用户名: 密码: 验证码:
体育馆用木质地板结构与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
体育馆用木质地板(简称:体育木地板)是一种具有独特的运动功能、保护功能和技术功能,符合生物力学特性的专用地面工程复合材料,是体育馆设施的重要组成部分。但是,国内外体育木地板的研究起步较晚、基础薄弱,对于体育木地板结构、材料、制造技术、产品性能等方面缺乏系统的研究,特别是运动生化指标与体育木地板结构相关性等研究尚未见报导。因此,在中国竞技体育和体育馆建设高速发展的情况下,开展体育木地板的结构与性能研究具有非常重要的理论意义和实用价值。
     本论文采用的三种结构形式分别为由面层地板、毛地板层和双龙骨层等材料组合的双层结构(结构Ⅰ)、由面层地板、毛地板层和龙骨层等材料组合的单层结构(结构Ⅱ)及由面层地板和毛地板层组合的无龙骨结构(结构Ⅲ)。
     本文在系统分析体育木地板国内外现状和发展趋势的基础上,按用途、结构和材料对体育木地板进行了分类,对国内外现有的体育木地板主要结构进行分析对比,以三种典型结构和新型材料为研究对象,针对体育木地板特有的三大功能及六项性能指标,重点研究了体育木地板结构与性能,探讨了表面防滑性能与表面粗糙度、涂料种类和涂层厚度之间的关系;以正交试验设计及回归分析、方差分析等方法,对三种单元结构特别是高等级竞赛用双层结构(结构Ⅰ)体育木地板的结构性能进行系统研究,以主持制定的GB/T20239-2006《体育馆用木质地板》对整体结构的体育木地板进行研究与验证;并研究了体育木地板整体结构尺寸稳定性;采用自行设计运动生化指标试验方法对体育木地板结构与运动生化指标的关系开展了研究。
     主要研究成果:
     (1)体育木地板表面性能主要评价指标是滑动摩擦系数S_p,在砂纸目数、涂料种类和涂层厚度的影响因素中,砂纸目数的影响最大的,涂料种类次之。砂纸目数与素板表面粗糙度( R_a、R_z)成负相关,表面粗糙度( R_a、R_z)与S_p成正相关。
     (2)采用日本联合涂料、120目砂带和涂层厚度240μm或UV漆、240目砂带和涂层厚度140μm时,体育木地板的S_p符合体育木地板国家标准性能指标中关于S_p的要求。
     (3)体育木地板的结构形式对整体结构性能有重要影响,采用冲击吸收率Fr、标准垂直变形V_d和球的反弹率B_r性能指标评价三种体育木地板单元结构的性能,其性能优劣的综合排序:结构Ⅰ>结构Ⅱ>结构Ⅲ。
     (4)双层龙骨结构(结构Ⅰ)的体育木地板,分别建立了龙骨的截面尺寸和间距与F_r、V_d、B_r性能指标之间的回归方程。龙骨间距对F_r、龙骨厚度与龙骨间距的交互作用对Vd的影响均在0.01水平上显著;龙骨间距是B_r的主要影响因素。
     (5)当龙骨的间距500mm×500mm、截面尺寸50mm×30mm时F_r最大;龙骨间距500mm×500mm,龙骨截面尺寸分别为50mm×50mm和70mm×30mm时的V_d值较高;龙骨间距300mm×300mm、截面尺寸50mm×30mm时B_r最大。对结构Ⅰ的F_r、V_d和B_r性能指标综合分析表明,间距500mm×500mm、截面尺寸50mm×30mm为最优龙骨设计参数。
     (6)采用相同材料和结构的体育木地板,整体结构性能优于单元结构,双层结构的综合性能指标优于单层结构和无龙骨结构。采用胶合板为毛地板、双层龙骨(LVL)的结构实木复合体育木地板,按照GB/T20239-2006和DIN18032.2-2001,对不同整体结构和结构层材料的体育木地板性能研究和验证: F_r为55.5%、V_d为2.36mm、B_r为93.9%,其结构性能均超过国家标准中规定的竞赛用体育木地板要求;单层结构的F_r为51.8%、V_d为1.57mm、B_r为95.4%。
     (7)对三种结构体育木地板在设定的三种温湿度条件下分别进行连续8周试验,其中温度为20℃、相对温度为75%的条件下体育木地板尺寸变化率和翘曲度最小,结构稳定性最优。
     (8)三种结构的尺寸变化率和翘曲度的综合比较:结构Ⅰ<结构Ⅱ<结构Ⅲ,结构Ⅰ具有非常优良的结构尺寸稳定性。三种结构在设定的环境温湿度条件下的连续试验,其翘曲变形的变化规律,结构Ⅰ、结构Ⅱ和结构Ⅲ分别从第4周、第6周和第7周开始趋于稳定。
