南东江水库地震的预测研究[J].华南地震,28(3):31~43
    吴建平,明跃红,王椿镛.2006.川滇地区速度结构的区域地震波形反演研究[J].地球物理学报,49(5):1369~1376
    吴山,赵兵,苟宗海,等.1999.龙门山中-南段构造格局及形成演化[J].矿物岩石,19(3):82~85
    仵彦卿.1994.岩体水力学导论[M].成都:西南交通大学出版社
    谢原定,汤泉.1990.水力扩散与水库诱发地震关系的讨论[J].西北地震学报,12(1):82~86
    解习农,刘晓峰,赵士宝,等.异常压力环境下流体活动及其油气运移主通道分析.中国地质大学学报-地球科学,2004,29(5):589~594
    夏金梧,李长安,曾新平,等.2008.三峡工程库首区高桥断裂特征与地震活动性研究[J].大地测量与地球动力学,28(2):8~15
    夏其发.1993.《世界水库诱发地震震例基本参数汇总表》暨水库诱发地震评述<二>[J].中国地质灾害与防治学报,1:87~96
    肖安予.1990.南水水库地震及其发展趋势[J].华南地震,10(2):68~77
    谢富仁,崔效锋,赵建涛.2003.全球应力场与构造分析[J].地学前缘,10(特刊):22~30
    辛晓十,江富建.2005.丹江口水库诱发地震的趋势及其对策研究[J].南阳师范学院学报,4(9):65~67
    许强,黄润秋.1996.用神经网络理论预测水库诱发地震[J].中国地质灾害与防治学报,7(3):10~17
    徐礼华,刘素梅.2005.丹江口水库二期工程诱发地震强度预测[J].武汉理工大学学报,27(1):58~61
    徐彦,杨晶琼,苏有锦,等.2005.云南地区地震精确定位及其构造意义分析[J].地震研究,28(4):340~344
    许振栋,陈传昌.2004.水口水库诱发地震研究[J].大地测量与地球动力学,24(2):58~63
    许振栋,罗家天,余庆旺.2007.福建水口水库诱发地震及其发展趋势探讨[J].大地测量与地球动力学,27(3):106~112
    徐朝繁,潘纪顺,王夫运,等2008.龙门山及其邻近地区深部地球物理探测[J].大地测量与地球动力学,28(6):31~37
    徐锡伟,闻学泽,叶建青,等2008.汶川Ms8.0地震地表破裂带及其发震构造[J].地震地质,30(3):597~629
    薛世峰,宋惠珍.1999a.非混溶饱和两相渗流与孔隙介质耦合作用的理论研究-数学模型[J].地震地质,21(3):243~252
    薛世峰,宋惠珍.1999b.非混溶饱和两相渗流与孔隙介质耦合作用的理论研究-方程解耦与有限元公式[J].地震地质,21(3):253~260
    薛世峰.2000a.非混溶饱和两相渗流与变形孔隙介质耦合作用的理论研究及其在石油开发中的应用[D].中国地震局地研究所博士论文
    薛世峰,全兴华,岳伯谦,等.2000b.地下流固耦合理论的研究进展及应用[J].石油大学学报(自然科学版)24(2):109~114
    薛禹群.1997.地下水动力学[M].北京:地质出版社
    杨国宪,汪雍熙.2003.小浪底水库区天然地震本底特征分析[J].水利学报,6:89~94
    杨国周,欧阳凰.1998.东江水库地震活动特征[J].华南地震,18(2):78~83
    杨清源,胡毓良,陈献程,等.1996.国内外水库诱发地震目录[J].地震地质,18(4):453~461
    杨清源,陈献程,胡毓良,等.1996.应用灰色聚类法预测长江三峡工程水库诱发地震的最大震级[J].华南地震,16(2):75~79
    杨天鸿,唐春安,徐涛,等.2004.岩石破裂过程的渗流特性-理论、模型与应用.北京:科学出版社
    杨玉蓉,1999.流体地球科学发展趋势展望[A].见:流体地球科学进展[C],北京:地震出版社3~14
    杨作恒,王和章.2006.皎口水库地震特征及震情趋势分析[J].山西建筑,32(6):80~81
    姚立殉,钟羽云,张震峰,等.2004.岩体裂隙充水后对拐角频率的影响[J].西北地震学报,26(4):315~321
