用户名: 密码: 验证码:
热壁加氢反应器接管裂纹断裂与安全评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为获取高质量的石油加工产品或增产石油化工原料和中馏份油,以及适应高含硫原油、劣质原油深加工的需要与改善环境条件等目的,在现代化石油加工工业中出现了加氢工艺装置。与此同时,加氢装置中关键设备热壁加氢反应器的设计及制造技术也有了长足的进步。热壁加氢反应器是加氢工艺生产过程中的必不可少的主要设备,它长期在高温(350℃左右)、高压(18.2 MPa左右)以及临氢状态等苟刻条件下工作。操作过程中的温度和压力的波动,开停工过程中压力和温度的变化等都会对反应器引起应力循环疲劳、裂纹萌生和已存在缺陷的疲劳扩展,给在役热壁加氢反应器的正常安全生产造成安全隐患。所以,生产厂及有关单位对在役热壁加氢反应器的安全运行状况一直给予高度重视,因此针对这类在役高压容器的工作特点,对其缺陷进行分析与评价有着及其重要的理论意义和现实意义。
     本文旨在通过对大庆石化公司R3102热壁加氢反应器现场实际工况的研究与分析,针对加氢反应器的操作特点,研究反应器在操作中的各种危险工况,从而找出整个反应器中最危险的部位,运用压力容器有关理论对检测结果进行计算、分析、评价。
     由现场的实践调研,了解到工程实际需要,获得了基本数据;回顾分析了加氢反应器的国内外的研究工作和成果;研究了反应器在操作中的各种危险工况,从而找出整个反应器中最危险(易损坏)的部位,运用压力容器有关理论对该部位进行计算、校核,经计算校核得出该接管符合补强要求。根据热壁加氢反应器的结构、工艺特点,确定了该设备的无损检测方案。经过对在役停工的热壁加氢反应器进行无损检测后,
     发现上下封头与接管连接处有裂纹存在,而且个别裂纹已经延伸到母材。对此分析了裂纹产生的原因,对裂纹进行了安全评定,估算其裂纹扩展速率,从而计算出在裂纹存在的情况下热壁加氢反应器的剩余寿命。结果表明:在该部件不必更换的情况下,该热壁加氢反应器还可以安全使用7.4年。这不仅节约了现场生产成本,还为指导安全生产提供了现实可行的科学依据。
     同时,考虑到人为计算可能产生的误差,本文根据ANSYS工程分析计算软件的精确的求解能力及其强大的处理功能,针对上封头接管部位的结构受力特点进行建模,分析计算了该部位的应力分布情况、变形情况,从而更精确地计算出该部位的应力最大值出现封头与接管的交界处,其值为177.705Mpa,以此来修正常规计算方法中存在的误差。
Modern petroleum refining industry needs produce fine petroleum product or increase chemical raw material middle distillate High-sulfur crude oil poor oil's high severity hydrotreating process was put into use and it needs improve environment In order to keep pace with the requirement hydrogenation unit has been invented Meanwhile, Hydrogenation unit's key equipment-—hot-wall hydrogenation reactor's design and manufacturing technology have rapidly improved Hot-wall hydrogenation reactor is necessarykey equipment of hydrotreating process It operates in high temperature (about 350℃) high pressure (about 18.2Mpa) and in the presence of high pressure hydrogen harsh conditions Fluctuation of temperature and pressure in the course of operation, and variation of temperature and pressure during start operation and shutdown will cause stress cycle fatigue, crack initiation and fatigue propagation of already existing defecto These will cause damage to hot-wall hydrogenation reactor in operation,, In the cause, Production factory and relative organization attach importance to safety operation of hot-wall hydrogenation reactor For this reason, It is very important for theory and practicality to analyze and evaluate high pressure vessel's defect on basic of its performance The paper tries to study and analyze practical application on site on hot-wall hydrogenation reactor R3102 of Daqing petro-chemical company According to working characteristic of hydrogenation reactor, the paper tries to study kinds of dangerous operating mode of reactor in operation and then finds the best dangerous localization of reactor and calculate analyze, evaluate detect result by relative theory of vessel,,The paper finds out engineering real needs and basic data by practice and investigation , reviews and analyzes researches and achievements of hydrogenation reactor home and abroad; the paper studies some dangerous operating modes of reactor in operation and then gets the best dangerous (easy damage) localization of reactor and