     (9)体育木地板的运动生化指标以血乳酸BLA、肌电图EMG表征。体育木地板的结构对运动员BLA生化指标变化有显著的影响,BLA值随着运动时间的延长和强度的增加而增大。结构Ⅰ的BLA生化指标较结构Ⅱ和结构Ⅲ低,且增长率较为平缓。
     (10)体育木地板结构不同,运动员的肌电EMG生化指标(腓肠肌外侧头收缩时间、腓肠肌外侧头积分肌电IEMG、腓肠肌外侧头中位频率MF和平均功率频率MPF)差异显著。结构Ⅰ的腓肠肌外侧头收缩时间最短,即运动员完成相同的跨越运动所需时间短;运动员的腓肠肌外侧头的IEMG值始终低于结构Ⅱ和结构Ⅲ;结构Ⅰ腓肠肌外侧头MF和MPF低于结构Ⅱ和结构Ⅲ,即在相同的运动负荷情况下,结构Ⅰ上运动相对于结构Ⅱ和结构Ⅲ负荷小。
     本论文创新点:
     (1)在国内首次系统地开展了体育木地板的结构,表面性能、结构性能和结构尺寸稳定性的研究,提出了体育木地板的性能指标和测试方法。
     (2)利用具有国际先进水平的测试仪器和设备研究了体育木地板的S_p、F_r、V_d和B_r等性能指标,建立了体育木地板结构与性能指标间的数学模型。
     (3)在国内外首次将BLA和EMG运动生化指标引入体育木地板的性能研究,设计了运动生化指标和体育木地板结构性能关系的研究方法,提出了体育木地板结构与运动员生化指标的相关性。
     (4)首次将LVL等新型的复合材料用于体育木地板的结构设计,提高了体育木地板的结构性能,为新型木质复合材料在体育木地板的应用提供了依据,扩大了体育木地板结构用材料的来源。
Wooden flooring in gymnasium(WFG),which has particular reqirements on sports-function and protective-function as well as technical-function, is an engineered flooring composite conforming to biomechanics. It is an important component parts of gymnasium facility. However, research on WFG started late and related basic work was less accumulated in the world. The systematic study on structure, material, manufacturing technology, products property of WFG, on the correlation between sports biochemistry index and wooden flrooring structure were rarely reported. Therfore, with rapidly developing situation of Chinese sports and gymnasium buildings, structure and property research on WFG is great worth of theoretical and practical significance in China.
     Three kinds of structure form are adopted in this thesis.There respectively are double-layer structure made of surface layer floor、carcass flooring layer and double keel layer etc. material (structureⅠ), monolayer structure made of surface layer floor、carcass flooring layer and keel layer etc. material (structureⅡ) and no-keel structure made of surface layer floor and carcass flooring (structureⅢ).
