用户名: 密码: 验证码:
多壁碳纳米管的生物相容性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米技术是20世纪80年代末、90年代初才逐步发展起来的前沿、交叉性新型学科领域,它的迅猛发展将在21世纪促使激活所有工业领域产生一场革命性的变化。自从发现碳纳米管(CNTs)以来,CNTs就以它良好的导电、机械及半导体性能而成为材料科学领域的一颗新星,有着广泛的应用和商业价值。有关研究认为CNTs生物相容性较好,故其在生物医用材料中有极大的应用价值。
     目前以生物医学应用为目标的相关研究主要涉及对碳纳米管进行表面修饰,使其具有阻止蛋白质非特异性吸附和识别特定蛋白分子的功能;利用碳纳米管的特殊形状和电学性质,研究细胞的体外生长等。本论文研究了碳纸基多壁碳纳米管(MWCNTs)表面的溶血、血小板粘附和血液蛋白质吸附情况以及细胞在该材料上的黏附和生长行为。结果表明:掺氮和不掺氮多壁碳纳米管材料为细胞提供了接近天然细胞外基质的人造环境,具有显著促进细胞粘附和长时间增殖的功能,具有良好的细胞相容性。尽管多壁碳纳米管和碳纸两种材料表面吸附的白蛋白(Albumin, Alb)数量一样,碳纸吸附的纤维蛋白原(Fibrinogen, Fib)和免疫球蛋白(Immunoglobulin, IgG)要少于多壁碳纳米管,但多壁碳纳米管的溶血率和血小板粘附率都要低于碳纸,这意味着相对碳纸而言疏水性更好的多壁碳纳米管可能抑制血小板的粘附和血栓的形成能力更强于碳纸,具有一定的血液相容性。
     研究结果表明,这种多壁碳纳米管具备生物材料在物理化学性质方面应具有的高强度、低模量、耐腐蚀特点,还具有良好的生物相容性,说明多壁碳纳米管材料在成为未来生物医用新材料方面有潜在应用价值,这些研究结果为以后更深一步的研究提供了实验依据和有用的科学数据。
Nanotechnology is the 20th century, late 80s, early 90s was gradually developed in the forefront of a new cross-disciplinary field, Its rapid development will be activated in the 21st century, all industrial sectors to promote a revolutionary change. Since the discovery of carbon nanotubes (CNTs) has been, CNTs on with its excellent electrical conductivity, mechanical and semiconductor properties of the field of materials science and become a star, has a wide range of applications and commercial value. The study that the CNTs biocompatible better, so its biomedical materials have great application value.
     Bio-medical applications, currently targeted research mainly involves surface modification of carbon nanotubes, it has to prevent non-specific adsorption of proteins and identification of specific protein molecules in the function; the use of carbon nanotube electrical properties of the particular shape and to study the cell The in vitro growth and so on. This paper studied the carbon nanotubes (MWCNTs) surface of hemolysis, platelet adhesion and blood protein adsorption as well as cells in the material on the adhesion and growth behavior. The results showed that: Nitrogen-doped and non-nitrogen-doped multi-walled carbon nanotube materials for cell provides a natural extracellular matrix near the built environment, has significantly promoted the proliferation of cell adhesion and long features, with good cell compatibility. Despite the multi-walled carbon nanotubes and carbon paper two kinds of surface adsorption of albumin (Albumin, Alb) as does the size carbon paper adsorption of fibrinogen (Fibrinogen, Fib) and immunoglobulin (Immunoglobulin, IgG) to be less than the multi-walled carbon nanotubes, but multi-walled carbon nanotubes in hemolytic rate and platelet adhesion rate to be lower than the carbon paper, which means that the relatively hydrophobic carbon paper in terms of better multi-walled carbon nanotubes may inhibit platelet adhesion and The formation of thrombus more capable in the carbon paper, with a certain degree of blood compatibility.
     The results show that the multi-walled carbon nanotubes have the physical and chemical properties of biological materials should possess high strength, low modulus, corrosion-resistant characteristics, but also has good biocompatibility, the present multi-walled carbon nanotube material in the future bio-medical and new materials have potential application value of these findings for future deeper study provides the experimental basis and useful scientific data.
引文
[1]Keahler T.Nanotechnology:basic concepts and definitions [J].Clin Chem,40(9),1797(1994).
