用户名: 密码: 验证码:
基于理化性质—药效—体内外吸收评价葛根素和天麻素配伍应用的合理性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1研究目的
     葛根和天麻近年来在中药内服治疗颈椎病中应用较多,且多配伍使用。二者的主要活性成分分别为葛根素(puerarin, Pur)和天麻素(gastrodin, Gas)。它们都具有改善微循环、扩张冠状动脉、降血压、抗氧化等药理活性。临床上二者单独使用常被用于高血压、突发性耳聋、椎基底动脉供血不足所致的颈椎病、眩晕等微循环障碍引起的疾病,两者的注射液亦常联合静注给药用于治疗上述疾病。基于葛根素和天麻素的临床应用,探讨其配伍应用的合理性及其相互影响十分必要。为此,本研究将从葛根素和天麻素配伍后理化性质、抗氧化改善微循环药效作用、大鼠体内药代动力学和Caco-2细胞中的吸收机制等多层面,探讨葛根素和天麻素配伍应用的合理性。
     2研究内容与方法
     围绕以上研究目的,本实验拟从葛根素和天麻素配伍后溶解度和油水分配系数等理化性质、清除自由基和改善微循环等药效作用、大鼠体内药代动力学及在Caco-2细胞中吸收机制方面,以二者配伍后溶解度和油水分配系数、清除二苯代苦味肼基自由基(DPPH自由基)和抗凝血抗血小板聚集率、大鼠体内药代动力学参数及Caco-2细胞模型表观渗透系数为指标,探讨葛根素和天麻素配伍应用合理性。
     2.1.葛根素和天麻素配伍理化性质研究
     2.1.1葛根素和天麻素配伍后表观溶解度
     采用紫外分光光度法测定葛根素、天麻素单独及配伍使用后在水中的平衡溶解度。
     2.1.2葛根素和天麻素配伍后油水分配系数
     采用摇瓶-HPLC法测定葛根素、天麻素单独及配伍使用后在不同pH值正辛醇-磷酸盐缓冲体系中的油水分配系数。
     2.2葛根素和天麻素配伍抗氧化和改善微循环药效研究
     采用二苯代苦味肼基自由基(DPPH自由基)清除率为指标,考察葛根素和天麻素单独及配伍使用后体外抗氧化能力;并测定体内外活化部分凝血酶原时间(APTT)和ADP诱导的血小板聚集抑制率,考察葛根素和天麻素单独及配伍使用后抗凝血作用及抗血小板聚集作用,研究两者合用后改善微循环的药效作用。
     2.3葛根素和天麻素配伍在大鼠血浆中药代动力学研究
     建立同时测定葛根素、天麻素、天麻苷元和内标对羟基苯乙醇(Tyr)4种成分在大鼠血浆中药物浓度的HPLC方法,并应用该法研究单独或合并静脉注射及灌胃给药葛根素、天麻素后,两者在大鼠体内药代动力学过程及相互作用。以Tyr为内标,血浆样品经甲醇沉淀蛋白后,上清液用N2吹干,残渣用乙腈-0.05%磷酸(20:80)复溶后,以乙腈-0.05%磷酸水为流动相梯度洗脱,用Agilent ZORBAX SB-Aq C18(4.6×150mm,5μm)色谱柱分离,在250nm波长处测定葛根素,221nm处测定天麻素和内标。单独或合并给药葛根素、天麻素后,检测大鼠血浆中二者浓度,用WinNonlin5.2.1药动学软件和SPSS17.0软件分别计算各给药组药动学参数并进行统计分析,比较单独或合并给药后葛根素、天麻素药动学过程。
     2.4葛根素和天麻素配伍在Caco-2细胞中吸收机制研究
     采用HPLC(?)(?)测定葛根素、天麻素在Caco-2细胞模型中转运后的含量,计算其表观渗透系数,研究二者单独或合并给药后在Caco-2细胞中的跨膜转运特性和吸收机制,并考察浓度、转运蛋白抑制剂对葛根素和天麻素吸收的影响。
     3研究结果
     3.1葛根素和天麻素配伍理化性质研究
     3.1.1葛根素和天麻素配伍后平衡溶解度
     室温下,葛根素平衡溶解度为162g·L-1,天麻素在水中的平衡溶解度为303.81g·L-1;与不同浓度天麻素配伍后,葛根素溶解度有所变化,加入1.0、1.5g·L-1天麻素后,葛根素平衡溶解度与单独葛根素组无显著性差异,而其余浓度组均能显著提高葛根素平衡浓度,最高者可为原来的5.1倍,且葛根素溶解度的增加与天麻素浓度呈线性关系,表明一定浓度的天麻素可改善葛根素溶解度。
     3.1.2葛根素和天麻素配伍后油水分配系数
     (1)单用葛根素、天麻素时,测得的Log P均值分别为0.4803、-0.8573,与预测值接近(用Chem Draw Ultra6.0软件通过分子结构预测的Log P值分别为0.4826、-1.0595)。
     (2)葛根素油水分配系数
     ①单用组及合用组中葛根素在不同pH磷酸盐缓冲液为水相的介质中log P值均<1,提示葛根素的亲水性大于亲脂性,且在肠道中不易被吸收;
     ②随着pH的升高,葛根素P值不断降低,在pH8.0磷酸盐缓冲溶液中P值最小,提示葛根素在胃液中脂溶性较大,可能在胃中的吸收要高于小肠;
     ③葛根素与天麻素合用后,油水分配系数P值较单用组降低,在pH1.2-5.8范围内尤为明显,说明此时葛根素亲水性大大提高,这与本课题前述溶解度研究结果相一致。
     (3)天麻素油水分配系数
     ①单用组及合用组中天麻素在不同pH磷酸盐缓冲液为水相的介质中log P值均为负数,表明天麻素的亲水性很大,这与前述天麻素溶解度结果吻合。虽然它的油水分配系数比葛根素小,但因其分子量小,在肠道中吸收仍高于葛根素;
     ②pH对天麻素的油水分配系数并无影响,推测天麻素在胃肠道中的吸收无部位特异性;
     ⑧天麻素与葛根素合用后,油水分配系数较单用组并无差异,推测葛根素并不能改变天麻素在肠道中的脂水分配情况。
     3.2葛根素和天麻素配伍抗氧化和改善微循环药效研究
     3.2.1葛根素和天麻素配伍后抗氧化作用
     (1)以抗坏血酸(Vc)为阳性对照,其IC50(DPPH自由基清除率为50%时的浓度)为0.024g·L-1,葛根素的IC5o为17.56g·L-1,虽不及Vc,但显示有一定的抗氧化能力;天麻素在浓度为0.5-200g·L-1浓度范围内DPPH自由基清除率为0-1.86%,未超过50%,故无法计算IC5o,可推断其IC50值大于200g·L-1。
     (2)不同浓度葛根素、天麻素单独或合用后,DPPH自由基清除率结果表明,葛根素清除率随浓度增加而增大,天麻素各浓度组间清除率均无显著性差异(P>0.05)。加入天麻素后,葛根素的清除率与单独使用葛根素组比较无统计学差异,即天麻素并无清除DPPH自由基能力,也不能增加葛根素的清除能力,推测各合用组的清除率基本系葛根素产生的作用。
     3.2.2葛根素和天麻素配伍后改善微循环作用
     (1)体外APTT结果
     ①单用葛根素低、中剂量组无抗凝血作用,高剂量组显示有抗凝血作用(P<0.01);中剂量葛根素与中剂量或高剂量天麻素合用后,均具有抗凝血作用(P<0.01)。
     ②单用天麻素低、中剂量组无抗凝血作用,高剂量组显示有抗凝血作用(P<0.01);但天麻素低剂量组与高剂量葛根素合用后,有抗凝血作用(P<0.01);天麻素中剂量组与中剂量或高剂量葛根素合用后,均具有抗凝血作用(P<0.01)。
     ⑧合用组中,高剂量Pur+低剂量Gas组、中剂量Pur+中剂量Gas组、高剂量Pur+中剂量Gas组、中剂量Pur+高剂量Gas组、高剂量Pur+高剂量Gas组均具有抗凝血作用(P<0.01)。
     ④葛根素在20-40g/L、天麻素在150-300g/L剂量范围内,其APTT值均随剂量增加而延长,呈剂量依赖趋势。
     (2)体内APTT结果
     与空白组比较,除葛根素高剂量组外,其它给药组均有极显著性差异,说明Pur、 Gas均有抗凝血作用;且二者合用中剂量组的抗凝血作用强于各单用组,与体外APTT的该项结果一致。
     (3)抗血小板聚集结果
     单用葛根素低、中、高剂量组间或天麻素低、中、高剂量组间均无统计学差异;但直观分析可知,其抗血小板聚集能力(以抑制率计),均随给药剂量增加而增大。但与单用中剂量组比较,中剂量葛根素与中剂量天麻素配伍后,其抗血小板聚集抑制率均有提高(P<0.05)。
     3.3葛根素和天麻素配伍在大鼠血浆中药代动力学研究
     (1)建立HPLC同时测定葛根素、天麻素体内含量的方法,结果表明:葛根素、天麻素分别在0.05~5.98μg/mL禾口0.101~101μg/mL范围内线性关系良好(r>0.9960),其最低定量限分别为0.05、0.101μg/mL,检测限分别为0.0245、0.0486μg/mL,精密度、稳定性RSD均小于12%,样品提取回收率均可达80%以上,说明建立的方法准确可靠、灵敏度高,可较好地应用于葛根素、天麻素同时给药的药代动力学研究。
     (2)葛根素和天麻素联合给药后,大鼠体内主要药代动力学参数(AUC、Cmax、T1/2、 Tmax、MRT)与单独给药后有显著性差异(P<0.05)。无论是灌胃还是静脉注射,清除率(CL)降低,平均滞留时间(MRT)延长,相对生物利用度均有提高,尤以灌胃组显著,灌胃葛根素合用组为单用组的106倍,灌胃天麻素合用组为单用组的1.5倍。
     3.4葛根素和天麻素配伍在Caco-2细胞中吸收机制研究
     (1)50μg·mL-1葛根素在Caco-2细胞的转运无明显的方向性,且转运速率基本恒定,表明此浓度范围内葛根素的转运为不需要耗能的被动转运过程;100、200μg·mL-1葛根素在Caco-2细胞的跨细胞转运呈现较强的方向性(Papp(BL→AP)/Papp(AP→BL)均大于1.5),且这种有向性可被维拉帕米和环孢素抑制,故认为葛根素的跨膜转运除被动扩散外,还存在着外排泵的作用。
     (2)100μg·mL-1天麻素在Caco-2细胞的跨细胞转运无明显的方向性,且转运速率几乎恒定,提示天麻素的转运为不需要耗能的单纯被动转运过程。
     (3)葛根素和天麻素合用后,葛根素吸收量增加(Papp(AP→BL)由1.285×10-6cm/s增加至1.425×10-6cm/s),外排量减少(Papp(BL→AP)由4.539×10-6cm/s减少至3.108×10-6cm/s,P<0.05),外排比率由3.531下降至2.181,减少了38.22%,推测天麻素可发挥类似于维拉帕米或环孢素的作用,即天麻素为P-gp或MRP2抑制剂,可促进葛根素的跨膜转运,其促进程度与维拉帕米接近。
     4结论
     4.1葛根素和天麻素配伍理化性质研究
     (1)室温下,葛根素在水中的平衡溶解度为1.62g·L-1,天麻素为303.81g·L-1,按2010版药典规定,前者属于微溶范畴,后者属于易溶范畴。一定浓度的天麻素可改善葛根素溶解度,且葛根素溶解度的增加与天麻素浓度呈线性关系。
     (2)葛根素、天麻素单独测定时Log P均值分别为0.4803、-0.8573,均小于1,表明二者的亲水性大于亲脂性。葛根素的P值随着pH的升高而降低,表明葛根素在胃液中脂溶性较大,可能在胃中的吸收要高于小肠,而pH对天麻素的P值并无影响,表明天麻素在胃肠道中的吸收无部位特异性。在一定pH范围内,天麻素可使葛根素的亲水性提高,但葛根素并不能改变天麻素在肠道中的脂水分配情况。
     (3)以溶解度和油水分配系数为测定指标,从理化性质层面解释葛根素和天麻素配伍应用的合理性。
     4.2葛根素和天麻素配伍抗氧化和改善微循环药效研究
     (1)葛根素具有DPPH自由基清除作用,而天麻素并无此作用,但这并不意味着天麻素无抗氧化作用,它有可能通过其它途径(如抑制脂质过氧化、增强抗氧化酶活性等)产生作用。
     (2)以体内外APTT、ADP诱导的血小板聚集抑制率为指标,葛根素和天麻素一定剂量配伍后,其抗凝血、抗血小板聚集作用增加。
     (3)从体内外抗凝血和抗血小板聚集层面,解释了葛根素和天麻素配伍应用的合理性。
     4.3葛根素和天麻素配伍在大鼠血浆中药代动力学研究
     (1)葛根素和天麻素合用后,可彼此影响在大鼠体内的药代动力学过程,增加吸收,降低清除率,延长平均滞留时间,提高生物利用度。
     (2)从体内药动学角度,解释葛根素和天麻素配伍应用的合理性。
     4.4葛根素和天麻素配伍在Caco-2细胞中吸收机制研究
     (1)低浓度葛根素在Caco-2细胞的转运无明显的方向性,为不需要耗能的被动转运过程;随着浓度升高,葛根素的跨膜转运呈现较强的方向性,且这种有向性可被维拉帕米和环孢素抑制,表明葛根素除被动扩散外,还存在着外排泵的作用,其可能为P-gp和MRP2的底物。天麻素在Caco-2细胞的跨膜转运无明显的方向性,为不需要耗能的单纯被动扩散。
     (2)天麻素可使葛根素吸收量增加,外排量减少,推测天麻素可发挥类似于维拉帕米或环孢素的作用,即天麻素为P-gp或MRP2抑制剂,可促进葛根素的跨膜转运,其促进程度与维拉帕米接近,而葛根素对天麻素吸收促进作用不明显。
     (3)天麻素(被动转运)这类吸收良好的药物,Caco-2细胞模型是一个研究药物吸收非常好的模型,而对于像葛根素这类吸收差的药物,Caco-2细胞模型只能作为体内吸收的一个定性而非定量指标。
     (4)从药物在体外Caco-2细胞模型中吸收机制层面,解释葛根素和天麻素配伍应用的合理性。
     5创新点
     (1)基于葛根素和天麻素的临床应用,从两者配伍后理化性质、抗氧化改善微循环药效作用、大鼠体内药代动力学和在Caco-2细胞模型中的吸收机制等多层面探讨其配伍应用的合理性。为葛根素和天麻素在临床合用上的实践性提供了一个重要依据,对探索中药成分的配伍理论有一定实践意义。
     (2)基于椎-基底动脉供血不足所致的颈椎病、眩晕中医发病机制为缺氧、缺血等微循环障碍,本研究以DPPH自由基清除、体内外活化部分凝血活酶时间、ADP诱导的血小板聚集抑制率为指标,考察药物抗氧化及改善微循环作用,以点带面,多指标验证了葛根素和天麻素配伍的合理性。
     (3)首次对葛根素和天麻素在大鼠体内药动学特征进行较深入的探讨,并以Caco-2细胞模型为工具,研究葛根素和天麻素吸收转运机制及相互影响,从药代动力学角度和细胞层面阐明两者吸收机制及配伍应用的合理性;从肠吸收角度,研究两种有效成分的吸收及其相互作用,有助于对中药复方成分配伍规律科学性的理解。
1Objective
     Radix Puerariae and Gastrodia elata Blume, the active components of which are puerarin (Pur) and gastrodin(Gas), are used frequently in cervical spondylosis, and they are always been used together recently. Both of them can improve microcirculation, expand coronary artery, lower blood pressure, anti-oxidation, ect. Each of them is used for treatment of hypertension, sudden deafness, cervical spondylosis caused by vertebro-basilar artery insufficiency, vertigo and other diseases caused by microcirculation disturbance in clinic. Their injections were used in combined way for treatment of some cardiocerebrovascular diseases, especially for vertigo due to vertebrobasilar ischemia. Based on their clinical application and theory of TCM on combination, it is necessary to investigate the rationality of combined applications and interaction of the two constituents. Our study focused on the active component, Pur and Gas, to investigate the rationality of their compatibility from the aspects of physico-chemical properties, anti-oxidation, improving microcirculation function, pharmacokinetics in rat and absorption mechanism on Caco-2monolayer cell.