     On the basic of systemic analysis on developing status and trend in domestic and abroad, WFG was sorted by purpose, structure and material in the study. Through analyzing WFG structure comparing with mainly relative products in the world, three typical strutures and a new material were selected as the investigated objects in the study. Aming at particular three functions and six property indexes of WFG, structures and performances were studied. The correlation between prevention of slipperiness and surface roughness was conducted; meanwhile correlation between coating types and thickness was also investigated. Based on orthogonal experiment, regression analysis and analysis of variance methods, the structural performance of three patterns of modular construction including double layers WFG for high-class events( PatternⅠ) were studied, and entired flooring construction of WFG was investigated and verified according to the standard of Wooden Flooring in Gymnasium(GB/T20239-2006). Dimension stability of entire construction of WFG was also studied. The correlation between structure of WFG and sports biochemistry index was investigated in accordance with the testing method designed by users.
     The main research achievements:
     (1) The important index for evaluating WFG surface property was sliding coefficient(Sp).Through comparing with three factors including grit number, types of coating and coating thickness, it can be found that grid number had maximal effect on the surface property, and types of coating taken the secend place. The negative correlation existed between grid number and surface roughness( R_a、R_z), as well as positive correlation between R_a、R_z and Sp.
     (2) The Sp of WFG, whether applied by Japan unite coating, grit-120 abrasive belt and 240μmcoating thickness or UV_painting, grit-240 abrasive belt and 140μmcoating thickness, can meet reqiurement of Wooden Flooring in Gymnasium(GB/T20239-2006).
     (3) The structural patterns of WFG had great influence on entired flooring construction. The force reduction( F_r ), vertical deformation( V_d)and ball rebound( B_r)indexes were adopted to evaluate performance of three patterns of WFG modular construction. The sequence of performance from good, better to best level was PatternⅢ, PatternⅡ, PatternⅠ, respectively.
     (4) For the double-layer load distribution strip of WFG ( PatternⅠ), regression equation were set up between cross section area and span of load distribution strip as well as property indexes of F_r、V_d、B_r.The interaction between span of load distribution strip and F_r , thickness and span of load distribution strip can be found significantly influence at 0.01 level by regression analysis. The span of load distribution strip was a major influencing factor to B_r.
     (5) F_r value was maximum under 500mm×500mm of X-Y span of load distribution strip and 50 mm×30 mm of cross section area. V_dvalue was maximum under 500mm×500mm of X-Y span of load distribution strip and 50mm×50mm or 70mm×30mm of cross section area. B_r value was maximum under 300mm×300mm of X-Y span of load distribution strip and 50mm×30mm of cross section area. The comprehensive analysis on performance index of F_r , V_dand B_r showed that optimized designing parameters were 500mm×500mm of X-Y span of load distribution strip and 50mm×3mm of cross section area.
     (6) Under the same material and structure of WFG, performance of entire construction was better than modular construction, and integrated performance of double-layer had advantage over single layer and non load distribution strip structure. WFG which was composed of load distribution panel with plywood and double-layer load distribution strip with LVL was investigated and verified according to standard of GB/T20239-2006 and DIN18032.2-2001. The result showed that F_r , V_d and B_r value was 55.5%, 2.36mm and 93.9%,respectively. The structural performance exceeded requirement of Chinese national standard for WFG. F_r , V_d and B_r value of WFG which was composed of single layer structure was 51.8%, 1.57mm and 95.4%, respectively.
     (7) The dimension stability of three typical patterns of WFG was tested for 8 weeks under three grades of temperature and humidity condition. The result showed that dimension changing and warping rate of WFG was minimum under 20℃and 75%RH condition , and structural stability was excellent.
     (8) A comparison between dimension changing and warping rate of three typical patterns of WFG, PatternⅠwas minimum, PatternⅢwas maximun and PatternⅡwas between them. PatternⅠhad excellent dimension stability. Three typical patterns were continually tested under selected temperature and humidity condition, warping changing rules showed stabilizing phenomena of PatternⅠ, PatternⅡand PatternⅢhappened after fourth week, sixth week and seventh week, respectively.
