用户名: 密码: 验证码:
小麦—非洲黑麦抗性新种质的分子细胞遗传学鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑麦属(Secale L.,染色体组为R,2n=14)属禾本科(Poaccae)小麦族(Triticeae),是小麦的三级基因库(tertiary gene poo1)。黑麦属物种中蕴藏着丰富的遗传变异,含有与高蛋白含量、高赖氨酸含量、抗病、抗穗发芽、抗旱、抗寒以及其他优异农艺性状和生物化学性状相关的重要基因,是改良普通小麦的重要外源基因供体,但目前小麦育种中利用的黑麦属种质资源主要集中在栽培黑麦上,对野生黑麦的利用还较少。非洲黑麦(Secale africanum Stapf,R~(afr)R~(afr))属于黑麦属多年生野生黑麦重要一员,主要分布在南非,是濒临灭绝的物种,表现为矮杆和对多种病害具有优异的抗性,因而十分有必要对这一珍贵资源开展研究与利用工作。本研究主要包括:黑麦染色体特异分子标记的开发、一系列小麦-非洲黑麦渐渗系材料的分子细胞学鉴定、非洲黑麦染色体在小麦背景下的抗病性及农艺性状研究以及非洲黑麦和栽培黑麦的多角度差异比较分析。研究结果如下:
     1.新的黑麦染色体特异分子标记的开发与应用:(1)利用490对引物开发黑麦染色体特异分子标记,包括138对PLUG(PCR-based landmark unique gene)引物、258对EST-SSR(Expressed sequences tags-Simple sequence repeats)引物、38对STS(Sequence-taged site)引物和56对COS(conserved orthologous set)引物,共获得黑麦染色体特异标记97个,覆盖1R-7R染色体。(2)通过C带、基因组原位杂交(GISH)和荧光原位杂交(FISH)鉴定小麦–非洲黑麦渐渗系材料,并证实,新开发的分子标记可有效跟踪小麦背景中的非洲黑麦染色质。(3)利用已报道的黑麦基因组特异分子标记和本研究新开发的黑麦染色体特异分子标记,对小麦–非洲黑麦高代渐渗系材料进行初步筛选,发现小麦–非洲黑麦高代渐渗系中,出现频率最高的染色体依次是1R~(afr)、6R~(afr)和2R~(afr)。
     2.小麦–非洲黑麦1R~(afr)渐渗系材料的鉴定及对黑麦1R染色体进化规律的探讨:(1)在小麦–非洲黑麦1R~(afr)渐渗系中,通过C带和原位杂交鉴定获得小麦–非洲黑麦1R~(afr)附加系、1R~(afr)(1D)代换系、T1BL.1R~(afr)S易位系、T1DS.1R~(afr)L易位系及1R~(afr)L端体等材料。抗性分析表明1R~(afr)S上含有条抗条锈病基因;(2)进一步利用栽培黑麦1BS.1RL易位和1RL端体等材料及本研究鉴定的非洲黑麦1R~(afr)渐渗系材料,将新开发的15个1R染色体特异分子标记定位到1R&1R~(afr)染色体臂。结合已报道的14个1R染色体臂分子标记,研究了这些标记在栽培黑麦1R和非洲黑麦1R~(afr)上的扩增情况。(3)分别从细胞学、分子标记及单基因序列分析等角度进行研究,发现栽培黑麦1R染色体与非洲黑麦1R~(afr)染色体相比,表现为端部高度重复序列增多、微卫星聚集、基因拷贝数增多等变化,而这些变化可能出现在黑麦属基因组进化与栽培化进程中。
     3.新型小麦–非洲黑麦2R~(afr)渐渗系的分子细胞遗传学鉴定及农艺性状分析:(1)利用C带、原位杂交和分子标记辅助分析方法,在MY11与硬粒小麦–非洲黑麦双二倍体杂交F6代渐渗系材料中,鉴定了一个稳定的育性极好的2R~(afr)(2D)代换系LF24。通过对小麦、非洲黑麦和LF24接种条锈生理小种,发现LF24中抗条锈病特性来自非洲黑麦2R~(afr)染色体。(2)通过对LF24与MY11杂交后代渐渗系材料进行GISH和FISH分析鉴定,获得T2DL.2R~(afr)S二体易位系、T2DS.2R~(afr)L二体易位系、单2R~(afr)S或单2R~(afr)L附加系等一系列小麦–非洲黑麦2R~(afr)渐渗系。(3)结合C带、GISH、FISH以及分子标记分析,表明非洲黑麦2R~(afr)染色体与栽培黑麦2R染色体相比,存在异染色质减少、端部高度重复序列减少或变化、端部区域删除或重组等基因组改变。(4)通过抗性和农艺性状数据分析,将抗条锈基因及矮秆基因定位在2R~(afr)L染色体臂;通过与代换系和2R~(afr)L株系进行农艺性状比较,发现2R~(afr)S明显具有对产量相关性状的正向作用,如增加穗长、小穗数、千粒重。
     4.新型小麦–非洲黑麦6R~(afr)(6D)代换系的鉴定及6R~(afr)上Sec2位点的研究:(1)在小麦–非洲黑麦渐渗系材料中,获得一个稳定株系HH41,分子细胞学分析表明HH41为小麦–非洲黑麦6R~(afr)(6D)代换系。抗性分析表明,HH41上优异的高抗条锈病和中抗白粉病特性可能来自非洲黑麦6R~(afr)染色体。(2)GISH、FISH及分子标记分析表明非洲黑麦6R~(afr)染色体与栽培黑麦6R染色体存在明显多态性。(3)通过SDS-PAGE(Sodium dodecyl sulfate-Polyacrylamide gel electrophoresis)电泳和75K γ-secalin基因特异分子标记分析,将编码75K γ-secalin的Sec2位点定位到非洲黑麦6R~(afr)(6D)代换系。通过克隆、测序和序列比对分析,证实来自6R~(afr)染色体的75K γ-secalin基因序列与已报道的75K γ-secalin基因序列相似度极高。(4)结合已报道的75K γ-secalin基因序列进行聚类分析,表明来自非洲黑麦的序列可以聚为一类,而来自栽培黑麦的序列可以聚为另一类,研究结果发现非洲黑麦与森林黑麦亲缘关系较近,而且栽培黑麦75K γ-secalin基因序列比野生物种序列75Kγ-secalin基因变异幅度大。
Genus Secale (Secale L.,2n=2x=14, RR) belongs to Poaceae (syn. Gramineae), inthe tribe Triticeae, and is a member of tertiary gene pool of bread wheat. It constitutes avast source of genetic diversity and is an important source of genes associated with highprotein content, high lysine, resistant to many cereal diseases, sprouting, drought, winterhardiness, and other morphological and biochemical traits that can be used in wheatbreeding program. Studies in Secale are focused on cultivated rye (S. cereale L.), whilerelatively few studies have involved gene transfer from the wild Secale species to wheat.Wild Secale species, Secale africanum Stapf.(R~(afr)R~(afr)), is an important species in genusSecale, widely distributed in southern Africa and now verging on extinction. S.africanum showed short plant height and excellent resistance to wheat diseases, and wasthus essential to conserve the species and study its potential value for wheatimprovement. This study focused on development of a variety of Secale chromosomespecific molecular markers, identification of a series of new wheat–S. africanumintrogression lines by molecular cytogenetic analysis, investigation of the effects ofdisease resistance and agronomic performance of S. africanum chromatin in wheatbackground and comparision of the differences between cultivated rye and S. africanumchromosomes.The research results showed as follows:
     1. Development of new Secale chromosome specific molecular markers.(1) A totalof490pairs of primers, including138pairs of PLUG (PCR-based Landmark UniqueGene) primers and258pairs of EST-SSR (Expressed sequences tags-Simple sequencerepeats) primers,38pairs of STS (Sequence-taged site)primers, and56pairs of COS(conserved orthologous set) primers were utilized to develop Secale chromosomespecific molecular markers. Total97chromosome specific molecular markers wereassigned to Secale chromosomes1R-7R.(2) The wheat–S. africanum introgeressionlines were identified by cytological methods including Giemsa C-banding, genomic insitu hybridizaion (GISH) and fluoresence in situ hybridizaion (FISH). Above newlydeveloped Secale specific markers could be used to track S. africanum chromatin inwheat background.(3) Using the reported Secale genome-specific and newly developed chromosome specific markers, we primarily screenned300wheat–S. africanumintrogressed progenies. It was found that chromosome1R~(afr)transmitted with the highestfrequency, while6R~(afr)was the second, and2R~(afr)was followed.
     2. Characterization of a set of wheat–S. africanum1R~(afr)introgression linesrevealed1R chromosome evolutionary trend.(1) Wheat–S. africanum chromosome1R~(afr)addition,1R~(afr)(1D) substitution, T1BL.1R~(afr)S and T1DS.1R~(afr)L translocation, and1R~(afr)L monotelocentric addition lines were indentified from a serial of wheat–S.africanum1R~(afr)introgression lines by Giemsa C-banding and in situ hybridization.Disease resistance screening revealed that chromosome1R~(afr)S carried stripe rustresistance gene(s).(2) Fifteen1R specific molecular markers were localized onchromosome arms of cultivated rye1R and S. africanum1R~(afr)by T1BL.1RS andDTA1RL and also the newly identified S. africanum1R~(afr)introgression lines. Combinedthe reported fourteen1R specific molecular markers, we studied the amplificationpattern between S. cereale chromosome1R and S. africanum1R~(afr)derivatives.(3)Thecomparison of the cytogenetic analysis, target bands of polymorphic markers andnucleotide sequences of these unigene polymorphic markers suggested that accumulatedtrends of highly repetitive sequences and the satellite sequences, gene duplication andsequence divergence might have occurred among Secale species during its evolutionand domestication.
     3. Molecular cytogenetic characterization of new wheat–S. africanum chromosome2R~(afr)introgression lines with novel disease resistance and agronomic performances.(1)A stable, highly fertile wheat–S. africanum2R~(afr)(2D) substitution line LF24was derivedfrom the F6generation of the cross between Mianyang11(MY11) and T. durum-S.africanum amphiploid (YF), which was identified through C-banding, in situhybridization and molecular markers analysis. When inoculated with stripe rust isolatesof wheat, S. africanum and LF24, we found that the stripe rust resistance of LF24wasderived from S. africanum chromosome2R~(afr).(2) Based on the screening of theoffsprings from the crosses between LF24and MY11, the T2DL.2R~(afr)S andT2DS.2R~(afr)L translocations, mono-2R~(afr)S and2R~(afr)L addition lines and other S.africanum chromosome2R~(afr)introgression lines were identified by GISH and FISH.(3)Combined the C-banding, GISH, FISH patterns and molecular marker analysis of S.africanum2R~(afr)with2R from different S. cereale, it was suggested that genomic variation such as telomeric heterochromatin reduction, highly repetitive sequencesreduction or variation, telomeric regions deletion or recombination occured in S.africanum2R~(afr)compared with cultivated2R.(4) Disease resistance and agronomicperformance effects of wheat–S. africanum chromosome2R~(afr)derivatives linesindicated that chromosome2R~(afr)L possessed gene(s) for stripe rust resistance anddwarfing, while the2R~(afr)S translocation line was the most favorable for agronomicperformance when compared with the field performance of the substitution, and2R~(afr)Ltranslocation lines.
