用户名: 密码: 验证码:
CoFeB及Ni纳米软磁材料制备与磁性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米金属软磁材料因具有优异的磁学和电学性能而被广泛研究。影响纳米软磁材料磁性能的关键因素之一是其磁各向异性。本文利用化学镀方法制备了CoFeB薄膜及纳米阵列,利用电镀方法制备了Ni纳米线阵列。研究了磁场对制备态及热磁处理态材料组织和磁性能的影响。利用能谱(EDS)分析、扫描电子显微镜(SEM)观察以及X射线衍射(XRD)分析等手段研究了一维纳米阵列的成分、微观组织和相组成。利用振动样品磁强计(VSM)测试了材料的磁性能。通过研究获得了热磁处理引起的结构弛豫过程对非晶薄膜及纳米管阵列磁性能的影响规律。通过研究可逆与不可逆磁化过程,揭示了一维纳米阵列磁化反转模式的演变规律以及外加磁场对一维纳米阵列磁各向异性的影响机制。
     由热磁处理引起的原子短程序的改变导致CoFeB非晶薄膜表面出现颗粒状析出物。热处理磁场与膜面法线方向成60°角时,退火态非晶CoFeB薄膜具有最优的综合软磁性能,其饱和磁化强度达到850emu/cm3,矫顽力为25Oe。
     随着纳米线直径的增加,CoFeB纳米线阵列的磁化反转机制由卷曲(Curling)模式逐渐向卷曲与畴壁横向扩展(Transverse)的混合模式转变。化学镀工艺研究表明,增加敏化-活化的次数可以提高模板的填充率,敏化-活化工艺对纳米线阵列的形貌有很大影响。化学镀过程中施加大于1200Oe的轴向磁场可以使直径200nm的非晶CoFeB纳米线阵列的易磁化方向由垂直轴向转变为平行轴向。这种磁各向异性的转变来源于取向沿轴向的原子对增加而引入的一种“伪”磁晶各向异性。加磁场化学镀使纳米线阵列的磁化反转机制由卷曲与横向畴壁扩展的混合模式转变为单纯的卷曲模式。
     CoFeB纳米管阵列的轴向磁各向异性随化学镀过程中外加磁场的增加而增强。制备态CoFeB非晶纳米管阵列经过不同温度的热磁处理,磁性能起伏不超过10%,在小磁场下的热稳定性很好。
     电镀过程中施加轴向磁场可以显著加强Ni纳米线阵列的轴向磁各向异性。外加磁场为600Oe时,纳米线阵列的晶粒最大,(110)织构最强,轴向磁各向异性最强。
     化学镀(电镀)过程中施加磁场是调控一维纳米阵列磁各向异性的有效手段。非晶纳米线阵列的磁化反转机制随纳米线直径和外加磁场变化而改变。
Magnetic materials with low dimensional (such as thin films and nanowires arrays) have been widely studied, for their potential applications in modern high-frequency magnetic devices with smaller size and lower energy consuming. In most cases, magnetic materials with out-of-plane anisotropy are essential. It is focused on the way to control the magnetic anisotropy of low-dimensional magnetic materials. For their high resistant, high saturation magnetization, and low coercivity, Co-based amorphous materials have received much attention. But their properties are sensitive to large and sudden change in temperature, because they are in the sub-stability state commonly. This confined their range of applications. In this thesis, amorphous CoFeB thin films, nanotube arrays, and nanowire arrays are obtained by electroless plating, Ni nanowire arrays are obtained by electrode plating. By applying a magnetic field during the plating process, the magnetic anisotropy of nanowire arrays can be tuned. The structure relaxation of amorphous CoFeB thin film and nanotube arrays are studied by thermo-magnetic treatment (annealing under a magnetic field). The phase composition is determined by X-ray diffraction. The morphology is observed by scanning electron microscope, and the elements ratio is analyzed by energy disperse spectroscopy. co-scan mode is used to analyze the textures in Ni nanowire arrays. The magnetic properties are tested by vibrating sample magnetometer. Combined with hysteresis loops, angular dependent He, and first order reversal curves, the effect of applying a magnetic field during the plating process on the reversal mechanism of nanowire arrays is discussed, and the structural relaxation during the thermomagnetic treatment process of amorphous thin films and nanotube arrays is revealed.