     (9) WFG sports biochemistry index was generally represented by blood lactate(BLA)and electromyogram (EMG). The structure of WFG had a significant effect on sports biochemistry index changing for sportsmen, BLA value increased with sport time prolonging and intensity increasing. The BLA value of PatternⅠwas less than PatternⅡand PatternⅢ, and also had lower rate of increase in three of them.
     (10) Different structure of WFG resulted in obvious difference on electromyogram (EMG) of biochemistry index for sportsmen, which including shrinking time, integral electromyogram (IEMG), mid-frequency(MF) and average power-frequency(MPF) of lateral head of gastrocnemius. Shrinking time of lateral head of gastrocnemius for PatternⅠwas shortest showing sportsmen need shorter time to do same jump action. IEMG of lateral head of gastrocnemius of PatternⅠw as always lower than that of PatternⅡand PatternⅢ,and mid-frequency(MF) and average power-frequency(MPF) of PatternⅠwas also lower than that of PatternⅡand PatternⅢ,namely indicated that sports burden on PatternⅠWFG was more gentle than PatternⅡand PatternⅢunder same sports burden.
     The innovating points in the paper:
     (1) WFG, which included assembled pattern, surface property, structure performance and dimension stability, were investigated for the first time in China. Performance index and testing methods were also put forward in the paper.
     (2) The advanced instrument and equipment were used for studying WFG on S_p、F_r、V_dand B_rindex, and mathematics model of correlation between WFG structure and performance was set up in the paper.
     (3) The BLA and EMG biochemistry index was firstly inducted into WFG research field in the world. The method was developed for revealing correlation between sports biochemistry index and structure of WFG, and correlativity between both was represented.
     (4) The structural design of WFG was firstly used by LVL material which improved phsical and mechanical performance. It provided scitific data supporting for new materials applied in making WFG, and also extended material sources for WFG purpose.
引文
[1]王恺.木材工业实用大全·木制品卷[M].北京.中国林业出版社,2003
    [2] Reed Michael Floor for Indoor Sports[M].England by Belmont:Sports England,1999.(7):1-19
    [3]程序,杨永福,王宏棣.体育馆用木地板材料及选用[J].木材加工机械,2006.(6):33,49-50
    [4] GB/T20239-2006.《体育馆用木质地板》[S]
    [5]谭华.体育史[M].北京:高等教育出版社,2005:10-26
    [6]湖南省基础教育教学研究室.世界体育发展史[EB/OL].湖南省基础教育教学研究网,2004
    [7]田友龄.体育史简史纲要[J].山西体育学院学报,1990.(1):65-73
    [8]陈金盈.奥林匹克运动与中国体育及其社会文化背景的冲突与融合[EB/OL].运动神网,2004
    [9]王志辉.东方哈佛引进体育1840年圣约翰大学开起校运会[N].城市快报,2005
    [10]世界篮球运动的起源与发展状概况[EB/OL].美国旅游网
    [11]孙民治,杜俐,李颖川等.对篮球运动概念、特点、演进、发展、趋势和我国篮球运动发展史实的新探索[J].北京体育师范学院学报,1994,6(2)
    [12]张正.国际篮联快75岁生日6月18日在日内瓦举行[EB/OL].中体在线-篮球报,2007
    [13]候莹.他们与圣约翰[N].经济观察报,2006