calculates and checks the location By calculation, reinforcement of nozzle conforms to requiremento According to structure and technology's characteristic of hot-wall hydrogenation Reactor, formulate nondestructive testing scheme of it After nondestructive testing stopping hot-wall hydrogenation, there are cracks in the place of the top-bottom head and nozzle. Individual crack has elongated parent material The paper analyses the cause of cracks , evaluates safely the cracks and estimate the rate of cracks extending and calculate the residual life of hot-wall hydrogenation in the presence of the crackso The result shows that the part will be used 7.4 years safely, if it is unchanged It not only saves the production cost on site, but also provides practicable scientific foundation for directing safety production At the same time, considering manmade error, the paper model the nozzle of the top head in the light of the structure's forced feature by use of ANSYS that has the capacity of accurate solution and strong analysiso Analyses distribution of stress and deformation and then accurately calculate the maximum of stress at the boundary of the head and nozzle The maximum is 177.7.5Mpa It revises the error of routine
    methodo
引文
[1] 第一石油化工建设公司炼油设计研究院.加氢精制与加氢裂化.北京:石油化学工业出版社,1977
    [2] 吴宗烈.加氢反应器的国产化.压力容器,Vol.8 No.2 1991:22~25
    [3] 殷凤春,蔡连重,黎国磊.我国锻焊结构热壁加氢反应器技术的进步.炼油设计,Vol.29 No.10 1999:1~4
    [4] 高宏坤.煤焦油加氢反应器的设计.石油化工设备技术,Vol.19 No.5 1998:11~14
    [5] 张永刚,杜峥,杜培富.1Cr-0. 5Mo钢热壁加氢反应器的制造.压力容器,1991
    [6] 陈建俊.近年来我国部分主要压力容器制造厂的制造能力和技术进展.见:邓捷.第五届全国压力容器学术会议专题报告集.合肥:中国机械工程学会压力容器分会,2001,9,58~66
    [7] 我国首台千吨级加氢反应器.石油化工设备,No.4 1999:41
    [8] 张迎恺.国产首台千吨级加氢反应器的设计.石油化工设备技术,Vol.20 No.3 1999:1~4
    [9] 柳曾典.第六届国际压力容器技术会议学术总结报告.压力容器,1989
    [10] 陈国理,陈柏暖,陈国华,等.论加氢反应器的国产化问题.石油化工设备技术,Vol.21 No.2 2000:1~3
    [11] 谢孝文.国产热壁加氢反应器的失效分析与安全保障.石油化工安全技术,Vol.20 No.5 2004
    [12] 吕隆锦,李泽震,周道祥,彭汝英主编.在用压力容器诊断技术-检测、评定和修复.合肥:中国机械工程学会压力容器专业学会压力容器编辑部,1990:275~280
    [13] Duga J J and others. The economic effects of fracture in the United States. Battelle's Columbus Laboratories Report to the National Bureau of Standards, March, 1983
    [14] ASME Boiler and Pressure Vessel Code, Section Ⅲ: Nuclear powerplant components. New York: ASME, 1977
    [15] Irwin G R. Fracture dynamics in: Fracturing of Metals, ASME, 1948. 147~166
    [16] Rice L R. A path independent integral and the approximate analysis of strain concentrations by notches and cracks. J Appl Mech, 1968, 35: 379~386
    [17] Hutchinson J w. Singular behavior at the end of a tensile crack in a hardening material. J Mech, phy Solide, 1968, 16: 13~31
    [18] 尹双增.断裂·损伤理论及应用.清华大学出版社,北京:1992,12:1,7,162
    [19] 李庆芬,胡胜海,朱世范.断裂力学及其工程应用.哈尔滨工程大学出版社,1998,8:4
    [20] 戴光.压力容器安全工程学.黑龙江科学技术出版社,1995,8:1,210
    [21] 洪起超.工程断裂力学基础.上海交通大学出版社,1987:36
    [22] 林钧富,周道祥,李泽震.压力容器缺陷评定.中国石化出版社,1991,8:69~72
    [23] BSI Published Document 6493. Guidance on some methods for the derivation of acceptable levels for defects in fusion weld joint. London: British Standard Institution, 1980
    [24] 压力容器缺陷规范编制组.压力容器缺陷评定规范CADA~84.压力容器,1985,1:2~211