    [2]Permiakov NK,Ananian MA,Sorokovoi VI,et al.Scanning probe microscopy and medico biological nanotechnology:history and prospects [J]. Arkl Patol,60(5),9(1998).
    [3]Heinz WF,Hoh JF.Spatially resolved force spectroscopy of biological surfaces using atomic force microscopy [J]. Trends Biotechnol,17,143(1999).
    [4]许孙曲,徐小妹编译.用新型二氧化硅增强的磁性纳米粒子作分子生物学研究的工具[J].国外医学生物医学工程分册,23(1),62(2000).
    [5]Carino GP,Mathiowitz E. Advanced drug delivery [J]. Reviews,35,249(1999).
    [6]Mirkin CA,Letsinger RL,Mucic RC,et al.A DNA based method for rationally assembling nanoparticles into maeroscopic materials [J]. Nature,382(6592),607(1996).
    [7]王向晖.改善热解碳人工心脏瓣膜材料血液相容性的研究[D].上海,中国科学院上海冶金研究所,2000
    [8]俞耀庭,张兴栋,生物医用材料[D].天津大学出版社,2000.
    [9]左铁镛主编.新型材料-人类文明进步的阶梯[M].北京.化学工业出版社,2002.
    [10]陈敏,肖定全.碳纳米管内药物传输机理及其发展趋势1(40),1(2010)
    [11]马春.世界生物医学材料2005年研究进展及趋势[J].新材料产业,3,(2006).
    [12]李雅兰,周长忍,王小平,等.生物医学材料的发展及临床应用对麻醉学研究领域的影响[J].中国麻醉在线,(2007)
    [13]郭小天,孟洁,孔桦,等.单壁碳纳米管无纺膜表面的PEG修饰及蛋白质吸附研究[J].中国生物医学工程学报,6,764(2005)
    [14]齐宁宁,杜丽娜,金义光,等.碳纳米管的生物相容性.国外医学要学分册,2,143(2007)
    [15]孙铭良,王红强,李新海等.石墨直流电弧法制备碳纳米管[J].湘潭矿业学院学报,14(1),54(1999)
    [16]彭邦华,张永毅,姚亚刚等.超长单壁碳纳米管的化学气相沉积生长[J].科学通报,52(7),741(2007)
    [17]李颖,李轩科,刘朗,裂解温度对碳纳米管制备的影响[J].新型炭材料,17(4),53(2002)
    [18]聂海瑜.碳纳米管的制备[J].塑料工业,32(10),11(2004)
    [19]Chernozatonskii L A, Kosakovskajaz I J, Fedorov E A, et al. New carbon tubelite-ordered film structure of muitilayer nanotubes [J].Phys Lett A,197 (1),40(1995)
    [20]Yamamoto K, Koga Y, Fujiwara S, et al. New method of carbon nanotube growth by ion beam irradiation [J]. Appl Phys Lett,69 (27),4174(1996)
    [21]Y. Lin, S. Taylor, H. Li, K.A.S. Fernando, L. Qu, W. Wang, L. Gu, B. Zhou, Y.P. Sun, Advances toward bioapplications of carbon nanotubes, J. Mater. Chem.,14,527(2004).
    [22]D.L. Shi, Integrated Multifunctional Nanosystems for Medical Diagnosis and Treatment, Adv. Functional Mater,19,3356(2009).
    [23]V. Raffa, G Ciofani, S. Nitodas, T. Karachalios, D. D'Alessandro, M. Masini, A. Cuschieri, Can the properties of carbon nanotubes influence their internalization by living cells?, Carbon 46,1600(2008).
    [24]J. Li, H.T. Ng, A. Cassell, W. Fan, H. Chen, Q. Ye, J. Koehne, J. Han, M. Meyyappan, Carbon Nanotube Nanoelectrode Array for Ultrasensitive DNA Detection, Nano Lett.,3,597(2003).
    [25]N.G. Portney, M. Ozkan, Nano-oncology:drug delivery, imaging, and sensing, Anal Bioanal Chem.,384,620(2006).
    [26]S.K. Smarta, A.I. Cassadyb, G.Q. Lua and D.J. Martina, The biocompatibility of carbon nanotubes, Carbon,44,1034 (2006).
    [27]J. Chlopek, B. Czajkowska, B. Szaraniec, E. Frackowiak, K. Szostak, F. Beguin, In vitro studies of carbon nanotubes biocompatibility, Carbon,44,1106 (2006).