    [14]吕斌.2005年我国木地板行业现状与发展趋势[J].人造板通讯,2006.20(2):38-40
    [15]彭燮.国产体育木地板期待2008的检阅[EB/OL].中国质量新闻网,2005
    [16] DIN18032.2-2001:2001, Halls for gymnastics, games and multi-purpose use, Part2: Sports floors, requirements, testing[S]. Beuth Verlag Gmbh, implemented from 2001-04
    [17]第五次全国体育场地普查办公室.第五次全国体育场地普查数据公报特刊[R], 2005
    [18]唐嘉.体育木地板在中国[J].建材工业信息,2003.(6)
    [19]钱炜.木地板诱人蛋糕国内厂商能否吃下[N].科技日报,2005
    [20]李志石,梁林.学校体育设施[M].北京体育大学出版社,2004.9:142-153
    [21]徐济成.有了美国地板,NBA中国赛还缺什么[J].中国新闻周刊,2004.10:63
    [22]叶良正.体育赛场木地板的制作工艺要求[J].安徽建筑,2000.(6):9
    [23]宋立山.地板基础造就运动高度[J].建筑创作,2005.(11):158
    [24]王宏棣,黄海兵,李蕾.体育馆木地板的功能与检测[J].林业科技,2006.31(4):50-51
    [25]许惠玲.体育馆内安装使用雍克木地板应注意的几个问题[J].上海体育学院学报,1994.18(3):97
    [26]崔荣清.体育馆木地板的腐蚀及防治[J].沈阳体育学院学报,1997.(1):79-80
    [27]王月耀.CN2367676.新型离合式体育馆专用地板[P].中华人民共和国家知识产权局,2000.(3)
    [28]宋立山.CN2541543.折装式体育地板[P].中华人民共和国国家知识产权局,2003.(3)
    [29]戴蘋蘋.CN2611477.一种体育专用浮悬式塑料地板[P].中华人民共和国国家知识产权局,2004.(4)
    [30]戴蘋蘋.CN2619998.一种带搁栅的体育专用浮悬式弹性地板[P].中华人民共和国国家知识产权局,2004.(6)
    [31]雷爱新.CN2657732.悬浮拼装式地板[P].中华人民共和国国家知识产权局,2004.(11)
    [32]周景斌,赵朝,李军科.体育馆用木地板的结构与铺装工艺[J].陕西林业科技,2004,(2):56-59
    [33]李刚.体育馆竞赛木地板的质量控制[J].工程设计与研究,2005.(2):16-27
    [34]陶于.体育馆地板材料趋向“美”[J].文体用品与科技,2005(3):48-49
    [35]翁盛光.我校中国田径协会人工合成面层检测试验室成功加入ISSS[EB/OL].华东理工大学体育运动材料研究应用推广中心网,2006
    [36]何金存.祝贺“北京·中体建科国际运动地面科学检测中心”成立[EB/OL].国家林业局原木锯材产品质量监督检验站网,2006
    [37] Debra A. Stephenson.United States Patent 4682459: Flooring System[P]. United States Patent and Trademark Office, Published on 1987-07-28
    [38]龚步智.双重型运动地板[J].施工技术,1989.(2):24
    [39] Michael W. Niese. United States Patent 4890434: Hardwood Floor System[P]. United States Patent and Trademark Office, Published on 1990-01-02
    [40] Floyd Shelton, United States Patent 5299401: Athletic Flooring System[P]. United States Patent and Trademark Office, Published on 1994-04-05
    [41] Mason Gordon. United States Patent 6488600 B1: Sports Floor Structure[P]. United States Patent and Trademark Office, Published on 2002-12-03
    [42] Robert X. Chambers. United States Patent 6688065 B2: Flooring Construction[P]. United States Patent and Trademark Office, Published on 2004-02-10
    [43]廖强.全新的运动地板[J].学校体育装备,2006.(9):73
    [44]郭吉强.血乳酸对运动强度的影响.[J].体育学刊,1997.(2):63-64
    [45]赵士筠,王仲山.血乳酸值测定的适宜条件[J].天津体育学院学报,1986.(2):15-16
    [46]李裕和,林文弢,叶华林.篮球运动两种负荷与血乳酸心率变化的比较研究[J].广州体育学院学报,1992,21(2):29-34
    [47]林文弢.运动后血乳酸含量与脲酸碱度相关关系初探[J],广州体育学院学报,1985,(1):21
    [48]张惠春,李红武.“血乳酸”测试法在运动训练中的应用[J].上海体育学院学报1995.19(12):99-101
    [49]啜鹏斌.短道速滑运动员陆上有关训练手段血乳酸测试与分析[J].哈尔滨体育学院学报,2000.18(1):63-65
    [50]赵国敬,李建文,王茂叶,等.血液氧自由基、血乳酸、主观用力感觉、心率与运动强度相关性的研究[J].沈阳体育学院学报.2004.23(3)
    [51]王键,金小刚.表面肌电信号分析及其应用技术研究[J].中国体育科技,2000.36.(8):26-28
    [52]杨志家,赵光宙.肌电信号的相空间分析[J].生物物理学报,1998.14(2):257-261
    [53]王键,刘家海.肌肉疲劳的表面肌电信号特征研究与展望[J].中国体育科技,2003.39(2):4-7.