    严尊国.1994.长江三峡及邻近区地震活动性研究[J].地壳形变与地震,14(2):47~55
    叶金汉,郗绮霞,夏万人,等.1991.岩石力学参数手册.北京:水利电力出版社
    易立新.2001.水库诱发地震理论及三峡水库诱发地震预测研究[D].中国地震局地质研究所博士论文
    易立新,车用太,王广才.2003.水库诱发地震研究的历史、现状与发展趋势.华南地震,23(1):28~37
    易立新,王广才,李榴芬.2004.水文地质结构与水库诱发地震.水文地质工程地质,2:29~32
    于品清,孔凡健.1983.水库地震地质构造条件的讨论[J].地壳形变与地震,3:71~81
    余一欣,汤良杰,王清华,等.2005.受盐层影响的前陆褶皱冲断带构造特征-以库车秋立塔克构造带为例.石油学报, 26(4):1~4
    袁曲,董建辉.2005.三峡水库地震孕震机理与未来地震趋势初探[J].地震地磁观测与研究, 26(增刊):37~47
    翟世龙.2002.新疆克孜尔水库诱发地震的形成条件和诱发机制问题初探[J].内陆地震,16(1):89~96
    赵密福.2004.断层封闭性研究现状.新疆石油地质, 25(3):333~336
    赵珠,张润生.1987.四川地区地壳上地幔速度结构的初步研究[J].地震学报,9(2):154~165.
    赵珠,黄圣睦,张文甫,等.1996.四川二滩水电站围堰期间诱发地震的初步研究[J].四川地震,2:8~15
    赵珠,龙思胜,罗昭明.1999.四川二滩水库库区蓄水前地震序列揭示的水库诱震结构[J].华南地震,19(1):78~84
    张成.2006.渤中地区典型构造油气运移输导通道及其成藏模式[D].武汉:中国地质大学
    张国民,马宏生,王辉,等.2004.中国大陆活动地块与强震活动关系[J].中国科学D辑(地球科学),34 (7):591~599
    张敏,张启胜.2000.龙羊峡水库区的地震活动[J].地震地质, 22(3):216~218
    张明山,姚宗惠,陈发景.2002.塑性岩体与逆冲构造变形关系讨论—库车坳陷西部实例分析.地学前缘, 9(4):371~376
    张致伟,程万正,阮祥,等.2009.汶川8.0级地震前龙门山断裂带的地震活动性和构造应力场特征[J].地震学报,31(2):1~7
    郑钰,杨建思.2008.双差算法的剖析及参数对定位的影响[J].地震地磁观测与研究,29(3):85~93
    钟以章,蒋玉谦,韩殿中.1981.辽宁参窝水库地震问题的讨论[J].地震地质,3(4):59~68
    钟羽云,周昕,张帆,等.2006年温州珊溪水库地震序列特征[J].华南地震,2007,27(1):21~30
    钟羽云,朱新运,张震峰.2004.温州珊溪水库ML3.9震群震源参数特征[J].地震,24(3):107~114
    周建波,袁丹红.2001.东江建库后生态环境变化的初步分析[J].水力发电学报,(4):108~116
    周建芬.2003a.水库诱发地震机理研究[D].昆明理工大学硕士论文
    周建芬,张林洪,庞志伟.2003b.水库地震非线性共振现象的突变模型研究[J].地震研究,26(1):75~79
    周龙泉.2009.紫坪铺水库库区三维速度结构[J].国际地震动态,4:5~6
    周荣军,李勇,Densmore A L,等.2000.晚第四纪以来青藏高原东缘构造变形的新证据.见:陈运泰主编.全国地震会议论文集.北京:地震出版社,56
    周仕勇,王锐,邓凯,等。2009。紫坪坝水库对龙门山地震带地震活动的影响研究[A]见:中国地球物理(第二十五届年会)[C],中国地球物理学会编,合肥:中国科学技术大学出版社,43
    周昕,钟羽云,傅建武,等.2006.珊溪水库地震与构造地震波谱时-频特征的对比研究[J].大地测量与地球动力学,26(4):86~91
    朱新运,钟羽云,张震峰.2004.地震波拐角频率对地震序列的依赖性研究[J].西北地震学报,26(2):131~136

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700