     4.Molecular cytogenetic characterization of a new wheat–S. africanum6R~(afr)(6D)substitution line and the study of Sec2locus on6R~(afr).(1) After screening the wheat–S.africanum introgression lines, we obtained a stable6R~(afr)(6D) substitution line HH41.The excellent stripe rust and moderate powdery mildew resistance might be originatedfrom S. africanum6R~(afr)chromosome.(2) GISH, FISH pattern, molecular markersrevealed the apparent polymorphism between S. africanum chromosome6R~(afr)andcultivated rye chromosome6R.(3) The SDS-PAGE (Sodium dodecyl sulfate-Polyacrylamide gel electrophoresis) and75K γ-secalin gene specific marker testrevealed that Sec2locus encoding75K γ-secalin was located on6R~(afr)(6D) substitutionline. Molecular cloning and sequence comparison confirmed that the S. africanum6R~(afr)derived Sec2sequences matched well with75K γ-secalin gene sequences.(4)Phylogenetic analysis using the S. africanum Sec2sequences and other reported Secale75K γ-secalin gene sequences indicated that the S. africanum Sec2sequences clusteredinto the same group, while the cultivated rye Sec2clustered in defferent groups. Theresults suggested that there was a close relationship between S. africanum and S.sylvestre, and the S. cereale Sec2showed higher variation than those of wild Secalespecies.
引文
[1]万安民,赵中华,吴立人.2002年我国小麦条锈病发生回顾[J].植物保护,2003,29(2):5-8
    [2]林小虎,王黎明,李兴锋,等.抗白粉病八倍体小偃麦和双体异附加系的鉴定[J].作物学报,2005,31(8):1036-1041
    [3]吴金华,王新茹,王长有,等.含抗白粉病新基因普通小麦-黑麦1R二体异附加系的遗传学鉴定[J].农业生物技术学报,2009,17(1):153-158
    [4] R. A. McIntosh, Y. Yamazak, J. Dubcovsky, et al. Catalogue of gene symbols for wheat[C].Proceedings of the11th international wheat genetics symposium, Brisbane, Qld Australia,2008,24-29
    [5]董玉琛.小麦的基因源[J].麦类作物学报,2000,20(3):78-81
    [6] C. D. Pace, V. Paolini, M. G. T. Scarascia, et al. Evaluation and utilization of Dasypyrumvillosumas a genetic resource for wheat improvement. In: Wheat Resources: Meeting DiverseNeeds. New York: A Wiley-Sayce Publication J Wiley and Sons Chichester,1990,279-291
    [7]齐莉莉,陈佩度,刘大均,等.小麦白粉病新抗源-基因Pm21[J].作物学报,1995,21(3):257-262
    [8] P. D. Chen, L. L. Qi, S. Z. Zhang, et al. Development and molecular cytogenetic analysis ofwheat-Haynaldiavillosa6VS/6AL translocation lines specifying resistance to powderymildew[J]. Theor Appl Genet,1995,91:1125-1128
    [9] A. Yildirim, S. S. Jones, T. D. Murray. Mapping a gene conferring resistance toPseudocercosporella herpotrichoides on chromosome4V of Dasypyrum villosum in a wheatbackground[J]. Genome,1998,41:1-6
    [10] A. Z. Cao, L. P. Xing, X. Y. Wang, et al. Serine/threonine kinase gene Stpk-V, a key memberof powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat[J].Proc Natl Acad Sci USA,2011,108(19):7727-7732
    [11]孙善澄,袁文业,裴自友,等.小麦缺体转育及异代换系的筛选[J].山西农业科学,1995,23(2):7-9
    [12]畅志坚.几个小麦-偃麦草新种质的创制和分子细胞遗传学分析[D].雅安:四川农业大学,1999,1-60
    [13] L. J. Hu, G. R. Li, Z. X. Zeng, et al. Molecular cytogenetic identification of a newwheat-Thinopyrum substitution line with stripe rust resistance[J]. Euphytica,2011,177:169-177
    [14] L. J. Hu, G. R. Li, Z. X. Zeng, et al. Molecular characterization of a wheat-Thinopyrumponticum partial amphiploid and its derived substitution line for resistance to stripe rust[J]. JAppl Genetics,2011,52:279-285