    [28]Cui D, Tian F, Cengiz S. Ozkan, Wang M, Gao H, et al.Effect of single wall carbon nanotubes on human HEK293 cells [J]. Toxicology Letters,155(1),73,2005.
    [29]Monteiro2Riviere N A, Nemanich R J, Inman A O, et al. Toxicol. Lett.,155 (3),377, (2005).
    [30]Cui D, Tian F, Ozkan C S, et al. Toxicol. Lett.,155 (1),73(2005).
    [31]Karin Pulskamp, Silvia Diabat'e, Harald F. Krug. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants [J]. Toxicology Letters,168,58(2007).
    [32]He'le'ne Dumortier, Ste'phanie Lacotte, Giorgia Pastorin, et al. Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. [J]. NANO LETTERS,6(7),1522(2006)
    [33]Julie Muller, Fran(?)ois Huaux, Dominique Lison. Repiratory toxicity of carbon nanotubes: How worried shoule we be? [J]. Carbon,44(6),1048(2006).
    [34]Marianna Foldvari, Mukasa Bagonluri. Carbon nanotubes as functional excipients for nanomedicines:II. Drug delivery and biocompatibility issues [J]. Nanomedicine:Nanotechnology, Biology and Medicine,4(3),183(2008).
    [35]Eva Herzog, Alan Casey, Fiona M. Lyng, Gordon Chambers, Hugh J. Byrne, Maria Davoren. A new approach to the toxicity testing of carbon-based nanomaterials-The clonogenic assay [J]. Toxicology Letters,174(1-3),49(2007).
    [36]J.J. Scott-Fordsmand, P.H. Krogh, M. Schaefer, A. Johansen. The toxicity testing of double-walled nanotubes-contaminated food to Eisenia veneta earthworms [J].Ecotoxicology and Environmental Safety, In Press, Corrected Proof, Available online 2 June 2008
    [37]Valenti L E, Fiorito P A, Garcia C D, et al.[J]. J Colloid Interface Sci,307(2),349(2007).
    [38]Rojas Chapana J, Troszczynska J, Firkowska I, et al.[J].Lab Chip,5(5),536(2005).
    [39]H.A. Santos, J. Riikonen, T. Heikkila, J. Salonen, L. Peltonen, E. Makila, T. Laaksonen, N. Kumar, D. Murzin, V.-P. Lehto, J. HirvonenWu. Biocompatibility of mesoporous silicon microparticles [J].European Journal of Pharmaceutical Sciences,34(1),36(2008)
    [40]Xiao C. Wu, W.J. Zhang, Ramaswami Sammynaiken, Qing H. Meng, Qiao Q. Yang, Eric Zhan, Qiang Liu, Wei Yang, Rui Wang. Non-functionalized carbon nanotube binding with hemoglobin [J]. Colloids and Surfaces B:Biointerfaces,65(1),146(2008).
    [41]G. Li, J.M. Liao, GQ. Hu, N.Z. Ma, P.J. Wu. Study of carbon nanotube modified biosensor for monitoring total cholesterol in blood [J]. Biosensors and Bioelectronics,20(10), 2140(2005).
    [42]Sheng Wang, Huimin Bao, Pengyuan Yang, Gang Chen. Immobilization of trypsin in polyaniline-coated nano-Fe3O4/carbon nanotube composite for protein digestion[J]. Analytica Chimica Acta,612(2),182(2008).
    [43]Roger J. Narayan, C.J. Berry, R.L. Brigmon. Structural and biological properties of carbon nanotube composite films[J]. Materials Science and Engineering B,123,123(2005).
    [44]Donghui Zhang, Madhuvanthi A., Kandadai, et al. Poly(L-lactide) (PLLA)/Multiwalled Carbon Nanotube (MWCNT) Composite:Characterization and Biocompatibility Evaluation[J]. J. Phys. Chem. B,110,12910(2006)
    [45]朱宏伟,吴德海,徐才录,碳纳米管[D].机械工业出版社,2003.
    [46]彭承琳,生物医学传感器原理及应用[D].高等教育出版社,2000.
    [47]李玉宝,生物医学材料[D].化学工业出版杜,2003.
    [48]Y. Cui, Q.Q. Wei, H.K. Park, C.M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science,293,1289(2001)..
