用户名: 密码: 验证码:
氯气在活性炭、炭分子筛和碳纳米管上的吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯气在工农业生产、科学研究以及人类日常生活中有着极其广泛的应用,百余年来创造了巨大的社会财富。氯气主要用于盐酸、农药、炸药和有机染料的制备,塑料和橡胶的合成,纸张的漂白,布匹和饮用水的消毒,以及某些工业废水的处理。随着氯气的用量越来越大,工业生产中所产生的含氯气的尾气也越来越多,这些尾气直接排放会危害人类健康和动植物生长。因此,含氯气尾气的处理问题日益成为工业生产中的一大难题。
     目前,工厂处理含氯气尾气大多是采用碱液,水,或者有机溶剂吸收,或者燃烧生产盐酸等方法,这些方法成本高,而且会对环境产生二次污染。所以,用固体吸附剂通过变压吸附(PSA)回收氯气成为目前研究的热点,该方法成本低,分离效率高,能耗低、自动化程度高,广泛应用于气体分离领域。然而使用该法进行氯气回收还存在一些问题,主要体现在用于PSA的吸附剂选择性不高,耐腐蚀性较差,使用寿命短。因此我们选用了具有良好的吸附性能和稳定的化学性质,可以耐强酸,强碱,能经受水浸、高温、高压作用的炭材料作为氯气的吸附剂进行研究。
     本文对氯气吸附性能的研究进展进行了综述。采用P-C-T氯气吸附装置研究了活性炭、炭分子筛和碳纳米管三种炭材料对氯气的吸附性能,并用红外光谱和X射线衍射对三种样品的稳定性进行了表征。
     得出主要结论如下:
     一、0℃、30℃和50℃时,活性炭、炭分子筛和碳纳米管三种炭材料的氯气吸附曲线符合朗格缪尔吸附等温线,属于物理吸附。随着温度的降低,氯气的吸附量增加;随着压强增大,吸附量相应增加。
     二、30℃时,经过多次吸附,三种炭材料对氯气的吸附量变化很小,而且XRD谱图也表明,经过多次吸附,它们的骨架结构基本未被破坏,可以用来反复吸附处理氯气。
     三、实验数据表明炭材料的氯气吸附性能受孔容、孔径的影响很大,碳纳米管的孔容和管径比活性炭和炭分子筛的都要大,对氯气的吸附量也最大,炭分子筛的孔容和孔径最小,吸附量也最小。30℃时,0.332MPa下,碳纳米管对氯气的最大吸附量为37.51%,而活性炭和炭分子筛的分别为31.95%和29.24%。
     四、活性炭、炭分子筛和碳纳米管的红外谱图表明,吸附氯气后的活性炭、炭分子筛和碳纳米管样品的骨架结构的特征峰都存在;XRD衍射谱图表明,吸附氯气后的活性炭、炭分子筛和碳纳米管样品的特征衍射峰存在,峰强度略有减弱,这说明氯气基本未破坏活性炭、炭分子筛和碳纳米管中的石墨微晶结构和无定形炭结构。
Chlorine has extremely extensive application in industrial and agricultural production, scientific research and human daily life, and has been created huge social wealth in the last 100 years. Chlorine is widely used in preparation of acid, pesticide, explosives and organic dyes, synthesizing rubber and plastic, bleaching paper, disinfecting textiles and drinking water, also treating industrial wastewater. With the increasing of chlorine dosage, the production of the exhaust containing chlorine is also more and more. The chlorine contained gas will endanger on human health and the growth of plants and animals if they are exhaust directly. Then chlorine-gases handling also become a very serious problem in industrial production.
     At present, most of the factories use alkali liquor, water, or organic solvent to absorb tail-gases, or burn it to produce Hydrochloric Acid. All of the above methods are high cost and producing secondary pollution to environment. Now adopt solid adsorbents by pressure swing adsorption (PSA) recycling chlorine become the research focus and widely used in mixture gases separation fields, with many advantages as following: low cost, high efficiency, low energy consumption and high degree of automation. But there still exist some problems when recovering chlorine, mainly embodies in poor selectivity, worse corrosion resistance, and short service life of the adsorbents. Then carbon materials are chosen with good adsorption performance and stability of chemical properties, better corrosion resistance of strong alkali and acid, can endure water, high temperature and high pressure as adsorbents treating chlorine to study.
     In this paper, research progresses of chlorine absorption properties were summarized. The P-C-T chlorine absorption apparatus was adopted to study chlorine absorption properties of activated carbon (ACs), carbon molecular sieves (CMSs) and carbon nanotubes (CNTs). The stability of the samples was characterized by FTIR spectrum and XRD diffraction.
     Main conclusions obtained as follows:
     1 At 0℃,30℃and 50℃, the chlorine absorption curves of all samples accorded with Langmuir equation and the adsorption belonged to physical process. Chlorine absorption amount increased with the temperature decreased and pressure increased.
     2 At 30℃, the chlorine adsorption capacity were hardly changed after adsorbed repeatedly for many times, combining with XRD diffraction, we ascertained that carbon materials can be used treating chlorine.