    [25] Kumar V, German M D, and Shih C F. An engineering approach for elastic-plastic fracture analysis. EPRI NP-1931, Project 1287-1, Topic Report, July 1981
    [26] Bloom J M, Malik S N. Procedure for the assessment of integrity of nuclear pressure vessels and piping containing defects. EPRI Topic Report NP2431, Research Project 1237-2. Palo Alto, CA: Electrical Power Research Institute, 1982
    [27] Harrison R P, Loose more K and Milne I. Assessment of the integrity of structures containing defects, CEGB Report No.R/H6.UK: Central Electrical Generating Board, 1976
    [28] Milne I, Ainsworth R A, Dowling A R and Stewart A T. Assesment of the integrity of structures contaning defects. The International Journal of Pressure Vessels and Piping, 1988, 32: 3~104
    [29] BSI Published Document PD6493. Guidance on methods for assessing the acceptability of flaws in fusion welded structures(Seccond Edition), London: British Standard Institution, 1991
    [30] Ⅱ W guidance on assessment of the fitness for purpose of welded structures, draft for development, Ⅱ W/ⅡS Guidance SST-1157-90 International Institute of Welding, 1990
    [31] 王志文,李培宁,雷月葆,潘辑梯,李琳.我国压力容器缺陷评定的通用失效评定曲线.第四届全国压力容器学术会议论文集,1997
    [32] 李培宁.压力容器缺陷评定规程的发展趋势.第三届全国压力容器学术会议专题报告,1992:25~37
    [33] 李培宁.压力容器及管道断裂评定技术研究进展.第四届全国压力容器学术会议专题报告集,1997:15-33
    [34] 孙双双,张选利,王威强.断裂力学应用与缺陷评定技术进展.青岛化工学院学报,Vol.20 No.1 1999,3
    [35] 郭建.2.25Cr-1Mo-0.25V钢的组织与性能.燕山大学工学硕士学位论文,2004,2
    [36] 李金连.石油炼制用热壁加氢反应器.一重技术,1990,3:77-83
    [37] 蔡连重,谷文,廖巨智.国产热壁加氢反应器制造技术的新近展.压力容器,2000,17(1):69~75
    [38] 林建鸿.热壁加氢反应器运行安全问题及其保障技术.压力容器,1994,11(3):237~240
    [39] 周兆圻,章炳华.加氢反应器的使用检验及其试板分析.压力容器,1997,14(3):242~246
    [40] 季建新,陆磐谷,顾雪东.热壁加氢反应器制造质量控制要点探讨.石油化工技,1999,20(6):16~19
    [41] Takahiro Hshido. Effect of Al, Ti, B and N on Hydrogen Attack of Simulated HAZ of Cr-Mo Steel. Iron and steel, 1987, 73(14): 166~173
    [42] Tadamiti SAKAI. Effects of P, Sn, As, Sb, Si and Cu on the Formation of Bubbles by Hydrogen Attack in 2.25Cr-1Mo Steel. Iron and steel, 1980, 66(8): 79~87
    [43] R. W. K. Honeycombe. Steel-Microstructure and Properties. London, 1981: 206
    [44] Z. Qu and C. T. Mcmahon. The Effects of Tempering Reaction on Temper Embrittlement of Alloy Steels. Metall. Trans.A, 1983, 14A(6): 1101~1108
    [45] 中国机械工程学会压力容器学会代表团.赴美参加第五届国际压力容器技术会议和技术考察报告.压力容器,1985,2(3):1~2
    [46] 陈崇刚,黎国磊.我国21/4Cr-1Mo-1/4V抗氢钢的开发.石油化工设备技术,2002,23(5):38~48
    [47] 仇恩沧.国产3Cr-1Mo-1/4V钢加氢反应器的开发.石油化工设备技术,2000,21(4):36~44
    [48] 金志江.接管(高应变区)角焊缝缺陷危险度及其安全容限的实验研究(硕士论文).杭州:浙江大学,1993
    [49] JB 4732-95钢制压力容器——分析设计标准
    [50] Proceedings of the Symposium on Pressure Vessel Research Towards Better Design 18th and 19th January. 1961
    [51] 《化工设备设计全书》编辑委员会,丁伯民,黄正林等编.高压容器.北京:化学工业出版社,2003
    [52] 郑津洋,董其伍,桑芝富.过程设备设计.化学工业出版社,2001,8:99~100
    [53] 张永宏、黄小平、潘秉智.压力容器断裂与疲劳控制设计.石油工业出版社,1997,12:155~157
    [54] 全国压力容器标准化技术委员会.GB 150-89钢制压力容器
    [55] 中国压力容器学会,化工机械与自动化学会.压力容器缺陷评定规范(CVDA-1984)
    [56] 叶先磊,史亚杰.ANSYS工程分析软件应用实例.北京:清华大学出版社,2003,9
    [57] 龚曙光.ANSYS工程应用实例解析.北京:机械工业出版社,2003
    [58] 龚曙光.ANSYS基础应用及范例解析.北京:机械工业出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700