    [15] P. G. Luo, H. Y. Luo, Z. J. Chang, et al. Characterization and chromosomal location of Pm40in common wheat: a new gene for resistance to powdery mildew derived fromElytrigiaintermedium[J]. Theor Appl Genet,2009,118:1059-1064
    [16] R. L. He, Z. J. Chang, Z. J. Yang, et al. Inheritance and mapping of powdery mildewresistance gene Pm43introgressed from Thinopyrum intermedium into wheat[J]. Theor ApplGenet,2009,118:1173-1180
    [17]贾举庆,杨足君.非洲黑麦与小麦遗传育种[M].北京:中国农业科学技术出版社,2012,9-11
    [18]贾继增, T. E. Miller, S. M. Reader, et al.小麦抗白粉病基因Pm12的RFLP标记[J].中国科学B辑,1993,(6):589-594
    [19] C. Ceoloni, D. Signore, G. Pasquini, et al. Transfer of mildew resistance from Triticumlongissimum into wheat by ph1induced homoeologeous recombination[C]. Proceedings ofthe7th International Wheat Genetics Symposium IPSR, Cambridge, UK,1988,221-226
    [20] S. L. Hasm, C. C. Cermeno, B. Friebe, et al. Transfer of Amigo wheat powdery mildewresistance gene Pm17from T1AL.1RS to the T1BL.1RS wheat-rye translocatedchromosome[J]. Heredity,1995,74:497-501
    [21]王金平,王洪刚,赵瑾,等.小滨麦易位系山农0096抗条锈基因的微卫星标记和染色体定位[J].分子植物育种,2008,3(6):475-479
    [22] Z. J. Cao, Z. Y. Deng, M. N. Wang, et al. Inheritance and molecular mapping of an alienstripe-rust resistance gene from a wheat-Psathyrostachys huashanica translocation line[J].Plant Sci,2008,174:544-549
    [23] M. Brink. Secale cereale L. Record from Protabase. In: Brink M, Belay G (eds) PROTA(Plant Resources of Tropical Africa/Ressources ve′ge′tales de l Afrique Tropicale).Wageningen, Netherlands, http://database.prota.org/search.htm, Feb11,2009
    [24] A. J. Lukaszewski, J. P. Gustafson. Cytogenetics of Triticale[M]. New York: AVI Publishing,1987,41-93
    [25] S.V. Rabinovich. Importance of wheat-rye translocations for breeding modern cultivars ofTriticum aestivum L.[J]. Euphytica,1998,100:323-340
    [26] Z. X. Tang, K. Ross, Z. L. Ren, et al. Wealth of wild species: Role in plant genomeelucidation and improvement-Secale[M]. Berlin: Springer-Verlag Berlin Heidelberg,2011,367-395
    [27]颜济,杨俊良.小麦族生物系统学(第二卷)[M].北京:中国农业出版社,2004,1-454
    [28] F. J. Vences, F. Vaquedro, P. dela Vega. Phylogenetic relationships in Secale (Poaceae): anisozymatic study[J]. Plant Syst Evol,1987,157:33-47
    [29] K. Hammer, K. Khoshbakht. Towards a “red list” for crop plant species[J]. Genet ResourCrop Evol,2005,52(3):249-265
    [30]任正隆, T. Leely, G. R bbelen.小麦和黑麦染色体在小黑麦×小麦杂种的不同世代群体中的传递[J].遗传学报,1991,18(2):161-167
    [31] B. Friebe, J. Jiang, W. J. Raupp, et al. Characterization of wheat-alien translocationsconferring resistance to diseases and pests: current status[J]. Euphytica,1996,91(1):59-87
    [32] M. Heun, B. Friebe. Introgression of powdery mildew resistance from rye into wheat[J].Phytopathology,1990,80:242-245
    [33] G. Melz, R. Schlegel, V. Thiele. Genetic linkage map of rye(Secale cereal L.)[J]. Theor ApplGenet,1992,85:33-45
    [34]薛秀庄,王翔正,许喜堂,等.中国小麦育种研究进展[M].北京:农业出版社,1996,361-366
    [35]刘登才,郑有良,魏育明,等.将秦岭黑麦遗传物质导入普通小麦的研究[J].四川农业大学学报,2002,20:75-83
    [36]张连全,刘登才,颜泽洪,等.远缘杂交早代稳定小麦导入外源DNA片段并发生了DNA重排[J].中国科学C辑,2005,35(4):318-325
    [37] A.S.Wilson. On wheat and rye hybrids[J].Trans Bot Soc Edinburgh,1876,12:286-288.
    [38] W. Rimpau. Kreuzungsprodukte landwirtschaftlicher Kulturpflanzen [J]. Landwirtsh Jahrb,1891,20:335-371.