     3 Experimental data showed that pore volume and pore diameter of samples influenced chlorine adsorption capacity. The pore volume and pore diameter of CNTs was larger than that of ACs and CMSs, then the chlorine adsorption capacity of CNTs was the largest one. CMSs with the smallest pore volume and pore diameter then had minimum chlorine adsorption capacity. At 30℃and 0.332MPa, the chlorine adsorption capacity of CNTs is 37.51%, but that of ACs and CMSs is 31.95% and 29.24% respectively.
     4 The FTIR spectrum showed that, after chlorine absorption the characteristic peaks of the skeleton structure of of ACs, CMSs and CNTs the samples were also existed. XRD spectrum showed that the diffractions of all samples were still in, but peaks intensity was slightly weakened. All of those indicated that after adsorption chlorine didn’t destroy graphite microcrystalline structure and carbon amorphous structure of samples.
引文
[1]张金萍,李德生,陈永志.废氯气吸收回用的新方法[J] .工程与技术, 2004, 12: 22-24.
    [2]范崇林,马家轩.废氯气回收与盐泥治理的收益[J] .河南化工, 1997, (4): 31-32.
    [3]陈玉林.新型氯、气废气吸收装置[P] .中国专利: 03270490.9, 2004-10-06.
    [4]黄华元.关于烧碱厂废氯气回收工艺的探讨[J] .甘肃环境研究与监测, 2002, 15(2): 119-119, 150.
    [5] Kato kinya , kawaguchi masahiro.Method and apparatus for purifying polluted soil, and apparatus for emitting chlorine-containing gas and apparatus for decomposing polluted gas using the same[P] . US: 20000741332, 2002-01-24 .
    [6] Nikolaevsky Roman. Monosov Maria Method for purification of wastewater from soluble substances[P] . US: 5792336 1995-09-18.
    [7]李云,陈天祥,章平.低浓度氯气富集研究现状与进展[J] .现代化工, 2009, 29(9): 21-24.
    [8] Therald M.Inorganic Chemistry[M] .New York: John Wiley&Sons Inc, 1958: 419-433.
    [9] Albert C F.Advanced Inorganic Chemistry[M] .New York: John Wiley&Sons Inc, 1988:544-577.
    [10]无机化学丛书编委会.无机化学丛书(第六卷)[M] .北京:科学出版社, 1995:128-133.
    [11]王伦伟,韩明汉,吴玉龙等.氯化氢催化氧化制氯气工艺[J] .过程工程学报2003, 3(4):340-345.
    [12]化工百科全书编委会.化工百科全书(第十卷)[M] .北京:化学工业出版社, 1996: 989-1014.
    [13]刘海坤,卫志明.一种大豆成熟种子的消毒方法[J] .植物生理学通讯, 2002, 38(3): 260-261.
    [14]李月生等.氯气对生命体的危害及其预防措施[C], 2007年全国气体净化技术交流会论文集.西安:气体净化, 2007:185-187.
    [15]岳茂兴.危险化学晶事故急救[M] .北京:化学工业出版杜, 2005: 1-27.
    [16]蒋承涛,蓉克生.液氯泄露事故危害定量分析[J] .上海安会生产杂志, 2004, (5): 43-44.
    [17]王志成.安全化学[M] .郑州:黄河水利出版社, 2004: 205-217.
    [18]聂晓东.氯气泄漏事故的案例分析及预防[J] .工业安全与环保, 2003, 29(1):30-31..
    [19] Robert E Lenga. The Sigma-Aldrich Library of Chemical Safety data(2ed)[M] .New York: John Wiley&Sons Inc, 1988:725-730.
    [20] Tonj K.National Institute for Occupational Safety and Health[J] .Niosh pocket guide to chemical hazards, 1985: 74-79.
    [21] Zarchy A S, Chao C C, Maurer R T. Pressure swing adsorption process for chlorine plant offgas[P] . US: 5500035, 1996-03-19.
    [22] William R G., Marie E F.Crystalline silica[P] .US: 4061724,1977-12-06.
    [23] Marie E F, Lyle R P.Silica polymorph and process for preparing same[P] .US: 4073865, 1978-02-14 .
    [24] Ward J W . Hydrocarbon Conversion Process for Selectively Making Middle Distillates[P].US: 4869803, 1989-09-26.
    [25] McBain,J W, Bakr A M.A new sorption balance[J] .J. Amer. Chem.Soc. 1926, 48:690-695.
    [26] Young D M, Crowell A D. Physical Adsorption of Gases[M] . Washington: butterworths, 1962: 293-296.
    [27] Angus E C, Reyerson L H. The Sorption of Bromine and Iodine by Silica Gel[J] .Phys. Chem., 1935, 39 (2): 169–180.
    [28]天津化工厂编.聚氯乙烯生产工业分析[M] .北京:燃料化学出版社, 1973: 37-39.