     2Methods and Contents
     According to the above objective, our experiment plan to study the following aspects of Pur and Gas after their combination, that were physico-chemical properties like solubility and oil-water partition coefficient, pharmacodynamic effects of free radical-scavenging and microcirculation improvment, pharmacokinetics in rats and absorption mechanism on Caco-2monolayer cell. The solubility, oil-water partition coefficient, DPPH free radical-scavenging rate, anti-platelet aggregation, pharmacokinetics parameter and apparent permeation coefficient of Caco-2monolayer cell were taken as the indexes to investigate the compatibility rationality of Pur and Gas.
     2.1Study of physico-chemical properties after compatibility of Pur and Gas
     2.1.1Apparent solubility
     Determining the solubility of Pur and Gas used alone or together with ultraviolet spectrophotometry.
     2.1.2Oil-water partition coefficient
     Shake flask-HPLC method was used to determine oil-water partition coefficient of Pur and Gas used alone or together in n-octanol/phosphates buffer system of different pH value.
     2.2Study of antioxidation and microcirculation improvment after compatibility of Pur and Gas
     Taken DPPH free radical-scavenging rate as the index to investigate the antioxidant ability of Pur and Gas used alone or together; Taken APTT and ADP-induced anti-platelet aggregation rate in vitro vivo as indexes to evaluate anticoagulation and anti-platelet aggregation effects of Pur and Gas used alone or together, eventually investigating their effect of improving microcirculation.
     2.3Pharmacokinetics in rat plasma after administration of Pur and Gas together
     A reliable HPLC method was developed for simultaneous determination of Pur, Gas, HBA and internal standard Tyr in rat plasma, which has been successfully applied to the pharmacokinetic study of the analytes in rats after i.g./i.v. administration of Gas and Pur alone or combined with each other. Chromatography was carried out on an Agilent ZORBAX SB-Aq C18column (4.6×250mm,5μm) equipped with an Agilent analytical guard column (4.6×12.5mm,5μm) using a gradient mobile phase consisted of ACN-H2O with0.05%phosphoric acid as a modifier at a flow rate of1.0mL/min. The UV detector wavelength was set at250nm for Pur, whilst221nm for Gas and IS. Comparisons of the pharmacokinetic data were performed using the software of WinNonlin5.2.1and SPSS statistical software package.
     2.4Absorption mechanism of Pur and Gas in Caco-2monolayer cell
     Concentration of Pur and Gas after transporting through Caco-2monolayer cell was determined by HPLC. Then calculate the apparent permeation coefficients to study the characteristics of transport and absorption mechanism. Meanwhile investigate the influences of concentration and transport protein inhibitor on the absorption of Pur and Gas.
     3Results
     3.1Physico-chemical properties after compatibility of Pur and Gas
     3.1.1Apparent solubility
     The solubility of Gas in water was303.81g·L-1and that of puerarin was1.62g·L-1, which could be increased by at most5.1times when adding more than1.5g·L-1Gas. The increasing solubility of Pur and the concentration of adding Gas were in a linear fashion.
     3.1.2Oil-water partition coefficient
     (1) The oil-water partition coefficients of Pur and Gas were0.4803and-0.8573, respectively, which were close to predictive value(We used software of Chem Draw Ultra6.0to calculate the Log P value, which were0.4826、-1.0595for Pur and Gas, respectively).
     (2) Oil-water partition coefficients of Pur
     ①The Log P value of Pur in all groups were less than1in phosphates buffer system of different pH. It was indicated that puerarin was more hydrophilic and could be difficult to absorb in the intestine.
     ②The P value of Pur will decrease with the increase of pH. It was indicated that Pur would absorb more easily in stomach than in intestine.
     ③The P value of Pur in combined group was lower than that in single group, especially in the range of pH1.2to5.8. It showed that adding Gas could increase the hydrophilcity of puerarin, which was consistent with the preliminary solubility results.
     (3) Oil-water partition coefficients of Gas
     ①The Log P value of Gas in all groups were negative in phosphates buffer system of different pH which inferred that Gas was high hydrophilic. Although the Log P value of Gas was less than that of Pur, absorption would be easier for Gas because of its small molecular weight.
     ②The change of pH have little influence on oil-water partition coefficients of Gas. It was indicated there was no site specificity in the absorption of Gas.
     ③There was no significant difference between the P value of Pur in single and combined groups, which indicated that Pur could not increase the oil-water partition coefficient of Gas.
     3.2Antioxidation and microcirculation improvment after compatibility of Pur and Gas
     3.2.1Antioxidation
     (1) Pur has effect of antioxidation to certain extent, the IC50of which was17.56g·L-1, while that of the Vc was0.024g·L-1. Meanwhile, Gas has little effect of antioxidation because its IC50is higher than200g·L-
     (2) The DPPH free radical-scavenging rate of Pur increased with its concentration, while that of Gas didn't change with its concentration (P>0.05). When added Gas, the DPPH free radical-scavenging rate of Pur didn't increase which indicated that it was just Pur contributed to the anticxidation effect.
     3.2.2Improving microcirculation
     (1) In vitro APTT
     ①Low or middle dose groups of Pur had no effect of anticoagulation while high dose group did. There was anticoagulation when middle dose of Pur used together with middle or high dose of Gas.
     ②Low or middle dose groups of Gas had no effect of anticoagulation while high dose group did. There was anticoagulation when low or meddle dose of Gas used together with high dose of Pur, or meddle dose of Gas used together with middle dose of Pur.
     ③Groups of M_Pur+M_Gas, M_Pur+H_Gas, H_Pur+L_Gas, H_Pur+M_Gas, H_Pur+H_Gas had the effect of anticoagulation(L, M, H stands for low, middle, high dose).
     ④The APTT were dose-dependent within the concentration of20-40g/L and150-300g/L for Pur and Gas, respectively.
     (2) Invivo APTT
     The APTT of all groups had significant difference comparing with blank group, except high dose group of Pur. It indicated that both Pur and Gas had anticoagulation, especially when they were both used in middle dose.