     Thermomagnetic treatment at different angles between the normal direction of film and the annealing magnetic field affect the properties of amorphous CoFeB films. Thermomagnetic treated at certain angle can improve the magnetic properties of the amorphous film. XRD results show that, the short-range directional order of atoms is increased by the annealing thermomagnetic treatment. This structural relaxation process induced decrement of free volume, some particles appeared on the surface of the films.
     The axial magnetic anisotropy of amorphous CoFeB nanotube arrays can be enhanced by applying a magnetic field parallel to the long axis during electroless plating process. When the applied field increased, the axial magnetic anisotropy of nanotube arrays is enhanced with the atomic short-range ordering increased. The deposited CoFeB nanotubes have very good thermal stability under small magnetic field。
     The reversal mechanism of CoFeB nanowire arrays is relevant to the nanowire diameter. The results of angular dependent Hc tests showed that, the reversal mechanism of nanowire array is changed from curling mode to the compound mode of curling and transverse with the diameter increased. CoFeB nanowires with different morphologies are obtained with different electroless plating process. The filling ratio is increased with the sensitization and activation treatment times increased. Blown to dry after rinsed in sensitize and activation solutions, under moderate stiring, with suitable reducing agent concentration, and adding moderate PEG into the electroless plating solution can prevent the premature blocking of pores, which is benefit to fabricate nanowire arrays with high quality. The magnetic anisotropy of amorphous CoFeB nanowire (D>200nm) array can be tuned by applying a magnetic field during plating process. The easy magnetization direction of nanowire array turned from parallel to perpendicular to the long axis with the applied magnetic field increased. The results of first order reversal curves showed that, the irreversible part in nanowire arrays increased by the applied magnetic field. The arrangement of magnetic moments in nanowires is changed. The ordering degree of atom-pairs along the axial direction is increased, and a kind of pseudo-magnetocrystalline anisotropy is formed then. The direction of easy magnetization direction is determined by the shape anisotropy, the pseudo-magnetocrystalline anisotropy, and the interwire magnetostatic interaction.
     The Ni nanowire arrays obtained in AAO templates with20nm diameter have strong (110) texture. The diffusion degree of (110) texture is increased with the length of nanowire is increased. By applying a axial magnetic field during the plating process, the magnetic anisotropy of Ni nanowire arrays along the direction of field is enhanced, the diffusion degree of (110) texture is changed also. Nanowire arrays plated under the magnetic field of600Oe obtained the lowest diffusion degree of (110) texture, the largest grain size, and the strongest axial magnetic anisotropy.
引文
[1]Barth S. Synthesis and applications of one-dimensional semiconductors[J]. Progress In Materials Science,2010,55(6):563-627.
    [2]Tiwari J N. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices[J]. Progress In Materials Science,2012,57(4):724-803.
    [3]Nili H. In situ nanoindentation:Probing nanoscale multifunctionality[J]. Progress In Materials Science,2013,58(1):1-29.
    [4]Fert A. Magnetic nanowires[J]. Journal Of Magnetism And Magnetic Materials,1999,200(1):338-358.
    [5]Boone C. Rapid domain wall motion in permalloy nanowires excited by a spin-polarized current applied perpendicular to the nanowire[J]. Physical Review Letters,2010,104(9):097203.
    [6]Thurn-Albrecht T. Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates[J]. Science,2000,290(5499):2126-2129.
    [7]Lei Y. Highly ordered nanostructures with tunable size, shape and properties: A new way to surface nano-patterning using ultra-thin alumina masks[J]. Progress In Materials Science,2007,52(4):465-539.
    [8]Hashim A. Nanowires-Implementations and Applications[M]. Croatia: InTech,2011:223-224.