    [29]李月生,夏祥翔,李新怀.常温微量氯气吸附剂的制备及其性能研究[J] .化学工程师, 2007, 144(9): 54-56.
    [30]朱恒科.氯气在A型、X型和SBA-15分子筛上的吸附性能研究[D] .太原:太原理工大学, 2009.
    [31]薛建伟,朱恒科,吕志平等.氯气在A型、X型和SBA-15分子筛上吸附性能的研究[J] .石油学报(石油化工), 2008, 24(Z): 102-105.
    [32]兰淑澄.活性炭水处理技术[M] .北京:中国环境科学出版社, 1991:9.
    [33]袁文辉.高性能活性炭的制备及其性能研究[J] .天然气化工, 1997, 22(6): 30-33.
    [34] Teng H, Tien S, Hsu L.Preparation of Activated Carbon From Bituminous Coal WithPhosphoric Acid Activation[J] .Carbon, 1998, 36(9):1387-1395.
    [35]杜鹃,王晓华.SN-3型活性炭在变换气脱硫中的应用[J] .小氮肥, 2003, 11:4-6.
    [36]林秋菊,方华,郭坤敏等.低浓度NO2及SO2综合净化材料的研究[J] .防化学报, 1999, 9(1): 24-27.
    [37]江霞,蒋文举,朱晓帆等.微波辐照技术在活性炭脱硫中的应用[J] .环境科学学报, 2004, 24(6): 1098-1103.
    [38]周桂林,蒋毅,邱发礼.活性炭制备条件与天然气脱附量的关系[J] .天然气工业, 2005, 25(7): 111-124.
    [39]贾建国,肖春英,朱春来等.活性炭氧化改性及氯化氰消除的应用研究[J] .舰船防化, 2009 4: 23-27.
    [40]贾建国,李闯,朱春来等.活性炭的硝酸表面改性及其吸附性能[J] .炭素技术, 2009, 6 (28): 11-15.
    [41] Emmet R H . Adsorption and Pore-Size Measurements on Charcoals and Whetlerites.[J] . Chem.Rev. 1948, 43 (1): 69–148.
    [42] Jasra R V, Choudary N V.Separation of Gases by Pressure Swin[J] . Sep.Sci &Teehnol, 1991, 26(7): 885– 930.
    [43]吴明铂,郑经堂,王茂章等.炭分子筛概述[J] .炭素技术, 1997, (6): 19-24.
    [44]邱介山,郭树才.煤制炭分子筛[J] .煤化工, 1990, 2: 18-26.
    [45] Harald Jüntgen, Karl Knoblauch, Klaus Harder. Carbon Molecular Sieves: Production from coal and application in gas separation[J] . Fuel, 1981, 60(9): 817-822.
    [46] Nguyen C, Do D D. Preparation of Carbon Molecular Sieves From Macadamia Nut Shells[J] .Carbon, 1995, 33(12): 1717-1725.
    [47] Kim A H, Son S J, et al.Study of microporosity and gas separation properties of carbon molecular sieves prepared from bamboo shoot and coconut shell[C] . International Conference on Carbon, Seoul: 2005,7:4~7.
    [48]夏智勇,郭树才.海南椰壳制备炭分子筛的研究[J] .炭素技术, 1998, 2:30-33.
    [59]夏智勇,郭树才.椰壳制备炭分子筛中一步热解的研究[J] .炭素技术, 1998, 2:15-18.
    [50]闵振华,曹敏,王永刚.炭分子筛的制备和应用[J] .材料科学与工程学报,2006, 29(3): 466-471.
    [51]卢洪,李成岳.变压吸附空分制氮过程的研究[J] .化工学报, 2000, 51(5): 586~591.
    [52]童东绅,周春晖等.气体分离用变压吸附剂的研究进展[J] .化工生产与技术, 2004, 11(2): 16~20.
    [53]张雄福,鲍钟英,殷德宏等.吸附法脱除乙烯中少量氧气的吸附剂研究[J] .石油化工, 1998, 27(1): 10-14.
    [54]卢锦花,阎鑫.炭纳米管制备技术的最新进展[J] .炭素技术, 2003, (5): 34-38.
    [55]马如飞,李铁虎,赵廷凯等.炭纳米管应用研究进展[J] .炭素技术, 2009, 28 (3): 35-39.
    [56]陈中芹,杨慰珺.炭纳米管及其应用研究[J] .河北化工, 2009, 32(7): 8-9.
    [57] Amal M K, Esawi, Mahmoud M. Farag Carbon Nanotube Reinforced Composites, potential and current challenges[J] . Material and design, 2007, 28: 2394-2401.
    [58] Dai H J, Jason H H, Andrew G R.Nanotubes As Nanoprobes in Scanning Probe Microscopy[J] . Nature, 1996, 384: 147-150.
    [59]王敏炜,李凤仪,彭年才.炭纳米管-新型的催化剂载体[J] .新型炭材料, 2002,17(3): 75-79.
    [60] Shoushan Fan, Michael G. C, Nathan R, et al. Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties[J] .Science, 1999, 283: 512-514.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700