     (3) Anti-platelet aggregative activity
     There was no significant difference among all groups of Pur or Gas. From the visual analysis results, it showed that the inhibit ratio increased with the dose. However, the anti-platelet aggregation of combined group was significant increased compared with each single group of Pur and Gas.
     3.3Pharmacokinetics in rat plasma after administration of Pur and Gas together
     (1) A reliable HPLC method was developed for simultaneous determination of Pur and Gas in rat plasma with a linear range of0.05-5.98μg/mL for Pur and0.101-101μg/mL for Gas (r>0.9960). The LLOQ, LOD of Pur and Gas were determined to be0.0486,0.101μg/mL,0.0245and0.05μg/mL, respectively. The intra-day and inter-day precision were all less than12.0%, whilst the extract recovery were all above80%. The fully validated method was successfully applied to the pharmacokinetic study of the analytes in rats after intragastric/intravenous administration of Pur and Gas alone or combined with each other.
     (2) The pharmacokinetic profiles of combined administration were found to be distinct from those of given alone, which could have higher bioavailability (F) and lower clearance rate (CL), as well as longer mean residence time (MRT) both through i.g. and i.v. routes, particularly notable via i.g. administration. The relative oral bioavailability of Pur in combined administration is10.7-time as much as that of single administration, while1.5-fold in Gas.
     3.4Absorption mechanism of Pur and Gas in Caco-2monolayer cell
     (1) It was passive transport for50μg·mL-1Pur while directional (Papp(BL→AP)/Papp(AP→BL)>5) for100μg·mL-1,200μg·mL-1Pur across Caco-2monolayer cell. The efflux rate will decrease when added verapamil and cyclosporine, which indicated that the transepithelial transporting process of Pur was partly actively carrier-mediate transport besides the passive diffusion.
     (2) It was passive diffusion for100μg·mL-1Gas when transporting across Caco-2monolayer cell.
     3) When100μg·mL-1Gas and Pur used together, the permeability coefficient of apical to basolateral was increased from1.285×10-6cm/s to1.425×10-6cm/s, and the permeability coefficient of basolateral to apical was decreased from4.539×10-6cm/s to3.108×10-6cm/s. The efflux rate had reduced from3.531to2.181.This suggests Gas has the similar effect of varapamil, which is the inhibitor of P-gp. Gas could promote the transport of Pur.
     4Conclusions
     4.1Physico-chemical properties
     (1) The solubility of Gas in water was303.81g·L-1and that of puerarin was1.62g·L-1, which belong to slight soluble and easily soluble, respectively according to2010edition of pharmacopoeia. The increasing solubility of Pur and the concentration of adding Gas were in a linear fashion.
     (2) The oil-water partition coefficients of Pur and Gas were0.4803and-0.8573, respectively, both of which were less than1. It was indicated that both of them was more hydrophilic. The increase of pH would decrease the P value of Pur while had little influence on the P value of Gas. It was indicated that Pur would absorb more easily in stomach than in intestine, while there was no site specificity in the absorption of Gas. It showed that adding Gas could increase the hydrophilcity of puerarin in a certain pH range, while Pur could not increase the oil-water partition coefficient of Gas.
     (3) Taken solubility and oil-water partition coefficient as indexes, investigate the Compatibility Rationality of Pur and Gas from the aspect of physico-chemical properties.
     4.2Antioxidation and microcirculation improvment after compatibility of Pur and Gas
     (1) Pur has DPPH free radical-scavenging activity while Gas don't, but it doesn't mean Gas have no antioxidation through another ways (inhibit lipid peroxidation, enhanced activity of antioxidant enzymes, etc.).
     (2) Taken APTT and antiplatelet aggregation induced by ADP as indexes, effects of anticoagulation and anti-platelet aggregation can be increased when Pur and Gas used together in a certain dose.
     (3) Investigate the Compatibility Rationality of Pur and Gas from the aspect of anti coagulation and anti-platelet aggregation in vitro/vivo.
     4.3Pharmacokinetics in rat plasma after administration of Pur and Gas together
     (1) Pur and Gas will affect each other on pharmacokinetic profiles, such as improving bioavailability (F), lowering clearance rate (CL) and prolong mean residence time (MRT) when they were co-administrated to rats.
     (2) Investigate the Compatibility Rationality of Pur and Gas from the aspect of pharmacokinetics.
     4.4Absorption mechanism of Pur and Gas in Caco-2monolayer cell
     (1) It was passive transport for low concentration of Pur while directional with the increase of concentration when transporting across Caco-2monolayer cell. This directional transpot will be weakened when added verapamil and cyclosporine, which indicated that the transepithelial transporting process of Pur was partly actively carrier-mediate transport besides the passive diffusion. Pur may be the substrate of P-gp and MRP2. It was passive diffusion for Gas when transporting across Caco-2monolayer cell.
     (2) Gas can promote the permeability coefficient from apical to basolateral and reduce the permeability coefficient from basolateral to apical of Pur, suggesting that Gas has the similar effect of varapamil (the inhibitor of P-gp), could promote the transport of Pur.
     (3) Caco-2monolayers are an excellent model of the passive transcellular pathway (like Gas), while just be an index of qualitative rather than quantitative concerning the slowly and incompletely absorbed drugs (like Pur).
     5Innovations
     (1) Based on clinical application of Pur and Gas and theory of TCM on combination, investigate the rationality of their compatibility from the aspects of physico-chemical properties, improving microcirculation function, pharmacokinetics in rat and absorption mechanism on Caco-2monolayer cell. These results might lay a foundation for explaining the combination of traditional Chinese medicine in prescriptions containing Pur and Gas and provide an important basis in clinical practice with these two components.
     (2) The pathogenesis of cervical spondylosis and dizziness caused by the vertebrobasilar insufficiency from perspective of traditional Chinese medicine are hypoxia and ischemia, the symptoms of microcirculation disturbance. The DPPH free radical-scavenging activity, APTT and ADP-induced anti-platelet aggregation rate were selected as indexes to investigate the antioxidation and microcirculation improvment of Pur and Gas.We used multi-index to prove the rationality of their compatibility, faning out from point to area.
     (3) The pharmacokinetic characterizations of Pur and Gas in rat were discussed in-depth. The HPLC method for simultaneous determination of Pur, Gas, HBA and internal standard (Tyr) in rat plasma was developed and validated for the first time.
     (4) Caco-2monolayer cell model was used to study the absorption mechanism and the interaction between Pur and Gas. Investigate the Compatibility Rationality of Pur and Gas from the cellular level.
引文
[1]吴先平.冯俊光.陈浩铭.程芳.张丽蓓.韦志军.陈伟才.葛根素对高血压患者围手术期心肌损伤的保护作用[J].中国中西医结合杂志.2006.(3):255-257.
    [2]陈小红.葛根素注射液治疗不稳定型心绞痛临床观察[J].中药材.2004.(1):77-78.
    [3]肖立中.高凌俊.马绍椿.葛根素与粒细胞集落刺激因子治疗急性心肌梗死的对比研究[J].中国中西医结合杂志.2005.25(3):210-213.
    [4]Quan, D.Q., Xu, G.X., Wu, X.G.,2007. Studies on preparation and absolute bioavailability of a self-emulsifying system containing puerarin. Chem. Pharm. Bull.(Tokyo) 55,800-803.
    [5]Ojemann, L.M., Nelson, W.L., Shin, D.S., Rowe, A.O., Buchanan, R.A.,2006. Tian ma, an Epilepsy Behav. 8,376-383.
    [6]Zeng, X., Zhang, S., Zhang, L., Zhang, K., Zheng, X.,2006. A study of the neuroprotective effect of the phenolic glucoside gastrodin during cerebral ischemia in vivo and in vitro. Planta Med.72,1359-1365.
    [7]国家药典委员会.中国药典(一部)[M].北京:化学工业出版社.2010:54.
    [8]张勤.杨云梅.余国友.天麻素注射液对老年难治性高血压患者血压和血管活性物质影响的随机对照研究[J].中西医结合学报.2008.(7):695-699.
    [9]Hsieh, C.L., Chiang, S.Y., Cheng, K.S., Lin, Y.H., Tang, N.Y., Lee, C.J., Pon, C.Z.,2001. Anticonvulsive and free radical scavenging activities of Gastrodia elata Bl. in kainic acid-treated rats. Am J Chin Med.29, 331-341.
    [10]王洪喜.天麻治疗头痛的文献探讨与天麻葛根汤治疗太阳头痛的临床实验研究[D].山东中医药大学.2005.
    [11]杨秀清.石磊.眩晕宁方治疗眩晕52例[J].陕西中医学院学报.2005.28(3):16-17.
    [12]杨珂.通瘀清眩汤合清开灵治疗椎动脉型颈椎病438例[J].河南中医.2008.28(1):44-45.
    [13]于秋红.葛根天麻钩藤饮改善高血压病症状临床研究[J].光明中医.2007.22(7):50-52.
    [14]饶和平.天麻葛根二陈汤治疗急性脑出血52例[J].中国中医急症.2007.16(2):230-231.
    [15]王俊文.通络化瘀镇眩汤治疗治疗椎-基底动脉供血不足致眩晕疗效观察[J].辽宁中医杂志.2010.37(S1):144-145.
    [16]任剑锋,马耒,刘宏,左文平.联合应用葛根素与天麻素治疗眩晕75例[J].中国民族民间医药,2010,19(5):151-152.
    [17]龚学全.康永.葛根素联合天麻素注射液治疗梅尼埃病疗效观察[J].亚太传统医药.2010.6(2):42-43.
    [18]李维香.天眩清联合葛根素治疗眩晕临床疗效观察[J].吉林医学.2010.31(21):3489-3490.
    [1]范海涛.葛根汤治疗颈性眩晕的临床观察[J].四川中医,2007,25(12):71.
    [2]徐腾,王诗忠,陈水金,等.桂枝加葛根汤结合颈椎牵引治疗神经根型颈椎病68例随机对照临床研究[J].辽宁中医杂志,2009,36(12):2095.
    [31杨国荣,陈宏伟,唐永春.葛根舒颈汤治疗颈椎病138例[J].陕西中医,2007,28(12):1623.
    [4]楼骆琳,何维英.葛根汤合血府逐瘀汤加减配合牵引治疗神经根型颈椎病[J].浙江中医药大学学报.2010,34(4):549-551.
    [5]魏会东,魏会珍.葛根二藤汤内外合用治疗颈椎病98例[J].中国民间疗法,2011,19(2):43.
    [6]韩艳,蔡敏英.葛根素配合牵引治疗椎动脉型颈椎病的临床观察[J].现代中西医结合杂志,2008,17(2):216.
    [7]赵桂昌,李才锐.葛根素注射液对颈椎病的临床观察[J].四川生理科学杂志,2009,31(1):24.
    [8]周丕琪,沈霖,杨艳萍,等.葛根素治疗椎动脉型颈椎病123例临床观察[J].中西医结合学报,2006,4(1): 80-81.
    [9]刘梅,王拥军,施杞,等.葛根汤和桂枝汤调节椎间盘组织Fas、bcl-2蛋白表达的实验研究[J].中国骨伤,2004,17(4):198.