    [54] Duchen E J, Hogrel J Y.A Model of EMG Generation[J].IEEE Transactions on Biomedical Engineering 2000.47(2):192-201
    [55]王键,方红光,杨红春.运动性肌肉疲劳的表面肌电比线性信号特征[J].体育科学,2005.25(5):39-64
    [56] Klein Ebu Stegeman D F Mund DA,et al. Influence of Motor Neuron Firing Synchronization on sEMG Characteristics in Depen-dence of Electrode Position[J].J Appl Physiol ,2001.91: 1588-1599
    [57] Klein Ebu ,Blok J H,Oostenv Eld R,et al.Magnetic Stimulation Induced Modulations of Motor Unit Firings Extracted from Multi 2 Channel Surface EMG[J]. Muscle Nerva,2000.23:1000-1015
    [58] Ra Noldia,Melchorrig.CARUSO IA Method for Positioning Electrodes during Surface EMG Recordings in Lower Limb Muscle[J].J. Neurocsience M ethods 2004.13(4):37-43
    [59] Trop IW,Contega Comou.The Effect of Temperature on Conduction Velocity in Human M uscle Fibers[J]. J.Electrom Yogr Kinesiol,1991.l:281-287
    [60] Kazum imasuda,Tada Shima Suda,Tsu Gu Takesado Yama,et al,Changes in Surface EMG Parameters during Static and Dynamic Fatiguing Contractions[J].J Electromyography and Kinesiology,1999.9:39-46
    [61]王键.sEMG信号分析及其应用研究进展[J].体育科学,2000, 20(4):56-60
    [62]沈定珠.关于运动疲劳机因的初步探讨[J].绍兴文理学院学报,1995.15(4):99-100:98
    [63]杨丹.长负荷锈发肱二头肌疲劳过程中sEMG变化[J].体育科学,2000.(2):27-35
    [64] EN1517,Surfaces for Sports Areas– Determination of Resistance to Impact[S]. European Committee for Standardization, implemented from 1999-12
    [65] EN14808, Surfaces for Sports Areas– Determination of Shock Absorption[S]. European Committee for Standardization, implemented from 2005-08
    [66] EN12235, Surfaces for Sports Areas– Determination of Vertical Ball Behaviour[S]. European Committee for Standardization, implemented from 2004-07
    [67] Floyd Shelton, United States Patent 5299401: Athletic Flooring System[P]. United States Patent and Trademark Office, Published on 1994-04-05
    [68]孙大元.田径场地合成地面的测试[J].田径,2002.(2):55-56
    [69]颜绍泸,周西宽等.体育运动史[M].北京:人民体育出版社,1990:第三章
    [70]国家体育总局《全民健身计划纲要》1995.6
    [71]王宏棣.我国体育馆用木质地板的现状与发展趋势[J].林业机械与木工设备,2006.34(7):7-9
    [72]赵牧.奥运金牌掩盖不了国民健康危机[EB/OL].2004
    [73]于振峰,叶伟等.对我国体育消费现状的研究[J].体育科学,1999.(3):36-37