    [49]R.L. Price, M.C. Waid, K.M. Haberstroh, T.J. Webster, Selective bone cell adhesion on formulations containing carbon nanofibers, Biomaterials,24,1877(2003).
    [50]K. Balani, R. Anderson, T. Laha, M. Andara, J. Tercero, E. Crumpler, A. Agarwal, Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro, Biomaterials,28,6182007).
    [51]M. Kalbacova, M. Kalbac, L. Dunsch, H. Kataura, U. Hempel, The study of the interaction of human mesenchymalstem cells and monocytes/macrophages with single-walled carbon nanotube films, Phys. Stat. Sol. (b),243,3514(2006).
    [52]E. Flahaut, M.C. Durrieu, M.R. Zolghadri, R. Bareille and C. Baquey, Investigation of the cytotoxicity of CCVD carbon nanotubes towards human umbilical vein endothelial cells, Carbon,44,1093(2006).
    [53]S. Fiorito, A. Serafino, F. Andreola and P. Bernier, Effects of fullerenes and single-wall carbon nanotubes on murine and human macrophages, Carbon.44,1100(2006).
    [54]L.P. Zanello, B. Zhao, H. Hu, R.C. Haddon, Bone Cell Proliferation on Carbon Nanotubes, Nano Lett.,6,562(2006).
    [55]J. Zhong, L. Song, J. Meng, Bio-nano interaction of proteins adsorbed on single-walled carbon nanotubes, Carbon,47,967(2009).
    [56]顾汉卿.第六届全国生物材料学术研讨会.广东番禺.1999年11月5-8号.
    [57]G/BT16886.5-2003医疗器械生物学评价标准汇编[S].
    [58]GBT 16886.5-2003第5部分:体外细胞毒性试验[S].
    [59]余文静,李著华.干细胞生物特性及其应用[J].JournalofMilitary Surgeon in SouthwestChina Jan.,11(1),94(2009).
    [60]王刚,曹卫刚.具有多向分化潜能的脂肪干细胞研究的新进展[J].组织工程与重建外科杂志,5(3),173(2009).
    [61]ZukPA,ZhuM,AshjianP,etal.Human adiposet issue isasource of multi potent stem cells. Mol Biol Cell,13(12),4279(2002).
    [62]SaffordKM,HicokKC,SaffordS D,etal. Neurogenic differentiation ofmurine and human adipose-derived stromalcells. Biochemi Biophysi Res Communi,294,371(2002).
    [63]Aust L,Devlin B,Foster SJ,et al.Yield of human adipose-dervied adult stem cells from liposuction aspirates.Cytotherapy,6(1),7(2004).
    [64]孙晓龙,李青.脂肪干细胞的研究及临床应用进展[J].第四军医大学学报,30(9),860(2009).
    [65]孙庆仲,闫国艳,李正维,等.前脂肪细胞凝胶植入预防腰椎术后硬膜外瘢痕粘连的实验研究[J].中国矫形外科杂志,11,970(2003).
    [66]David J Fink, Tim B Hutson, Krishnan K Chittur and R Michael Gendreau. Quantitative surface studies of protein adsorption by infrared spectroscopy II. Quantification of adsorbed and bulk protein. Analytical Biochemistry,165(1),147(1987).
    [67]Ying P, Yu Y, Jin G, et al. Competitive protein adsorption studied with atomic force microscopy and imaging ellipsometry. Colloids and Surfaces B:Biointerfaces,2003,32:1-10
    [68]Kanno M, Kawakam i H, Nagaoka S。et al. Biocom patibility of fluorinated polyimide. J Biomed Mater Res,60(1),53(2002)
    [69]Tang L·Liu L. Elwing HB. Complement activation and inflammation triggered by model biomaterial surfaces. J Biomed Mater Res,41(2),333(1998)
    [70]高家诚,李龙川,王勇,等.表面改性纯美的细胞毒性和溶血率.稀有金属材料与工程,34(6),930(2005).
    [71]刘欣,顾汉卿,曾志荣,等.体外血小板粘附试验在医疗器械评价中的应用研究[J].透析与人工器官,18(4),7(2007)
    [72]Dumortier H, Lacotte S, Pastorin G, Marega R, Wu W, Bonifazi D, Briand J P, Prato M, Muller S, Bianco A. Functionalized Carbon Nanotubes Are Non-Cytotoxic and Preserve the Functionality of Primary Immune Cells. NANO LETTERS,6(7),1522(2006).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700