    [39]鲍文奎.八倍体小黑麦育种与栽培[M].贵阳:贵州人民出版社,1981,1-230
    [40]蒋华仁,戴大庆,孙东发,等.新合成的小麦遗传资源-几种多倍体小簇麦[J].中国农业科学,1992,25(1):89
    [41]王林生,宋鹏.黑麦属植物的遗传学研究与利用[J].生物学通报,2010,45(8):4-7
    [42]符书兰,唐宗祥,任正隆.小麦-黑麦附加系的创制及5R抗白粉病新基因的发现[J].遗传,2011,33(11):1258-1262
    [43] E. R.Sears. The aneuploid of common wheat[J]. Mo Agr Exp Sta Res Bull,1954,572:1-58
    [44] F. J. Zeller, Q. L. Koller. Identification of a4A/7R and7B/4R wheat-rye chromosometranslocation[J]. Theor Appl Genet,1981,59:33-37
    [45]李振声.小麦远缘杂交与染色体工程[M].北京:科学普及出版社,1987,462-496
    [46]李集临,王宁,郭东林.小麦-黑麦染色体代换的研究[J].植物研究,2002,22:220-223
    [47] E. R. Sears. Induced transfer of hairy neck from rye to wheat[J]. Z.Pflanzenzüchtung,1967,57:4-25
    [48] J. C. Cainong, L. E. Zavatsky, M. S. Chen, et al. Wheat-Rye T2BS·2BL-2RL recombinantswith resistance to Hessian Fly (H21)[J]. Crop Sci.,2010,50:920-925
    [49] M. Tsuchida, T. Fukushima, S. Nasuda et al. Dissection of rye chromosome1R in commonwheat[J]. Genes Genet Syst,2008,83:43-53
    [50] Y.P. Gyawali, S. Nasuda, T.R. Endo. A cytological map of the short arm of rye chromosome1R constructed with1R dissection stocks of common wheat and PCR-based markers[J].Cytogenet Genome Res,2010,129:224-233
    [51] B. S. Gill, G. Kimber. The Giemsa C-banded karyotype of rye[J]. Proc Natl Acad Sci USA,1974,71(4):1247-1249
    [52] Y. Mukai, B. Friebe, B. S. Gill. Comparison of C band pattern and in situ hybridization sitesusing high repetitive sequences and total genomic rye DNA probes of Imperial ryechromosomes added to Chinese Spring wheat[J]. Jpn J Genet,1992,67:71-83
    [53]柴守诚,员海燕,王海燕,等.小麦族植物DNA重复序列研究[J].西北植物学报,1999,19(6):17-24
    [54] J. Bedbrook, J. Jones, M. Dell, et a1. A molecular description of telemetric heterochromatinin Secale species[J]. Cell,1980,19:545-560
    [55] P. M. Rogowsky, S. Manning, J. Y. Liu, et a1. The R173family of rye-specific repetitiveDNA sequences: A structural analysis[J]. Genome,1991,34:88-95
    [56] A. V. Vershinin, T. Schwarzacher, J. S. Heslop-Harrison. The large-scale genomicorganization of repetitive DNA families at the telomeres of rye chromosomes[J]. Plant Cell,1995,7(11):1823-1833
    [57] U. Philipp, P.Wehling, G.Wricke. A linkage map of rye[J]. Theor Appl Genet,1994,88:243-248
    [58] A. B rner, V.Korzun. A consensus linkage map of rye (Secale cereale L.) including374RFLPs,24isozymes and15gene loci[J]. Theor Appl Genet,1998,97:1279-1288
    [59] V. Korzun, S. Malyshev, A. V. Voylokov, et al. A genetic map of rye (Secale cereale L.)combining RFLP,isozyme,protein,microsatelliteand gene loci[J]. Theor Appl Genet,2001,102(5):709-717
    [60] B. Hackauf, S. Rudd, J. R. Voort, et al. Comparative mapping of DNA sequences in rye(Secale cerealeL.) in relation to the rice genome[J]. Theor Appl Genet,2009,118:371-384
    [61] P. Milczarski, H. Bolibok-Br goszewska, B. My′sków, et al. A high density consensus mapof rye (Secale cereale L.) based on DArT markers[J]. PloS One,2011,6(12): e28495
    [62] J. Barto, E. Paux, R. Kofler, et al. A first survey of the rye (Secale cereale) genomecomposition through BAC end sequencing of the short arm of chromosome1R[J]. BMC PlantBiol,2008,8(1):95
    [63] R. Mago, W. Spielmeyer, G. J. Lawrence, et al. Identification and mapping of molecularmarkers linked to rust resistance genes located on chromosome1RS of rye using wheat-ryetranslocation lines[J]. Theor Appl Genet,2002,104:1317-1324
    [64] R. Mago, H. Miah, G. J. Lawrence, et al. High-resolution mapping and mutation analysisseparate the rust resistance genes Sr31, Lr26and Yr9on the short arm of rye chromosome1[J]. Theor Appl Genet,2005,112:41-50
    [65] M. Montero, J. Sanz, N. Jouve. Meiotic pairing and alphaamylase phenotype in a5B/5RmTriticum aestivum-Secale montanum translocation line in common wheat. Theor Appl Genet,1986,73:122-128
    [66] Z. J. Yang, G. R. Li, J. Q. Jia, et al. Molecular cytogenetic characterization of wheat-Secaleafricanum amphiploids and derived introgression lines with stripe rust resistance[J].Euphytica,2009,167(2):197-202
    [67] G. S. Khush. Cytogenetic and evolutionary studies in Secale. Ⅱ. Interrelationships in the wildspecies[J]. Evolution,1962,16:484-496
    [68]刘成.多年生簇毛麦基因组新重复序列的分离及其在小麦抗病新种质鉴定中的应用[D].成都:电子科技大学,2010,1-3
    [69] G. R. Li, C. Liu, Z. X. Zeng, et al. Identification of α-gliadin genes in Dasypyrum in relationto evolution and breeding[J]. Euphytica,2009,165:155-163
    [70]胡利君.偃麦草染色质向小麦中转移及小麦-偃麦草抗性新种质的鉴定[D].成都:电子科技大学,2011,1-6
    [71] J. M. Ko, G. S. Do, D. Y. Suh, et al. Identification and chromosomal organization of tworyegenome-specific RAPD products useful as introgression markers in wheat[J]. Genome,2002,45:157-164
    [72] C. Liu, Z. J. Yang, G. R. Li, et al. Isolation of a new repetitive DNA sequence from Secaleafricanum enables targeting of Secale chromatin in wheat background[J]. Euphytica,2008,159(1–2):249-258
    [73] J. Q. Jia, Z. J. Yang, G. R. Li, et al. Isolation and chromosomal distribution of a novelTy1-copia-like sequence from Secale, which enables identification of wheat-Secaleafricanum introgression lines[J]. J Appl Genet,2009,50(1):25-28
    [74] G. Ishikawa, T. Nakamura, T. Ashida, et al. Localization of anchor loci representing fivehundred annotated rice genes to wheat chromosomes using PLUG markers[J]. Theor ApplGenet,2009,118,499-514
    [75] U. M. Quraishi, M. Abrouk, S. Bolot, et al. Genomics in cereals: from genome-wideconserved orthologous set (COS) sequences to candidate genes for trait dissection[J]. FunctIntegr Genomics,2009,9:473-484
    [76]庄丽芳,宋立晓,冯祎高.小麦EST-SSR标记的开发和染色体定位及其在追踪黑麦染色体中的应用[J].作物学报,2008,34(6):926-933
    [77] H. Xu, D. Yin, L. Li, et al. Development and application of EST-based markers specific forchromosome arms of rye (Secale cereale L.)[J]. Cytogenet Genome Res,2012,136(3):220-228
    [78] S. Xue, Z. Zhang, F. Lin, et al. A high-density intervarietal map of the wheat genomeenriched with markers derived from expressed sequence tags[J]. Theor Appl Genet,2008,117:181-189
    [79] M. C. Katto, T. R. Endo, S. Nasuda. A PCR-based marker for targeting small rye segments inwheat background[J]. Genes Genet Syst,2004,79:245-250
    [80]周建平,杨足君,冯娟,等.黑麦特异DNA重复序列的分离与鉴定[J].西南农业学报,2005,18(5):598-602
    [81] A. L. Raybun, B. S. Gill. Isolation of a D-genome species repeated DNA sequence fromAegilpos squarrosa[J]. Plant Mol Biol Rep,1986,4:102-109.