    [10]王拥军,施杞,周重建,等.葛根汤与桂枝汤对兔颈椎间盘组织IL-1β、iNOS、TNF-α、TGF-βmRNA表达的调节作用[J].中西医结合学报,2003,1(4):273.
    [11]王世军,史仁华,姬广臣.葛根素对家兔软脑膜微循环的影响[J].微循环学杂志,1999,9(4):19.
    [12]袁曙光,邢潇.天麻醒脑胶囊结合按摩治疗椎基底动脉供血不足性眩晕临床观察[J].现代中西医结合杂志,2008,17(29):45344535.
    [13]严保雷,何培林.天麻钩藤饮加味对后循环缺血性眩晕治疗作用的观察[J].中医药临床杂志,2012,24(8):725-726.
    [14]郑向晖.天麻素注射液治疗椎-基底动脉供血不足42例[J].临床医药,2010,19(11):73-74.
    [15]高宪玺,史红逸.天麻素联合尼麦角林治疗颈性眩晕40例[J].陕西中医,2010,31(10):1327.
    [16]吕世林,焦长春.天麻素配伍丁咯地尔治疗颈椎病引起的眩晕症疗效观察[J].药物与临床,2011,49(27):74-75.
    [17]王文,李芳,许彦国.天麻素联合丁咯地尔注射液治疗椎-基底动脉供血不足性眩晕的临床观察[J].临床军医杂志,2012,40(40):808-810.
    [18]孙中吉,王辉.天麻素注射液的药理作用和临床应用[J].时珍国医国药,2008,9(4):1011-1013.
    [19]王和权.葛根天麻川汤治疗颈椎病345例临床观察[J].四川中医,2009,27(12):97.
    [20]潘家利.天麻葛根汤治疗颈椎病性眩晕72例[J].光明中医,2010,25(9):1721-1722.
    [21]武建国,吴文荣,刘占全.芎葛天麻饮治疗椎动脉型颈椎病48例[J].内蒙古中医药,2007,(2):24.
    [22]刘黎明.葛根天麻饮治疗颈性眩晕40例[J].四川中医,2005,23(14):69.
    [23]吴思凤.浅谈天麻素药理作用及临床应用分析[J].中医临床研究,2011,3(22):93.
    [24]赵莹莲. 葛根素的药理作用及临床应用进展[J].安徽医药,2010,14(12): 1377-1379.
    [25]张勤,杨云梅,余国友.天麻素注射液对老年难治性高血压患者血压和血管活性物质影响的随机对照研究[J].中西医结合学报,2008,(7):695-699.
    [26]吴先平,冯俊光,陈浩铭,程芳,张丽蓓,韦志军,陈伟才.葛根素对高血压患者围手术期心肌损伤的保护作用[J].中国中西医结合杂志,2006,(3):255-257.
    [27]封玉东,高为民,吕凤芝.天麻素注射液联合洛斯宝口服液治疗突发性耳聋72例疗效观察[J].中国中医药科技,2007,14(6):453.
    [28]牛爽,吴华臣.葛根素治疗突发性耳聋42例的疗效观察[J].哈尔滨医药,2009,29(3):5.
    [29]杜银生.推拿结合天麻素注射液治疗椎动脉型颈椎病的疗效观察[D].哈尔滨:黑龙江中医药大学,2009.
    [30]赵桂昌,李才锐.葛根素注射液对颈椎病的临床观察[J].四川生理科学杂志,2009,31(1):24-25.
    [31]吕世林,焦长春.天麻素配伍丁咯地尔治疗颈椎病引起的眩晕症疗效观察[J].中国现代医生,2011,49(27):74-75.
    [32]吴巍巍.葛根素葡萄糖注射液治疗颈椎病性眩晕64例[J].上海中医药杂志,2010,44(2):46.
    [33]任剑锋,马耒,刘宏,左文平.联合应用葛根素与天麻素治疗眩晕75例[J].中国民族民间医药,2010,19(5):151-152.
    [34]龚学全,康永.葛根素联合天麻素注射液治疗梅尼埃病疗效观察[J].亚太传统医药,2010,6(2):42-43.
    [35]李维香.天眩清联合葛根素治疗眩晕临床疗效观察[J].吉林医学,2010,31(21):3489-3490.
    [36]姜杰,施杞.中医药治疗颈椎病机理研究进展[J].中国中医骨伤科杂志,1999,7(1):53-54.
    [37]陈军,李静.推拿对椎动脉型颈椎病患者血液流变学及血清一氧化氮与血清内皮素的影响[J].时珍国医国药,2008,19(8):2028-2029.
    [1]卢弘,李敏,邢东明,杜力军.对中药复方药代动力学研究中血药浓度测定方法的评述与思考[J].世界科学技术,2000,(4).
    [2]殷文光,李曼玲,刘淑芝.中药复方药动学研究进展[J].中国实验方剂学杂志,2006,12(12):60-64.
    [3]唐洪梅,李锐.中药及复方制剂现代化研究的重点—药代动力学研究[J].中国实验方剂学杂志,2002,8(5):56-60.
    [4]李丹,肖东睿,许磊.中药药物动力学研究概况[J].时珍国医国药,2001,12(9):849-850.
    [5]陈业高,海丽娜,张曦等.中药复方的研究进展[J].云南师范大学学报,2002,22(3):71-74.
    [6]沈群,罗佳波.中药复方药代动力学研究的特殊性[J].中成药,2004,26(8):665-666.
    [7]谭玮,宋崇顺,高月.中药复方方法学研究进展[J].中国中西医结合杂志,2004,24(5):458-461
    [8]向大雄,李焕德,胥新元.中药复方药代动力学研究概况[J].中国实验方剂学杂志,2002,22(3):61-63.
    [9]Gao QT, Chen XH, BI KS. Comparative Pharmacokinetic Be-havior of Glycyrrhetic Acid after Oral Administration of Glycyr-rhizic Acid and Gancao-Fuzi-Tang [J].Biol Pharm Bull.2004,27,27:226-228.
    [10]Yuxin Sheng, Lie Li, Chuanshe Wang, et al. Solid-phase extraction-liquid chromatographic method for the determination and phannacokinetic studies of albiflorin and paeoniflorin in rat serum after oral administration of Si-Wu decoction Journal of Chromatography B. Analytical Technologies in the Biomedical and Life Sciences.2004.806(2):127-132.
    [11]Zuo F, Zhou ZM, Zhang Q. et al. Pharmacokinetic study on the multiconstituents of Huangqin-Tang decoction in rats. Biological & Pharmaceutical Bulletin.2003,26(7):911.
    [12]Lu T, LiangY, SongJ, et al. Simultaneous detennination ofberberine and palmatine in rat plasma by HPLC-ESI-MS after oral adminis-tration oftraditional Chinese medicinal preparation Huang-Lian-Jie-Du decoction and the phannacokinetic application ofthe method[J] J Pharm Biomed Anal,2006,40 (5): 1218-1224.
    [13]李跃辉,杨永华.中药药代动力学研究方法进展[J].湖南中医杂志,2004,20(2):66-67.
    [14]李东,王敏,谢静等.中药药代动力学的研究方法[J].药学专论,2006,15(11):26-27.
    [15]许向阳,王玮.近年中药药动学研究概况[J].江苏药学与临床研究,2006,14(3):170-173.
    [16]周丽娟,许利平,陈慧娟等.中药复方药代动力学常用研究方法评价[J].中华中医药学刊,2007,25(5):1041-1043.
    [17]庞志功,汪宝琪.关于中药复方药动学的研究.西安医科大学学报[J].1997,18(3):418-419.
    [18]Masato Homma, kiyaro Oka. et al.Systematic analysis of ost-administrative Saiboku-To urine by liquid chromatography to determine phannacokinetics fo traditional Chinese medicine.Biomedical Chromatography,1997,11:125-131.
    [19]师少军,陈汇,曾繁典.中药复方药物代谢动力学研究方法及展望[J].中国临床药理学杂志,2001,17(3):235-238.
    [20]黄熙,任平.后证治药动学的医药创新——整体导向还原论研究[J].中医杂志,2013,54(5):365-368
    [21]杨奎.中药血清药理学研究[J].医学研究通讯.1999.28(2):18-19.
    [22]杨奎,蒲旭峰.论“中药胃肠药动学研究”的意义及对策[J].中国实验方剂学杂志,1998.4(1):37-40.
    [1]王靖,吉民,华维一,戴德哉.葛根素研究进展[J].药学进展,2003,27(2):70-73.
    [1]赵莹莲.葛根素的药理作用及临床应用进展[J].安徽医药,2010,14(12):1377-1379.
    [2]Jiang L, Dai J, Huang Z, Du Q, Lin J, Wang Y. Simultaneous determination of gastrodin and puerarin in rat plasma by HPLC and the application to their interaction on phannacokinetics. J Chromatogr B Anayt Technol Biomed Life Sci.2013 Feb 1,915-916:8-12.
    [3]修虹,沈诗景.注射用葛根素在小鼠体内的药动学研究[J].海峡药学,2010,22(12):24-27.
    [4]田景振,魏凤环.葛根黄酮缓释胶囊家兔体内药代动力学研究[J].山东中医药大学学报,2003,27(6):454-456.
    [5]杜力军,於兰,常琪,等.新工艺制备的葛根黄酮的药代动力学研究[J].中药药理与临床1997,13(2):19-24.
    [6]陈晓兰,杜守颖,陆洋,赵雪姣,王珊,李鹏跃,宋逍.不同给药途径通窍散瘀方中葛根素在大鼠体内药动学研究[J].中国中药杂志,2011,15(17):2347-2349.
    [7]王雪莉,苏慧,邢东明,陈芸芸,陶佳林,丁怡,杜力军.微细化工艺制备的葛根微粉抗氧化抗凝血及其体内吸收动力学研究[J].中国实验方剂学杂志,2005,11(3):32-34.
    [8]邓新国,胡世兴,张清炯,张晓慧,钟国平,汤丽芬,吴珏珩.葛根素腹腔注射在家兔房水中的药代动力学研究[J].眼科研究,2003,21(3)258-260.
    [9]李妮,路玫,陈晖,蒙大平,陈远华.葛根素在糖尿病肾病病人中的药动学[J].中国新药与临床杂志,2002,21(1):51-53.
    [1()]潘震宇,肖轶雯,王峰.新型LC/LC-UV系统建立血浆中葛根素含量测定方法[J].中南药学,2010,8(11):814-817.
    [11]Wu H, Lu C, Zhou A. Min Z, Zhang Y. Enhanced oral bioavailability of puerarin using microemulsion vehicle. Drug Dev hid Phann.2009 Feb,35 (2):138-144.
    [12]J.K. Prasain, N. Peng, E. Acosta. R. Moore. A. Arabshahi, E. Meezan, S. Barnes, J.M. Wyss. Phannacokinetic study of puerarin in rat serum by liquid chromatography tandem mass spectrometry. Biomed Chrom.21 (2007):410-414.
    [13]Wang Q, Li X, Dai S, Ou L, Sun X, Zhu B. Chen F. Shang M, Song H.. Quantification of puerarin in lasma by on-line solid-phase extraction column switching liquid chromatography-tandem mass spectrometry and its applications to a pharmacokinetic study J Chromatogr B Analyt Technol Biomed Life Sci.2008 Feb 15,863(1):55-63.