    [74] 2003年中国木地板行业与市场研究报告.体育木地板在中国的发展前景[R],2003
    [75]黄瑞更.中国的体育木地板怎么了?[EB/OL].体育资源网,2005
    [76]高延继,曲雁.地面防滑材料与防滑技术[J].新型建筑材料,2001,7(2):32-33;[60] D2047.美国ASTM标准[S]
    [77]张振鸿.如何提高混涂油漆的表面质量[J].人造板通讯, 2002,(7):15
    [78]王晓明.FW-1型防滑耐磨涂料[J].化学建材,1991.2:12-14
    [79]周健,文亚平.防滑涂料[J],涂料工业,1993,6:1-7
    [80]董育华,马克骏等.CK-2耐磨树脂提高实木地板表面耐磨性[J].木材工业,2000,14(3):33-34
    [81]危民喜.环氧树脂在防滑地坪上的施工技术[J],粘接,2001,22(5):43-44
    [82]张学卿,张卫国,李旭朝.防滑涂料的异性状况[J],现代涂料与涂装,2002,(3):10-12
    [83]郑劲东.国外舰载飞机甲板用防滑涂层的研究与进展[J],舰船科学技术,2003.25(5):23-26
    [84]杨振乾,傅乐峰,冯中军.新型运动木地板涂层的研究与应用[J].化学建材, 2005,25(5):15-16
    [85]孙祖信,张亚东等.一种不含防滑粒料的甲板漆[J].上海涂料,2006.15(8):1-4
    [86] MIL-C-24667A (NAVI),Coating system,mon-skid,for roll or spray application,14,Aug 1992
    [87] MIL-C-23003A (SH),Deck covering compound,nonslip,orllable,13,April 1999
    [88] ASTM D2047-04 Standard Test Method for Static Coefficient of Friction of Polish-Coated Flooring Surfaces as Measured by the James Machine.
    [89]王庆全.木家具表面粗糙度和砂磨质量控制分析[J].木材工业,2007,21(2):26-28
    [90]甘新基,孟庆午.木材锯切表面粗糙度的测量[J].木材机械加工,2004.(3):28-29
    [91]江泽慧,于文吉,叶克林.探针法测量与分析竹材表面粗糙度[J].木材工业,2001.15(5):14-16
    [92]何文.枫木地板前景广阔[J].中国房地信息,1999(8):37-37
    [93]郭洪武.实木地板施工铺装技术[J].林产工业,1999.26(6):31-33
    [94] JGJ31-2003.《体育建筑设计规范》[S]
    [95]潘邦慧.浮悬式弹性地板系统[J].上海建材,2003.(4):39
    [96]林海,王岩.体育木地板结构及涂饰工艺[J].林业机械与木工设备,2005.33(5):42-43
    [97]谷晨.运动木地板市场前景看好[J].文体用品与科技,2005.(5):22-24
    [98]高志华,萧宁.民用实木地板龙骨毛地板悬浮铺设――使用规范浅议[J].建筑装饰材料世界,2005.(12):6-9
    [99]叶正良.体育赛场木地板的制作工艺要求[J].安徽建筑,2000.(6):91
    [100]刘庆亮.如何预防运动损伤[N].中国体育报,2004
    [101]候曼,候佳等.从不同高度下落到不同硬度的地面上下肢关节的力学回应[J].广州体育学院学报,2003.23(4):52-54
    [102]李云雁,胡传荣等.试验设计与数据处理[M].第3版.北京.化学工业出版社,2006.6
    [103]于红卫,槐敏等.提高木材尺寸稳定性的方法[J].林业科技,2002.27(5):43-45
    [104]马世春,杨文斌.改善实木地板尺寸稳定性的研究[C].第九次全国木材干燥学术讨论会,2003(9):114-117
    [105]王坤,于志明.几种实木地板和单板层积材尺寸稳定性的初步研究[J].木材加工机械,2005.(1):28-30
    [106]宋白瑜,槐敏等.增强实木地板物理形状稳定性探讨[J].淅江林学院学报,1998.15(4):363-366
    [107]陆文达.木材改性工艺学[M].哈尔滨.东北林业大学出版社,1993.(6)
    [108]刘培义,孟国忠.木材的尺寸稳定性处理[J].木材工业,2003.17(2):24-26
    [109]朱玉辉.提高实木复合地板稳定性的措施[J].林业勘察设计,2004.(1):91-92
    [110]杨小军.木地板尺寸稳定化热处理的研究[J].西部林业科学,2004.33(2):81-83.