    [82] K. M. Devos, M. D. Atkinson, C. N. Chinoy, et al. Chromosomal rearrangements in the ryegenome relative to that of wheat[J]. Theor Appl Genet,1993,85:673-680
    [83] W. Ramakrishna, J. Ma, P. SanMiguel, et al. Frequent genic rearrangements in two regions ofgrass genomes identified by comparative sequence analysis[J]. Comp Funct Genomics,2002,3(2):165-166.
    [84] D. Chalupska, H. Y. Lee, J. D. Faris, et al. Acc homoeoloci and the evolution of wheatgenomes[J]. Proc Natl Acad Sci USA,2008,105(28):9691-9696
    [85] Z. X. Tang, S. L. Fu, Z. L. Ren, et al. Rapid evolution of simple sequence repeat induced byallopolyploidization[J]. J Mol Evol,2009,69:217-228
    [86] X. F. Ma, P. Fang, J. P. Gustafson. Polyploidization-induced genome variation in Triticale[J].Genome,2004,47:839-848
    [87] X. F. Ma, J. P. Gustafson. Allopolyploidization accommodated genomic sequence changes inTriticale[J]. Ann Bot,2008,101(6):825-832
    [88]任正隆.黑麦种质导入小麦及其在小麦育种中的利用方式[J].中国农业科学,1991,4(3):18-25
    [89] R. Schlegel. Current list of wheats with rye and alien introgression. Available fromhttp://www.rye-genemap. de/rye-introgression,2012
    [90] R.L. Villareal, O. Ba uelos, A. Mujeeb-Kazi, et al. Agronomic performance of chromosome1B and T1BL.1RS near-isolines in the spring bread wheat Seri M82[J]. Euphytica,1998,103(2):195-202
    [91]杨足君.几个外源物种抗白粉病条锈病基因在小麦背景中的表达[D].雅安:四川农业大学,1999,20-80
    [92]郝晨阳.五十年来我国小麦育成品种的遗传多样性演变及西北春麦区核心种质的构建[D].兰州:甘肃农业大学,2004,50-73
    [93] R. Schlegel, V. Korzun. About the origin of1RS.1BL wheat–rye chromosome translocationsfrom Germany[J]. Plant Breed,1997,116(6):537-540
    [94]杨足君,任正隆.导入小麦材料85-DH5304的黑麦染色质的遗传特性研究[J].四川农业大学学报,2000,18(2):109-112
    [95] P. G. Luo, H.Y. Zhang, K. Shu, et al. Diversity of stripe rust (Pucciniastriiformis f. sp. tritici)resistance in wheat genotype with1RS chromosomal translocations from different rye lines[J].Can J Plant Pathol,2008,30:254-259
    [96] A. Alkhimova, J. Heslop-harrison, A. Shchapova, et al. Rye chromosome variability in wheat-rye addition and substitution lines[J]. Chromosome Res,1999,7:205-212
    [97] R. M. D. Koebner,1995. Generation of PCR-based markers for the detection of rye chromatinin a wheat background[J]. Theor Appl Genet,90(5):740-745
    [98] M. Yamamoto, Y. Mukai. High-resolution physical mapping of the secalin-1locus of rye onextended DNA fibers[J]. Cytogenet Genome Res,2005,109(1-3):79-82
    [99] H. S. Bariana, R. A. McIntosh. Cytogenetic studies in wheat. XV. Location of rust resistancegenes in VPM1and their genetic linkage with other disease resistance genes in chromosome2A[J]. Genome,1993,36:476-482
    [100] J. H. Peng, H. Zadeh, G. R. Lazo, et al. Chromosome bin map of expressed sequence tags inhomoeologous group1of hexaploid wheat and homoeology with rice and Arabidopsis[J].Genetics,2004,68(2):609-623
    [101] T. H. Ren, Z. J. Yang, B. J. Yan, et al. Development and characterization of a new1BL.1RStranslocation line with resistance to stripe rust and powdery mildew of wheat[J]. Euphytica,2009,169:207-213
    [102] S. R. Roux, B. Hackauf, A. Linz, et al. Leaf-rust resistance in rye (Secale cereale L.).2.Genetic analysis and mapping of resistance genes Pr3, Pr4, and Pr5[J]. Theor Appl Genet,2004,110(1):192-201
    [103] Z. X. Tang, S. L. Fu, Z. L. Ren, et al. Diversity and evolution of four dispersed repetitiveDNA sequences in the genus Secale[J]. Genome,2011,54(4):285-300
    [104] T. H. Ren, F.Chen, Y. T. Zou, et al. Evolutionary trends of microsatellites during thespeciation process and phylogenetic relationships within the genus Secale[J]. Genome,2011,54(4):316-326
    [105] M. D. Bennett, J. P. Gustafson, J. B. Smith. Variation in nuclear DNA in the genus Secale[J].Chromosoma,1977,61:149-176