    [14]冯怡,薛素琴,孙丽.液相色谱-串联质谱法测定兔血浆中葛根素的浓度[J].广东药学院学报,2007,23(3):266-268.
    [15]陈小新,原素,李耿,梁幼雅,周秀,谢称石,龙超峰.葛根素自微乳在Beagle犬体内的药代动力学及生物利用度研究[J].中药材,2011,34(5)750-753.
    [16]姚晨,周绣棣,曲涛,位冬昱,慕宏杰,梁荣才,王爱萍,孙考祥.微渗析技术研究葛根素滴眼液麻醉家免眼内药动学[J].中国中药杂志,2011,36(16):2236-2239.
    [17]Gao C, Li X, Li Y, Wang L. Xue M. Pharmacokinetic interaction between puerarin and edaravone, and effect of borneol on the brain distribution kinetics of puerarin in rats. J Phann Pharmacol.2010 Mar,62(3): 360-367.
    [18]Wang WY, Yao C, Shao YF, Mu HJ, Sun KX. Determination of puerarin in rabbit aqueous humor by liquid chromatography tandem mass spectrometry using microdialysis sampling after topical administration of puerarin PAMAM dendrimer complex. J Pharm Biomed Anal.2011 Dec 5,56(4):825-829.
    [19]王莹,袁瑾,安叡,王新宏.液相色谱-串联质谱法测定大鼠血浆中异黄酮和黄酮类成分[A].[C]:2009:198-202.
    [20]朱秀媛,苏成业,李振华,岳天立,阎香珍,魏怀玲.葛根有效成分的代谢研究——Ⅲ.葛根素的代谢及其药代动力学分析[J].药学学报,1979,14(6):349-355.
    [21]金昔陆,朱秀嫒.血浆中葛根素的薄层-紫外光密度扫描测定法及其在家兔的药动学[J].中国药理学通报,1991,7(6):421-424.
    [22]王健,赵岚峰,王杰,孙曾培.高效毛细管电泳简介及其在中药分析中的应用[J].中成药,1996,18(10): 45-47.
    [23]Quan, D.Q., Xu, G.X., Wu, X.G.,2007. Studies on preparation and absolute bioavailability of a self-emulsifying system containing puerarin. Chem. Pharm. Bull. (Tokyo) 55,800-803.
    [24]陈小新,原素,李耿,等.葛根素自微乳在Beagle犬体内的药代动力学及生物利用度研究中药材,2011,34(5):750-753.
    [25]陈小新,赖小平,李耿,等.葛根素自微乳在大鼠体内的药代动力学研究.中成药,2011,33(7):220-222.
    [26]王莉,邢东明,孙虹,金文,炎彬,杜力军.金森脑泰注射剂中葛根素在生理及病理状态下大鼠肝肾分布的比较[J].中国实验方剂学杂志,2002,8(03):41-43.
    [27]崔升森,赵春顺,高坤,等.大鼠肝微粒体中葛根素的液相色谱-质谱测定法及药物代谢动力学. 沈阳药科大学学报,2007,1(24):32-36.
    [28]冉川莲,段俊国,蹇文渊,李强.葛根素药代动力学研究进展[J].中药药理与临床,2012,28(1):190-194.
    [29]金昔陆,朱秀媛.葛根素在三种动物的药代动力学参数与体重的相关性[J].徐州医学院学报,1991,11(1):25.
    [30]卢弘,邢东明,孙虹,李敏,金文,杜力军.CBN中葛根素、人参皂甙Rgl在正常和脑缺血再灌大鼠体内药代动力学比较[J].哈尔滨商业大学学报(自然科学版),2001,17(3):4-7.
    [31]炎彬,孙虹,何希辉,等.葛根黄酮及其葛根素在正常和脑缺血再灌注大鼠体内药动学比较[J].中国药学杂志,2004,39(3):48-51.
    [32]卢弘,邢东明,孙立红,等.CBN中葛根素、人参皂甙Rg1的高效液相色谱测定法及其在脑缺血再灌注大鼠体内的药代动力学[J].中国药理学通报,2001,17(5):591-592.
    [33]卢弘,邢东明,孙虹,等.金森脑泰注射剂中葛根素在正常和缺血再灌注模型大鼠体内的药动学研究[J].中国药学杂志,2002,37(1):4346.
    [34]宋振玉.中草药现代研究[M].北京:北京医科大学,中国协和医科大学联合出版社,1995:290.
    [35]郑彩美,卢毅,张彤,等.葛根总黄酮经鼻与口服给药的药代动力学研究.中成药,2009,31(8):1194-1198
    [36]王丹,石力夫,胡晋红,等.微透析联用反相高效液相色谱对大鼠皮肤葛根素的药代动力学研究.分析化学研究简报,2008,36(10):1391-1395.
    [37]鲁传华,吴鸿飞,周安,闵智伟,张玉莲.葛根素纳米粒在小鼠体内的药动学[J].中国医院药学杂志,2008,28(23):1977-1980.
    [38]龚显峰,李述溪,赵学玲,李强.葛根素固体分散体的制备及大鼠体内生物利用度研究[J].黑龙江医药,2009,22(2):157-160.
    [39]周毅生,贾永艳,申小清,等.葛根素磷脂固体分散体的制备及体外研究.中国药学杂志,2003,38(1):42-44.
    [40]李颖,潘卫三,陈士林,等.葛根素磷脂复合物的制备及其固体分散体的研究.中国药学杂志,2006,41(15):1162-1167
    [41]顾一珠,周文,翟光喜.葛根素脂质体的研制及其大鼠口服吸收.中药材,2007,30(8):970-973.
    [42]邓赟,徐金库,李新松.葛根素脂质体滴眼液的制备及其药动学研究[J].中国中药杂志,2010,35(3):301-304.
    [1]Ojemann, L.M., Nelson, W.L., Shin, D.S., Rowe, A.O., Buchanan, R.A.,2006. Tian ma, an Epilepsy Behav.8,376-383.
    [2]Zeng, X., Zhang, S., Zhang, L., Zhang, K., Zheng, X.,2006. A study of the neuroprotective effect of the phenolic glucoside gastrodin during cerebral ischemia in vivo and in vitro. Planta Med.72,1359-1365.
    [3]国家药典委员会.中国药典(一部)[M].北京:化学工业出版社,2010:54.
    [4]张勤,杨云梅,余国友.天麻素注射液对老年难治性高血压患者血压和血管活性物质影响的随机对照研究[J].中西医结合学报,2008,(7):695-699.
    [5]Hsieh, C.L., Chiang, S.Y., Cheng, K.S., Lin, Y.H., Tang, N.Y., Lee, C.J., Pon, C.Z.,2001. Anticonvulsive and free radical scavenging activities of Gastrodia elata Bl. in kainic acid-treated rats.Am J Chin Med.29, 331-341.
    [6]程刚,郝秀华,刘国良,等.天麻素在大鼠体内的药动学研究[J].中国药学杂志,2003,38(2):127-129.
    [7]刘建存,方鸿,粟奕兴,等.天麻首乌片中天麻素的测定及其药动学研究[J].长沙医学院学报,2010,12(2): 15-18.
    [8]杨园,韩凤梅,杜鹏,等.复方天麻颗粒中天麻素在大鼠体内的药动学研究[J].药学学报,2010,45(4):484-488.
    [9]贾元威,谢海棠,沈杰,等.液相色谱-电喷雾电离质谱法用于检测大鼠血浆中天麻素方法学的建立与考证[J].中国现代药物应用,2010,4(2):1-3.
    [10]孙成春,董玉波,孙军,等.高效液相色谱法测定天麻素人体相对生物利用度[J].中国医院药学杂志,2008,28(20):1804-1806.
    [11]王俏.天麻素和天麻苷元的体内外代谢和脑靶向性研究[D].:浙江大学,2007.
    [12]Li LL, Zhang ZR, Gong T, He LL, Deng L. Simultaneous determination of Gastrodin and Ligustrazine hydrochloride in dog plasma by gradient high-performance liquid chromatography. J Pharm Biomed Anal. 2006 Jun 16,41(4):1083-1087.
    [13]王俏,陈国神,曾苏.天麻素在大鼠脑、肝、肾及脑不同区域组织匀浆中的代谢研究[J].中国现代应用药学,2009,(8):614-619.
    [14]Cai Z, Hou S. Li Y, Zhao B, Yang Z, Xu S. Pu J. Effect of borneol on the distribution of gastrodin to the brain in mice via oral administration. J Drug Target.2008 Feb,16(2):178-184.
    [15]Lin LC, Chen YF, Lee WC, Wu YT, Tsai TH. Pharmacokinetics of gastrodin and its metabolite p-hydroxvbenzyl alcohol in rat blood, brain and bile by microdialysis coupled to LC-MS/MS. J Pharm Biomed Anal.2008 Nov 4,48(3):909-917.
    [16]华雯妍,朱艺芳,张全英.天麻素血药浓度测定及药动学研究[J].中国现代应用药学,2010,27(7):634-636.
    [17]倪书茂,钱大玮,段金廒,等.大川芎方中藁本内酯及天麻素在家兔血浆中的代谢物研究[J].中成药,2010,32(7):1115-1120.
    [18]罗军,吴中亮,王惠先.天麻素注射液人体药动学的研究[J].解放军药学学报,2006,22(5):391-393.
    [19]游金辉,谭天秩,匡安仁,等.3H-天麻甙元和3H-天麻素在小鼠体内的分布和代谢[J].华西医科大学学报,1994,(3):325-328.
    [20]刘克辛,苏成业,韩国柱,等.天麻素在大鼠体内生理处置的研究[J].大连医学院学报,1988,10(1):62-66.
    [21]刘克辛,张雅伦,韩国柱,等.天麻素在血浆中的测定及其药代动力学研究阴.大连医学院学报,1986,(1):36-42.
    [22]陆光伟,邹元杰,莫启中,等.不同给药时辰对3H2天麻素大鼠体内过程的影响[J].中国药理学报,1986,7(2):190-191.
    [23]郭正平,谭天秩,钟裕国,等.天麻素及天麻贰元作用机理的研究.华西医大学报,1991,22(1):79-82.
    [24]陆光伟,邹元杰,莫启忠.3H-天麻素在大鼠体内的吸收、分布、代谢和排泄.药学学报,1985,20(3):167-172.
    [1]杨秀伟,杨晓达,王莹,马莲,张悦,杨晓改,王夔.中药化学成分肠吸收研究中Caco-2细胞模型和标准操作规程的建立[J].中西医结合学报,2007,5(6):634-641.
    [2]Galkin A, Pakkanen J, Vuorela P. Development of an automated 7-day 96-well Caco-2 cell culture model [J]. Pharmazie.2008 Jun,63(6):464-469.
    [3]李楠,杜青青,蒋学华.黄芩苷磷脂复合物在Caco-2细胞模型中的吸收机制[J].华西药学杂志,2013,28(]):58-59.
    [4]李秋月,程星烨,王金芳,闫利利,石钺.延胡索季铵碱成分在Caco-2细胞模型中的吸收转运[J].中国医院药学杂志,2013,33(2):89-92.
    [5]梁新丽,招丽君,廖正根,赵国巍,尹蓉莉,曹运朝.Caco-2细胞模型研究川芎提取物中阿魏酸转运机制及白芷提取物对其转运的影响[J].中药药理与临床,2012,28(6):52-55.