    [111]杨小军.热处理对实木地板尺寸稳定性影响的研究[J].木材加工机械,2004.15(6):18-19
    [112]王坤,于志明.几种实木地板和单板层积材尺寸稳定性的初步研究[J].木材加工机械,2005.16(1):25-27
    [113]李坚.木材科学[M].第二版.北京.高等教育出版社,2002.(8)
    [114]冯连世,运动训练的生理生化监控[A].首届中国体育博士高层论坛论文集[C],2006
    [115]梁锡华.运动与血乳酸[J].湖北体育科技,2002.21(4):416-418
    [116]聂金雷,张勇.运动性疲劳的肌电图特征[J].天津体育学院学报,2000.15(2):48-52
    [117]袁爱国,史绍蓉运动性肌肉疲劳的肌电图特征及其机制探讨.[J].四川体育科技,2006.(3):36-39
    [118]王奎,刘建红等.sEMG技术在评价运动性疲劳方面的方法及应用[J].安徽体育科技,2005.25(3):49-51
    [119]梁锡华,罗健等.运动性疲劳及其测定[J].湖北体育科技,1999.(1):44-49
    [120]李裕和,叶华林,夏燕庆等.运用血乳酸、心率评定篮球运动负荷强度的初探[J],广州体育学院学报,1991,21(2):40-46
    [121]赵晋,郭庆芳等.运动疲劳过程中肌电图耗氧量及积分肌电耗氧量的变化[J],天津体育学院学报,1994,9(2):43-48
    [122]封飞虎,黄瑞馨.疲劳前后肌电图的频域特征[J],上海体育学院学报,1996,20(1) :31-36
    [123]王国祥.不同运动负荷时肌肉氧含量与表面肌电图的变化特点[J],体育学刊,2006,13(3) :51-53
    [124]齐立斌,张立.篮球运动员疲劳时肌电图特征分析[J],辽宁体育科技,2004,26(2) :30-33
    [125]张灏,高顺生.运动性疲劳的研究进展[J],北京体育师范学院学报,2000,12(1) :72-77
    [126]张伟东,熊正英等.运动训练对优秀男子篮球运动员生理、生化指标影响的研究[J],体育科学研究,2005,9(1) :72-76
    [127]谢自文.篮球运动员比赛前后生化指标的监控[J].体育科学与技术报告2006.(16)6:70
    [128] Kilbom A,Gamberale F,Persson J et al.Physiological and psychological indices of fatigue during static contraction[J].Eur J Appl,1983,50(2):179-193
    [129] Horita T, et al.relationships between muscle lactate accumulation and surface EMG during isokinetic contractions in man[J].Eur J Appl Phvsiol,1987,56(4):18-23
    [130] Philippe B, et Surface EMG power spectrum and intramuscular pH in human vastus lateralis muscle during dynamic exercise[J].J Appl Physiol,1989,68(3):1245-1249
    [131] Orizio C, Perini R ,Veicsteinas A. Changes of muscular sound during sustained ismetric contraction up to exhaustion[J]. J Appl Physiol,1989,66(4):1593~1598
    [132] West W,Hicks A,Clements L et el. The relationship between voluntary EMG, endurance time and intensity of effort in isometric handgrip exercise[J].Eur J Appl physiol1995,71(4):301-305
    [133] Bendahan D,Jammes Y,Salvan A M et al.Combined electromyography-31p-magnetic resonance spectroscopy study of human muscle fatigue during static contraction[J].Muscle Nerve,1996,19(6):715-721
    [134] Roy S H, Bonato P, Knaflitz M. EMG assessment of back muscle function during cyclical lifting[J].J Electromyogr Kinesiol,1998,8(4):233~245

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700