    [106] T. Eilam, Y. Anikster, E. Millet, et al. Genome size and genome evolution in diploid Triticeaespecies[J]. Genome,2007,50(11):1029-1037
    [107] J. P. Zhou, Z. J. Yang, G. R. Li, et al. Diversified chromosomal distribution of tandemlyrepeated sequences revealed evolutionary trends in Secale (Poaceae)[J]. Plant Syst Evol,2010,287(1-2):49-56
    [108] A. Cuadrado, N. Jouve. Evolutionary trends of different repetitive DNA sequences duringspeciation in the genus Secale[J]. J Hered,2002,93(5):339-345
    [109] A. Pont, F. Murat, C. Confolent, et al. RNA-seq in grain unveils fate of neo-andpaleopolyploidization events in bread wheat (Triticum aestivum L.)[J]. Genome Biol,2011,12: R119
    [110] A. J. Lukaszewski, J. P. Gustafson. Translocations and modifications of chromosomes intriticale×wheat hybrids[J]. Theor Appl Genet,1983,64:239-248
    [111] D. G. An, L. H. Li, J. M. Li, et al. Introgression of resistance to powdery mildew conferred bychromosome2R by crossing wheat Nullisomic2D with rye[J]. J Integr Plant Biol,2006,48:838-847
    [112] L. Zhuang, L. Sun, A. Li, et al. Identification and development of diagnostic markers for apowdery mildew resistance gene on chromosome2R of Chinese rye cultivarJingzhouheimai[J]. Mol Breeding,2011,27:455-465
    [113] B. Friebe, J. H. Hatchett, R. G. Sears, et al. Transfer of Hessian fly resistance from Chauponrye to hexaploid wheat via a2BS/2RL wheat-rye chromosome translocation[J]. Theor ApplGenet,1990,79:385-389
    [114] M. S. Brunell, A. J. Lukaszewski, R. Whitkus Development of arm specific RAPD markersfor rye chromosome2R in wheat[J]. Crop Sci,1999,39:1702-1706
    [115] K. K. Nkongolo, A. Comeau. Registration of a genetic stock, a wheat-rye substitution linetolerant to the Barley Yellow Dwarf Virus[J]. Crop Sci,1998,38:1413-1414
    [116] A. K. Fritz, R. G. Sears. The effect of the Hamlet (2BS/2RL) translocation on yieldcomponents of hard red winter wheat[C]. Agronomy Abstracts, ASA, Madison, WI,1991,94
    [117] Z. J. Cheng, M. Murata. Loss of chromosomes2R and5RS in octoploid triticale selected foragronomic traits[J]. Genes Gen Syst,2002,77:23-29
    [118] C. L. McIntyre, S. Pereira, L. B. Moran, et al. New Secale cereale (rye) DNA derivatives forthe detection of rye chromosome segments in wheat[J]. Genome,1990,33,635-640
    [119] T. Lee, M. Hong, J. Johnson, et al. Development and functional assessment of EST-derived2RL-specific markers for2BS.2RL translocations[J]. Theor Appl Genet,2009,119:663-673
    [120] T. Schwarzacher, A. R. Leitch, M. D. Bennett, et al. In situ localization of parental genomesin a wide hybrid[J]. Ann Bot,1989,64:315-324
    [121] O. Silkova, O. Dobrovolskaya, N. Dubovets, et al. Production of wheat–rye substitution linesand identification of chromosome composition of karyotypes using C-banding, GISH, andSSR markers[J]. Russ J Gen,2006,42:645-653
    [122]薛秀庄,吉万全,赵会贤,等.小麦染色体工程与育种[M].石家庄:河北科学技术出版社,1993,1-172
    [123]任正隆,张怀琼.小麦-黑麦染色体小片段易位的诱导[J].中国科学C辑,1997,27(3):258-263
    [124] Y. W. Seo, C. S. Jang, J. W. Johnson. Development of AFLP and STS markers for identifyingwheat-rye translocations possessing2RL[J]. Euphytica,2001,121:279-287
    [125] M. P. Lei, G.R. Li, S. F. Zhang, et al. Molecular Cytogenetic Characterization of a newwheat-Secale africanum2Ra(2D) substitution line for resistant to stripe rust[J]. J Genet,2011,90(2):283-287
    [126] C. Liu, G. R. Li, S. K. Sehgal, et al. Genome relationships in the genus Dasypyrum: evidencefrom molecular phylogenetic analysis and in situ hybridization[J]. Plant Syst Evol,2010,288:149-156
    [127] S. C. Hysing, S. L. K. Hsam, R. P. Singh, et al. Agronomic performance and multiple diseaseresistance in T2BS.2RL wheat-rye translocation lines[J]. Crop Sci,2007,47:254-260