    [6]Woo JS, Lee CH. Shim CK, Hwang SJ. Enhanced oral bioavailability of paclitaxel by coadministration of the P-glycoprotein in-hibitor KR30031 [J]. Pharm Res,2003,20(1):24-30.
    [7]Menon RM, Barr WH. Transporters involved in apical and basolateral uptake of ceftibuten into Caco-2 cells [J]. Biopharm Drug Dispos,2002,23(8):317-326.
    [8]葛月宾,马燕,李卫中.大豆苷元在Caco-2细胞模型中的转运和代谢[J].中药材,2009,32(10):1563-1567.
    [9]莫李立,王素军,杨本坤.阿魏酸在Caco-2细胞模型的通透性及其在大鼠体内吸收特性研究[J].中草药,2012,43(5):947-95].
    [10]P. Artursson, J. Karlsson, Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells [J]. Biochem. Biophys. Res. Commun. 175(1991)880-885.
    [11]W. Rubas, J. Villagran. M. Cromwell. A. McLeod. J. Wassenberg, R. Mrsny, Correlation of solute flux across Caco-2 monolayers and colonic tissue in vitro [J]. S.t.p.Pharma Sci.5 (1995) 93-97.
    [12]P. Wils. A. Warnery. V. Phung-Ba, D. Scherman, Differentiated intestinal epithelial cell lines as in vitro models for predicting the intestinal absorption of drugs [J]. Cell Biol. Toxicol.10 (1994) 393-397.
    [13]贾晓燕.氨基多糖纳米微粒在Caco-2细胞模型中的吸收机制及其在荷瘤小鼠体内分布的研究[D].浙江大学,2009.
    [14]C.L. Stevenson, P.F. Augustijns. R.W. Hendren. Permeability screen for synthetic peptide combinatorial libraries using Caco-2 cell monolayers and LC/MS/MS [J]. Pharm. Res.12 (1995) S-94.
    [15]Petersen SB, Nolan G, Maher S, Rahbek UL, Guldbrandt M. Brayden DJ. Evaluation of alkylm alto sides as intestinal permeation enhancers:comparison [J]. Eur J Pharm Sci.2012 Nov 20,47(4):701-712.
    [16]Zheng KY, Choi RC, Guo AJ, Bi CW,Zhu KY, Du CY, Zhang ZX, Lau DT. Dong TT, Tsim KW. The membrane permeability of Astragali Radix-derived fonnononetin and calycosin is increased by Angelicae Sinensis Radix in Caco-2 cells:a synergistic action of an ancient herbal decoction Danggui Buxue Tang between rat intestinal mucosal sheets and Caco-2 monolayers [J]. J Pharm Biomed Anal.2012 Nov,70: 671-679.
    [17]J.R. Pappenheimer. K.Z. Reiss. Contribution of solvent drag through intercellular junctions to absorption of nutrients by the small intestine of the rat [J]. J. Membr.Biol.100 (1987) 123-136.
    [18]L.-S. Gan. C. Eads, T. Niederer, A. Bridgers, S. Yanni, P.-H. Hsyu, F.J. Pritchard, D.Thakker, Use of Caco-2 cells as in vitro intestinal absorption and metabolism model [J]. Drug Dev. Ind. Pharm.20 (1994) 615-631.
    [19]P.F. Augustinjs, T.P. Bradshaw, L.-S.L. Gan, R.W. Hendren, D.R. Thakker, Evidence for a polarized efflux system in Caco-2 cells capable of modulating cyclosporin Atransport, Biochem [J]. Biophys. Res. Commun. 197(1993)360-365.
    [20]叶敏,王俊俊,简静,陈勇.马钱子碱体外吸收机制及其与甘草苷的转运相互作用研究[J].中华中医药杂志,2013,28(1):100-103.
    [21]梁新丽,招丽君,廖正根,尹蓉莉,赵国巍,曹运朝.Caco-2细胞模型研究白芷提取物对P-糖蛋白功能的影响[J].中国医院药学杂志,2012,32(22):1781-1785.
    [22]招丽君,廖正根,梁新丽,赵国巍,杨明,曹运朝.Caco-2细胞单层模型研究葛根提取物中葛根素转运机制及白芷提取物对其转运的影响[J].中国药学杂志,2012,47(20):1638-1642.
    [23]Ohkubo R, Tomita M. Hotta Y, Nagira M, Hayashi M. Comparative study of flux of FITC-labeled Dextran 4000 on normal (iso)- and hyper-osmolarity in basal side in caco-2 cell monolayers [J]. Drug Metab Pharmacokinet.2003,18(6):404-408.
    [24]C.-M. Lehr, V.H.L. Lee, Binding and transport of some bioadhesive plant lectins across Caco-2 cell monolayers [J].Pharm. Res.10 (1993) 1796-1799.
    [25]T. Mikogami, M. Heyman, G. Spik, J.-F. Desjeux. Apical-to-basolateral transepitlielial transport of human lactoferrin in the intestinal cell line HT-29cl.19A [J]. Am. J. Physiol.267 (1994) G308-G315.
    [26]L. Lazorova, P. Artursson, A. Engstrom, A. Sjolander, Transport of an influenza virus vaccine formulation (iscom) in human intestinal epithelial (Caco-2) cells [J]. Am. J. Physiol.270 (1996) G554-G564.
    [27]C.J. Dix, I.F. Hassan. H.Y. Obray. R. Shall, G. Wilson, The transport of vitamin B12 through polarized monolayers of Caco-2 cells [J]. Gastroenterology 98 (1990)1272-1279.
    [28]Pielage JF, Cichon C, Greune L. Hirashima M, Kucharzik T, Sclunidt MA. Reversible differentiation of Caco-2 cells reveals galectin-9 as a surface marker molecule for human follicle-associated epithelia and M cell-like cells. Int J Biochem Cell Biol [J].2007,39(10):1886-1901.
    [29]D.T. O'Hagan, Oral immunization and the common mucosal immune system. in:D.T. O'Hagan (Ed.), Novel Delivery Systems for Oral Vaccines [J]. CRC Press, BocaRaton, FL,1994, pp.1-24.
    [30]H. Lennernas, K. Palm. U. Fagerholm, P. Artursson, Correlation between paracellular and transcellular drug permeability in the human jejunum and Caco-2 monolayers [J]. Int. J. Pharm.127 (1996) 103-107.
    [31]I.J. Hidalgo, T.J. Raub. R.T. Borchardt, Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability [J]. Gastroenterology 96 (1989) 736-749.
    [32]P. Artursson. Epithelial transport of drugs I. A model for studying the transport of drugs (β-blocking agents) over an intestinal epithelial cell line (Caco-2) [J]. J. Pharm.Sci.79 (1990) 476-482.
    [33]P. Artursson, A.-L. Ungell, J.-E. Lofroth, Selective paracellular permeability in two models of intestinal absorption:cultured monolayers of human intestinal epithelial cells and rat intestinal segments [J].Pharm. Res.10(1993)1123-1129.
    [34]Y. Tanaka, Y. Taki, T. Sakane. T. Nadai, H. Sezaki. S. Yamashita. Characterization of drug transport through tight-junctional pathway in Caco-2 monolayer:Compar-ison with isolated rat jejunum and colon [J]. Pharm. Res.12 (1995) 523-528.
    [35]J.L. Madara. G. Hecht. Tight (occluding) junctions in cultured (and native) epithelial cells, in:K.S. Matlin. J.D. Valentich (Eds.), Functional Epithelial Cells inCulture [J].Alan R, Liss, New York,1989, pp.131-163.
    [36]W.I. Lencer, C. Delp, M.R. Neutra. J.L. Madara, Mechanism of cholera toxin action on a polarized human intestinal epithelial cell line:role of vesicular traffic [J]. J. CellBiol.117 (1992) 1197-1209.
    [37]M. Jodal. S. Holmgren, O. Lundgren, A. Sjoqvist, Involvement of the mycentric plexus in the cholera toxin-induced net fluid secretion in the rat small intestine [J]. Gastroenterology 105 (1993) 1286-1293.
    [38]K.D. Fine, C.A. Santa Ana. J.L. Porter, J.S. Fordtran, Mechanism by which glucose estimulates the passive absorption of small solutes by the human jejunum invivo [J]. Gastroenterology 107 (1994) 389-395.
    [39]H. Lennernas,O. Ahrenstedt, A.-L. Ungell, Intestinal drug absorption during induced net water absorption in man; a mechanistic study using antipyrine. atenolol and enalaprilat [J]. Br. J. Clin. Pharmacol.37 (1994) 589-596.
    [40]J. Karlsson, A.-L. Ungell. P. Artursson, Effect of an oral rehydration solution on paracellular drug transport in intestinal epithelial cells and tissues:Assessmentof charge and tissue selectivity [J]. Pharm. Res.11 (1994) S-248.
    [41]E. Walter, T. Kissel, M. Reers, G. Dickneite, D. Hoffmann, W. Stuber, Transepithelial transport properties of peptidomimetic thrombin inhibitors in monolayers of a human intestinal cell line (Caco-2) and their correlation to in vivo data [J]. Pharm.Res.12 (1995) 360-365.
    [42]T.Y. Ma. D. Hollander. D. Bhalla, H. Nguyen, P. Krugliak, IEC-18, a nontransformed small intestinal cell line for studying epithelial permeability [J]. J. Lab. Clin. Med.120 (1992) 329-341.
    [43]E. Duizer, W.S. Stenhuis. A.H. Penninks, J.P. Groten. Transport of compounds across monolayers of intestinal cell lines:Comparison of IEC-18 and Caco-2 [J]. Ital. J. Gastroenterol.27 (1995) 154.
    [44]E.C.A. Paul, J. Hochman, A. Quaroni, Conditionally immortalized intestinal epithelial cells:novel approach for study of differentiated enterocytes [J]. Am. J. Physiol.265 (1993) C266-C278.
    [45]V. Milovic. S. Olsson. J. Hochman. E.C.A. Paul, P. Artursson, Conditionally immortalized rat fetal intestinal cell line (2/4/A1) for studying epithelial differentiation, apoptosis and permeability [J]. Gastroenterology 110 (1996) A822.
    [46]L. Gonzalez-Mariscal. B. Chavez de Ramirez, A. Lazaro, M. Cereijido, Establishment of tight junctions between cells from different animal species and differentsealing capacities [J]. J. Membr. Biol.107 (1989) 43-56.
    [47]R.H. Whitehead, P.E. VanEeden, M.D. Noble, P. Ataliotis, P.S. Jat, Establishment of conditionally immortalized epithelial cell lines from both colon and small intestine of adult H-2Kb-tsA58 [J]. Proc. Natl. Acad. Sci. USA 90 (1993) 587-591.
    [48]H. Lennemas, D. Nilsson. S.-M. Aquilonius. O. Ahrenstedt. L. Knutson. L.K. Paalzow. The effect of L-leucin on the absorption of levodopa. studied by region-al jejeunal perfusion in man [J]. Br. J. Clin. Pharmacol.35 (1993) 243-250.
    [49]I.J. Hidalgo, R.T. Borchardt, Transport of a large neutral amino acid (phenvlala-nine) in a human intestinal epithelial cell line:Caco-2, Biochim. Biophys [J]. Actal028 (1990) 25-30.
    [50]Reis JM, Dezani AB, Pereira TM, Avdeef A, Serra CH. Lamivudine permeability study:A comparison between PAMPA. ex vivo and in situ Single-Pass Intestinal Perfusion (SPIP) in rat jejunum [J]. Eur J Pharm Sci.2013 Mar 12;48(4-5):781-789.
    [51]B.H. Stewart, OH. Chan, R.H. Lu, E.L. Reyner, H.L. Schmid, H.W. Hamilton, B.A.Steinbaugh, M.D. Taylor. Comparison of intestinal permeabilities detenninedin multiple in vitro and in situ models: Relationship to absorption in humans [J]. Pharm. Res.12 (1995) 693-699.
    [52]D.-C. Kim, P.S. Burton, R.T. Borchardt, A correlation between the permeability characteristics of a series of peptides using an in vitro cell culture model (Caco-2) and those using an in situ perfused rat ileum model of the intestinalmucosa [J]. Pharm. Res.10 (1993) 1710-1714.
    [53]Behrens I, Kamm W, Dantzig AH, et al. Variation of peptide transporter (PepTl and HPT1) expression in Caco-2 cells as a function of cell origin [J]. J Pharm Sci,2004,93(7):1743-1754.
    [54]E. Walter, T. Kissel, Transepithelial transport and metabolism of thyrotropin-releasing hormone (TRH) in monolayers of a human intestinal cell line (Caco-2):Evidence for an active transport component [J]. Pharm. Res.11(1994)1575-1580.
    [55]E. Walter, T. Kissel, Heterogeneity in the human intestinal cell line Caco-2 leads to differences in transepithelial transport [J]. Eur. J. Pharm. Sci.3 (1995)215-230.
    [56]G. Wilson, I.F. Hassan, C.J. Dix, I. Williamson, R. Shah, M. MacKay, P. Artursson.Transport and permeability properties of human Caco-2 cells:an in vitro modelof the intestinal epithelial cell barrier [J]. J. Control. Release 11 (1990) 25-40.
    [57]P. Nicklin, B. Invin, I. Hassan, I. Williamson. M. Mackay, Permeable support type influences the transport of compounds across Caco-2 cells [J]. Int. J. Pharm.83(1992) 197-209.
    [58]C. Jumarie, C. Malo, Caco-2 cells cultured in serum-free medium as a model for the study of enterocytic differentiation in vitro [J]. J. Cell. Physiol.149 (1991) 24-33.
    [59]R. Mannhold, K.P. Dross, R.F. Rekker, Drug lipophilicity in QSAR practice:I. A comparison of experimental with calculative approaches [J]. Quant. Struct.-Act.Relatsh.9 (1990) 21-28.
    [60]W.M. Meylan, P.H. Howard, Atom/fragment contribution method for estimating octanol-water partition coefficients [J].J. Pharm. Sci.84 (1995) 83-92.
    [61]P. Gaillard. P.-A. Carrupt, B. Testa, A. Boudon, Molecular lipophilicity potential, a tool in 3D QSAR: method and applications [J]. J. Comput. Aided Mol. Des.8 (1994) 83-96.
    [62]S.D. Kramer. Absorption prediction from physicochemical parameters [J]. Pharmaceutical Science&Technology Today,1999,2(9):373.
    [63]G. Camenisch, G. Folkers, H. Van de Water beemed. Shape of membrane permeability-lipophilicity curves: extension of theoreticalmodels with an aqueous pore pathway [J]. Eur J Pharm Sci,1998,6:321.
    [64]Wils P.Warnery V,Phung BA.et al.High lipophility decreasesdrug transport across intestinal epithelial cells [J]. J PharmacolExp Then,1994,269:654.
    [65]F.A. Gobas. J.M. Lahittetle, G. Garofolo, et al. A novel method formeasuring membrane-water partition coefficient of hydrophobicorganic chemicals:comparision with 1-octano-1 water partitioning [J]. JPharm Sci,1988,77:265.
    [66]K. Palm, K. Lurhman. J. Ros, et al. Effect of molecular charge onintestinal epithelial drug transport pH-dependent transport ofcationic drugs [J]. J Pharmacol Exp Ther,1999,291.
    [67]E. David, G. Clark. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomenalprediction of intestinal absorption [J].J Phann Sci,1999,88:807.
    [68]K. Palm, P. Steberg, K. Luthman, et al. Polar molecular surfaceproperties predict the intestinal absorption of drugs in humans [J]. Phann Res,1997,14:568.
    [69]P. Stenberg. K. Luthman. P. Artursson. Prediction of menbranepermeability to peptides from calculated dynamic molecular surfaces properties [J]. Pharm Res.1999.16:205.
    [70]J. Kelder, P.D.J. Grootenhuis, D.M. Bayada. et al. Polar molecykarsurface as a dominating determinant for oral absorption and brampenetration of drug [J]. Phann Res,1999,16:1514.
    [1]Quan, D.Q., Xu, G.X., Wu. X.G.,2007. Studies on preparation and absolute bioavailability of a self-emulsifying system containingpuerarin[J]. Chem. Phann. Bull. (Tokyo) 55,800-803.
    [2]金玉燕,张钧寿,张瑛,张玉红.西红花苷大鼠小肠吸收研究及油水分配系数的测定[J].中国药科大学学报.2004,35(3): 283-284.
    [3]吴义辉,伍玉甜,何丽瑜.药物在辛醇-水体系分配系数的应用[J].广东药学,2000,10(4):12-14.
    [4]宋健,王涛,陈蔚蔚,等.天麻素在不同介质中平衡溶解度的测定[J].社区医学杂志,2011,9(4):24-25.
    [5]董祥玉,任勇,马学琴,等.葛根素/β-环糊精包合物的初步研究[J].中国新药杂志,2006,15(7):528-532.
    [6]吴正红,朱延勤,严汉英,等.葛根素的溶解性及高分子聚合物助溶作用的研究[J].江苏药学与临床研究,1999,7(1):9-11.
    [7]吴纯洁,齐红艺,黄春燕,等.羟丙基-p-环糊精对葛根素溶解性与角膜渗透性的影响[J].中国药学杂志,2006,41(20):1565-1568.
    [8]张岩峰.葛根素及其三种增溶制剂口服吸收评价的研究[D].北京中医药大学,2009.
    [9]李颖.葛根素磷脂复合物的制备技术及体内外特性研究[D].沈阳药科大学,2006.
    [10]王展,韩立炜,任天池.葛根素-聚乙二醇6000固体分散体的制备及其溶解性能的研究[J].北京中医药大学学报,2007,30(5):346-349.
    [11]杨华,易红,李曼玲,等.不同配方O/W型微乳对黄芩苷和葛根素的增溶作用[J].中国中药杂志,2007,32(19):1996-1999.
    [1]孙进.口服药物吸收与转运[M].北京:人民卫生出版社,2006.12:322-324.
    [2]金玉燕,张钧寿,张瑛,张玉红.西红花苷大鼠小肠吸收研究及油水分配系数的测定[J].中国药科大学学报.2004,35(3):283-284.
    13]吴义辉,伍玉甜,何丽瑜.药物在辛醇-水体系分配系数的应用[J].广东药学,2000,10(4):12-14.
    [1]赵莹莲.葛根素的药理作用及临床应用进展[J].安徽医药,2010,14(12):1377-1379.
    [2]吴思凤.浅谈天麻素药理作用及临床应用分析[J].中医临床研究,2011,3(22):93.
    [3]杜银生.推拿结合天麻素注射液治疗椎动脉型颈椎病的疗效观察[D].哈尔滨:黑龙江中医药大学,2009.
    [4]赵桂昌,李才锐.葛根素注射液对颈椎病的临床观察[J].四川生理科学杂志,2009,31(1):24-25.
    [5]吕世林,焦长春.天麻素配伍丁咯地尔治疗颈椎病引起的眩晕症疗效观察[J].中国现代医生,2011,49(27):74-75.
    [6]陈茂义,李殿宁.针刀治疗颈椎病的机理及临床疗效分析[J].湖南中医药导报,2004,10(6):75-76.
    [7]任剑锋,马耒,刘宏,左文平.联合应用葛根素与天麻素治疗眩晕75例[J].中国民族民间医药,2010,19(5):151-152.
    [8]H. Barry, et al. Free radicals in Biology and Medicine. Oxford, Charendon Press,1985:37.
    [9]M.S. Blois. Antioxidant determination by the use of a stable free radical. Nature,1958,181:1199-1200.
    [10]Hirota A, Taki S, Kawaii S, et al.1,1-Diphenyl-2-picrylhydrazyl radical-scavenging compounds from soybean miso and antiproliferative activity of isoflavones from soybean miso toward the cancer cell lines. Biosci Biotechnol Biochem.2000 May; 64(5):1038-1040.
    [1l]许申鸿,杭瑚.一种筛选自由基清除剂的简便方法[J].中草药,2000,31(2):96-97.
    [12]廖全斌,刘小琴,刘金鹏,等.天麻提取物的抗氧化活性与其天麻素含量相关性研究[J].三峡大学学报:自然科学版,2006,28(1):80-82.
    [1]杜银生.推拿结合天麻素注射液治疗椎动脉型颈椎病的疗效观察[D].哈尔滨:黑龙江中医药大学,2009.
    [2]赵桂昌,李才锐.葛根素注射液对颈椎病的临床观察[J].四川生理科学杂志,2009,31(1):24-25.
    [3]吕世林,焦长春.天麻素配伍丁咯地尔治疗颈椎病引起的眩晕症疗效观察[JJ.中国现代医生,2011,49(27):74-75.
    [4]任剑锋,马耒,刘宏,左文平.联合应用葛根素与天麻素治疗眩晕75例[J].中国民族民间医药,2010,19(5):151-152.
    [5]许文博,王玉蓉,黄能听等.全蝎胃蛋白酶酶解混合多肽体外抗凝活性研究及其组成分析.北京中医药大学学报,2010,33(2):127-129.
    [6]滕洪明,吕东泽,戴淑芳,剧锦哲,李巧梅,邹向阳.萱藻多糖的制备及抗凝血抗血栓活性研究[J].中国海洋药物,2012,31(1):25-28.
    [7]郭月芳,谢炜,王玉梅,吉蕊,盛雨辰.聚乙二醇化降纤酶对血小板聚集和凝血功能的影响[J].中国药理学通报,2011,27(4):512-515.
    [1]Quan, D.Q., Xu, G.X., Wu, X.G.,2007. Studies on preparation and absolute bioavailability of a self-emulsifying system containing puerarin. Chem. Phann. Bull. (Tokyo) 55,800-803.
    [2]Ojemann, L.M., Nelson, W.L., Shin, D.S., Rowe, A.O., Buchanan, R.A.,2006. Tian ma, an Epilepsy Behav.8,376-383.
    [3]Zeng, X., Zhang, S., Zhang, L., Zhang, K., Zheng, X.,2006. A study of the neuroprotective effect of the phenolic glucoside gastrodin during cerebral ischemia in vivo and in vitro. Planta Med.72,1359-1365.
    [4]国家药典委员会.中国药典(一部)[M].北京:化学工业出版社,2010:54.
    [5]张勤,杨云梅,余国友.天麻素注射液对老年难治性高血压患者血压和血管活性物质影响的随机对照研究[J].中西医结合学报,2008,(7):695-699.