    [128] E. Szakács, M. Molnár-Láng. Molecular cytogenetic evaluation of chromosome instability inTriticum aestivum–Secale cereale disomic addition lines[J]. J Appl Genet,2010,51(2):149-152
    [129]张文俊, J. W. Snape.分子标记技术定位黑麦6R染色体上的抗小麦白粉病基因[J].科学通报,1995,40(24):2274-2276
    [130]张文俊,瞿绍洪,王献平,等.黑麦6R抗白粉病基因向小麦的渗进与鉴定[J].遗传学报,1999,26(5):563-570
    [131]符书兰,唐宗祥,张怀琼,等.含有抗白粉病基因的黑麦染色体小片段向小麦的转移[J].遗传,2006,28(11):1396-1400
    [132]张相岐,王献平,景建康,等.一个小黑麦附加一双代换花粉株系(M16)的创制与鉴定[J].遗传学报,1999,26(4):391-396
    [133] B. Friebe, J. H. Hatchett, B. S. Gill, et al. Transfer of Hessian fly resistance from rye to wheatvia radiation-induced terminal and intercalary chromosomal translocations[J]. Theor ApplGenet,1991,83(1):33-40
    [134] I. S. Dundas, F. Deirdre, C. Donna, et al. Deletion mapping of a nematode resistance gene onrye chromosome6R in wheat[J]. Crop Sci,2001,41(6):1771-1778
    [135] D. Boros, A. J. Lukaszewski, A. Aniol, et al. Chromosome location of genes controlling thecontent of dietary fibre and arabinoxylans in rye[J]. Euphytica,2002,128(1):1-8
    [136] F. R. Murray, R. Appels, J. H. Skerritt. A gene from the Sec2(Gli-R2) locus of a wheat2RS.2BL chromosomal translocation line[J]. Theor Appl Genet,2001,102:431-439
    [137] Q. J. Chen, Z. W. Yuan, L. Q. Zhang, et al. Molecular characterization and comparativeanalysis of four new genes from Sec2locus encoding75K g-secalins of rye species[J]. JCereal Sci,2008,48:111-116
    [138] M. A. Larkin, G. Blackshields, N. P. Brown, et al. Clustal W and Clustal X version2.0[J].Bioinformatics,2007,23:2947-2948
    [139]陈毅万,陈其皎,张连全,等.秦岭黑麦75K Y-secalin亚基编码基因的克隆及序列分析植物遗传[J].资源学报,2008,9(4):433-438
    [140] K. Tamura, J. Dudley, M. Nei, et al. MEGA4: Molecular Evolutionary Genetics Analysis(MEGA) software version4.0[J]. Mol Biol Evol,2007,24:1596-159
    [141] J. Felsenstein. Confidence limits on phylogenies: an approach using the bootstrap[J].Evolution,1985,39:783-791
    [142]盛宝钦.用反应型记载小麦白粉病[J].植物保护,1988,1:49
    [143] C. Alonso-Blanco, P. G. Goicoechea, A. Roca, et al. Genetic linkage between cytologicalmarkers and the seed storage protein loci Sec2(Gli-R2) and Sec3(Glu-R1) in rye[J]. TheorAppl Genet,1993,87:321-327
    [144] S. F. Altschul, W. Gish, W. Miller, et al. Basic local alignment search tool[J]. J Mol Biol,1990,215:403-410
    [145]张怀琼,任正隆.黑麦抗条锈病基因对小麦高产品种绵阳11的直接转移[J].四川农业大学学报,2001,19(3):193-196
    [146]李兴锋,刘树兵,宋振巧,等.小黑麦×小滨麦后代1RS·1BL易位系的选育和鉴定[J].遗传,2004,26(4):481-485
    [147]刘成,杨足君,冯娟,等.黑麦6R染色体特异性PCR标记的建立[J].麦类作物学报,2007,27(1):35-40
    [148] B. Saal, G. Wricke. Development of simple sequence repeat markers in rye (Secale cerealeL.)[J]. Genome,1999,42(5):964-972
    [149]唐宗祥,符书兰,任正隆,等.黑麦端部特异重复序列pSc200在新合成的不同小麦-黑麦双二倍体中的变异[J].中国农业科学,2008,41(11):3477-3481
    [150] J. Q. Jia, G. R. Li, C. Liu, et al. Sequence variations of PDHA1gene in Triticeae speciesallow for identifying wheat-alien introgression lines[J]. Front Agric China,2010,4(2):137-144
    [151] L. J. Hu, C. Liu, Z. X. Zeng, et al. Genomic rearrangement between wheat and Thinopyrumelongatum revealed by mapped functional molecular markers[J]. Genes&Genomics,2012,34(1):67-75
    [152] J. P. Gustafson, E. Butler, C. L. Mcintyre. Physical mapping of a low-copy DNA sequence inrye (Secale cereale L.)[J]. Proc Natl Acad Sci USA,1990,87:1899-1902
    [153] P. R. Shewry, S. Parmar, T. E. Miller. Chromosomal location of the structural genes for the Mr75,000γ-secalins in Secale montanum Guss: Evidence for a translocation involvingchromosomes2R and6R in cultivated rye (Secale cereale L.)[J]. Heredity,1985,54:381-383
    [154] G. A. Robin, B. Monica, A. B.Terence. Evolution of the high molecular weight gIutenin lociof the A, B, D, and G genomee of wheat[J]. Genome,1999,42:296-307
    [155]杨金华,于亚雄,刘晡,等.云南铁壳麦高分子量麦符蛋白亚基组成及其遗传多样性分析[J].植物遗传资源学报,2007,8(3):275-279

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700