    [6]Hsieh, C.L., Chiang, S.Y., Cheng, K.S., Lin, Y.H., Tang, N.Y., Lee, C.J., Pon, C.Z.,2001. Anticonvulsive and free radical scavenging activities of Gastrodia elata Bl. in kainic acid-treated rats.Am J Chin Med.29, 331-341.
    [7]任剑锋,马耒,刘宏,左文平.联合应用葛根素与天麻素治疗眩晕75例[J].中国民族民间医药,2010,19(5): 151-152.
    [8]龚学全,康永.葛根素联合天麻素注射液治疗梅尼埃病疗效观察[J].亚太传统医药,2010,6(2):42-43.
    [9]李维香.天眩清联合葛根素治疗眩晕临床疗效观察[J].吉林医学,2010,31(21): 3489-3490.
    [10]刘蓉,卞筱泓,许激扬,聂煜,巫龙.中药单体组合的血管舒张作用研究[J].华西药学杂志,2011,(6): 551-553.
    [11]杨园,韩凤梅,杜鹏,陈勇.复方天麻颗粒中天麻素在大鼠体内的药动学研究[J].药学学报,2010,45(4):484-488.
    [12]Zheng, Q., Yue, P.F., Wu, B., et al.,2011. Pharmacokinetics comparative study of a novel Chinese traditional herbal formula and its compatibility. J. Ethnopharmacology 137,221-225.
    [13]Wu,H.F., Zhou,A.,Lu,C.H., et al.,2011. Examination of lymphatic transport of puerarin in unconscious lymph duct-cannulated rats after administration in microemulsion drug delivery systems. Eur. J. Pharmaceutical Sciences 42,348-353.
    [14]Luo, C.F., Yuan,M., Sheng, M., et al.,2011. Phannacokinetics, tissue distribution and relative bioavailability of puerarin solid lipid nanoparticles following oral administration. Int.J. Pharmaceutics 410. 138-144.
    [15]Wu H, Lu C, Zhou A, Min Z, Zhang Y. Enhanced oral bioavailability of puerarin using microemulsion vehicle. Drug Dev hid Phann.2009 Feb,35 (2):138-144.
    [16]吴燕红,苏子仁,赖小平,林吉.愈风宁心片中葛根素在Beagle犬体内药动学研究[J].中成药,2006.28(2):215-218.
    [17]陈晓兰,杜守颖,陆洋,赵雪姣,王珊,李鹏跃,宋逍.不同给药途径通窍散瘀方中葛根素在大鼠体内药动学研究[J].中国中药杂志,2011,36(17):2347-2349.
    [18]程刚,郝秀华,刘国良,邹梅娟,崔福德.天麻素在大鼠体内的药动学研究[J].中国药学杂志,2003,38(2): 127-129.
    [19]Matuszewski BK, Constaizer ML, Chavez-Eng CM. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal. Chem.2003,75(13):3019-3030.
    [20]Guideline on Validation of Bioanalytical Methods (Draft), Committee for Medicinal Products for Human Use. European Medicines Agency (EMEA).2009.
    [21]Y. Li, W.S. Pan, S.L. Chen, H.X. Xu, D.J. Yang, A.S. Chan. Pharmacokinetic, tissue distribution, and excretion of puerarin and puerarin-phospholipid complex in rats. Drug Dev Ind Pharm.32 (2006) 413-422.
    [22]J.K. Prasain, N. Peng, E. Acosta. R. Moore, A. Arabshahi, E. Meezan, S. Barnes, J.M. Wyss. Pharmacokinetic study of puerarin in rat serum by liquid chromatography tandem mass spectrometry, Biomed Chrom.21 (2007) 410-414.
    [23]W. Zhang, Y.X. Sheng, J.L. Zhang. Determination and pharmacokinetics of gastrodin and p-hydroxybenzlalcohol after oral administration of Gastrodia elata Bl.extract in rats by high-performance liquid chromatography-electrospray ionization mass spectrometric method, Phytomedicine 15 (2008) 844-850.
    [24]Q. Zheng, P.F. Yue, B. Wu, P.Y. Hu, Z.F. Wu, M. Yang. Pharmacokinetics comparative study of a novel Chinese traditional herbal formula and its compatibility, J Ethnopharmacology 137 (2011).221-225.
    [25]C.F. Luo, M. Yuan, M.S. Chen, S.M. Liu, L, Zhu, B.Y. Huang, X.W. Liu, W. Xiong, Pharmacokinetics, tissue distribution and relative bioavailability of puerarin solid lipid nanoparticles following oral administration, Int J Pharmaceutics 410 (2011) 138-144.
    [26]Penetar DM, Teter CJ, Ma Z, Tracy M, Lee DY. Lukas SE. Pharmacokinetic profile of the isoflavone puerarin after acute and repeated administration of a novel kudzu extract to human volunteers. J Altern Complement Med.2006 Jul-Aug;12(6):543-548.
    [27]Lin LC, Chen YF. Lee WC. Wu YT, Tsai TH. Phannacokinetics of gastrodin and its metabolite p-hydroxybenzyl alcohol in rat blood, brain and bile by microdialysis coupled to LC-MS/MS. J Pharm Biomed Anal.2008 Nov 4; 48(3):909-917.
    [28]Wang Q, Chen G, Zeng S. Pharmacokinetics of Gastrodin in rat plasma and CSF after i.n. and i.v. Int J Pharm.2007 Aug 16; 341(1-2):20-25.
    [29]Gao C, Li X. Li Y, Wang L. Xue M. Pharmacokinetic interaction between puerarin and edaravone, and effect of bomeol on the brain distribution kinetics of puerarin in rats. J Pharm Pharmacol.2010 Mar: 62(3):360-367.
    [30]Ren F, Jing Q, Shen Y, Ma H, Cui J. Quantitative determination of puerarin in dog plasma by HPLC and study on the relative bioavailability of sustained release tablets. J Pharm Biomed Anal.2006 May 3; 41(2): 549-553.
    [31]Cui S, Zhao C, Tang X, Chen D, He Z. Study on the bioavailability of puerarin from Pueraria lobata isoflavone self-microemulsifying drug-delivery systems and tablets in rabbits by liquid chromatography-mass spectrometry. Biomed Chromatogr.2005 Jun; 19(5):375-378.
    [32]Meezan E. Meezan EM, Jones K, Moore R, Barnes S, Prasain JK. Contrasting effects of puerarin and daidzin on glucose homeostasis in mice. J Agric Food Chem.2005 Nov 2:53(22):8760-8767.
    [33]Li LL. Zhang ZR, Gong T, He LL. Deng L. Simultaneous determination of Gastrodin and Ligustrazine hydrochloride in dog plasma by gradient high-performance liquid chromatography. J Pharm Biomed Anal. 2006 Jun 16;41(4):1083-1087.
    [34]Cai Z. Hou S. Li Y. Zhao B. Yang Z, Xu S. Pu J. Effect of bomeol on the distribution of gastrodin to the brain in mice via oral administration. J Drug Target.2008 Feb;16(2):178-184.
    [35]蔡铮,侯世祥,杨兆祥,宋相容,陈秋红,李元波,赵斌斌.天麻素鼻用原位凝胶脑靶向性研究[J].四川大学学报(医学版),2008,39(3):438-440.
    [36]李章万,徐秀荣.色谱分析中生物样品的前处理方法[J].药物分析杂志,1996,16(1):55-59.
    [37]Wang Y, Yao Y, An R, You L, Wang X. Simultaneous determination of puerarin,daidzein, baicalin, wogonoside and liquiritin of GegenQinlian decoction in rat plasma by ultra-performance liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci.2009 Jul 1: 877(20-21):1820-1826.
    [38]Li Y, Zhao L, Zhang H. Jia J, Lv L. Zhou G. Chai Y, Zhang G. Comparative phannacokinetics of prim-O-glucosylcimifugin and cimifugin by liquid chromatography-mass spectrometry after oral administration of Radix Saposhnikoviae extract, cimifugin monomer solution and prim-O-glucosylcimifugin monomer solution to rats. Biomed Chromatogr.2012 Jan 18.
    [39]Qin F, Huang X, Zhang HM. Ren P. Pharmacokinetic comparison of puerarin after oral administration of Jiawei-Xiaoyao-San to healthy volunteers and patients with functional dyspepsia:influence of disease state. J Pharm Pharmacol.2009 Jan; 61(1):125-129.
    [40]崔升淼,赵春顺,何仲贵.葛根素在Caco-2细胞模型中的吸收特性[J].中草药,2007,38(6):836-839.
    [41]李林,张琼,杨志建,陆阳.改善葛根素肠道吸收的体外研究[J].中草药,2011,42(11):2265-2269.
    [42]GuerraM C, Speroni E. BroccoliM, et a.l Comparison between chinesemedical herb pueraria lobata crude extract and its main isoflavone puerarin antioxidant properties and effects on rat liver CYP2 catalysed drugmetabolis[J]. Life Sci 2000.67:2997.
    [43]Piskula M·K-, Yamakosh j, Iwai Y··Daidzein and genistein butnot theirglucosides are absorbed from the rat stomach [J].FEBS Lett,1999,447(2-3):287-291.
    [44]Izumi T·, PiskulaM·K·, Osawa S·,et al-Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans[J].J·Nutr,2000,130(7):1695-1699.
    [45]Prasain J·K·, JonesK-.BrissieN·,etal-Identification of puerarin and itsmetabolites in rats by liquid chronmatogra-phy-tandem mass spectrometry[J].J·Agric·Food Chem,2004,52(12):3708-3712.
    [46]林晓,徐德生,冯怡.大分子药物肠道吸收促进剂的研究进展[J].中国药学杂志,2003,38(10):741-744.
    [1]崔升淼,赵春顺,何仲贵.葛根素在Caco-2细胞模型中的吸收特性[J].中草药,2007,38(6):836-839.
    [2]李林,张琼,杨志建,陆阳.改善葛根素肠道吸收的体外研究[J].中草药,2011,42(11):2265-2269.
    [3]赵静,梁爱华.Caco-2细胞模型及其在中药吸收转运研究中的应用[J].中国实验方剂学杂志,2009,15(5):79-83.
    [4]Hidalg I J, Raub T J. Borchadt R T. Characterization of the human colon carcinoma. cell line (Caco-2) as a model system for intestinal epithelial permeability [J].Gasteoenterology,1989,96:736.
    [5]卢智玲,冯怡,徐德生,林晓,杨扬.Caco-2细胞模型在中药口服吸收及机制研究中的应用[J].中草药,2006,37(4),:616-619.
    [6]Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev,200146(1-3):27-43.
    [7]Schrickx JA, Fink-Gremmels J. Implications of ABC transporters on the disposition of typical veterinary medicinal products [J]. Eur J Pharmacol,2008,585:510-519.
    [8]Liu ZH, Liu KX. The transporters of intestinal tract and their study methods [J]. Acta Pharm Sin,2011,46: 370-376.
    [9]孙进.口服药物吸收与转运[M].北京:人民卫生出版社,2006.12:322-324.
    [10]Lin JH, Yamazaki M. Role of P-glycoprotein in pharmacokinetics. Clin Pharmacokinet,2003.42(1):59-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700