    [9]Yong R. The effect of substrate on magnetic properties of Co/Cu multilayer nanowire arrays [J]. Chinese Physics B,2009,18(8):3573-3576.
    [10]Song Z. Microstructure and magnetic properties of electrodeposited Co/Cu multilayer nanowire arrays[J]. Materials Letters,2011,65(11):1562-1564.
    [11]Darques M. Microwave circulator based on ferromagnetic nanowires in an alumina template[J]. Nanotechnology,2010,21(14):145208.
    [12]Sotiriou G A. Flexible, Multifunctional, Magnetically Actuated Nanocomposite Films[J]. Advanced Functional Materials,2013,23(1):34-41.
    [13]Lei Y. Surface patterning using templates:concept, properties and device applications[J]. Chemical Society Reviews,2011,40(3):1247-1258.
    [14]Singamaneni S. Magnetic nanoparticles:recent advances in synthesis, self-assembly and applications[J]. Journal Of Materials Chemistry,2011,21(42):16819.
    [15]Li H. Magnetic-field-induced deposition to fabricate multifunctional nanostructured Co, Ni, and CoNi alloy films as catalysts, ferromagnetic and superhydrophobic materials[J]. Chem Commun (Camb),2013,49(17):1768-1770.
    [16]Zhan J. Stacked-spiral RF inductors with vertical nanoparticle magnetic core for radio-frequency integrated circuits in CMOS[J]. Sensors and Actuators A: Physical,2013,195:231-238.
    [17]Che Y. T-gate aligned nanotube radio frequency transistors and circuits with superior performance[J]. ACS Nano,2013,7(5):4343-4350.
    [18]Zhan J. Radio Frequency Integrated Circuits Symposium (RFIC),2012IEEE[C].:IEEE:367-370.
    [19]Hsu M C. The Inductance Enhancement Study of Spiral Inductor Using Ni-AAO Nanocomposite Core[J]. IEEE Transactions on Nanotechnology,2009,8(3):281-285.
    [20]Lou J. Electromagnetic Field Computation (CEFC),201014th Biennial IEEE Conference on[C].:IEEE:1-1.
    [21]Korenivski V. GHz magnetic film inductors[J]. Journal Of Magnetism And Magnetic Materials,2000,215:800-806.
    [22]Takenaka K. Novel soft-magnetic underlayer of a bit-patterned media using CoFe-based amorphous alloy thin film[J]. Intermetallics,2012,30:100-103.
    [23]Le Bras Y. A new magneto-elastic resonance based technique to determine magneto-mechanical parameters of amorphous ferromagnetic ribbons[J]. Review Of Scientific Instruments,2013,84(4):043904.
    [24]Hou X. Electrical and magnetic properties of electrodeposited Fe-based alloys used for thin film transformer[J]. Science China Technological Sciences,2013,56(1):84-88.
    [25]Fujimori H. Magnetostriction of Co-base amorphous alloys and high frequency permeability in their sputtered thin films[J]. Journal Of Applied Physics,1984,55(6):1769-1774.
    [26]Gonzalez-Legarreta L. Recent Research on the Magnetoimpedance Effect in Co-Based Amorphous Ribbons[J]. Advanced Materials Research,2013, 646:222-227.
    [27]Jia Y. PEG aggregation templated porous ZnO nanostructure:room temperature solution synthesis, pore formation mechanism, and their photoluminescence properties[J]. Crystengcomm,2013,15(18):3647-3653.
    [28]Wang Y. A facile soft-template synthesis of ordered mesoporous carbon/tungsten carbide composites with high surface area for methanol electrooxidation[J]. Journal Of Power Sources,2012,200:8-13.
    [29]Han C. A facile hydrothermal synthesis of porous magnetite microspheres[J]. Materials Letters,2012,70:70-72.
    [30]Zhang L. Novel three-dimensional Co3O4dendritic superstructures: hydrothermal synthesis, formation mechanism and magnetic properties[J]. CrystEngComm,2013,15(7):1389-1396.
    [31]Li W. Magnetic nanowires fabricated by anodic aluminum oxide template—a brief review[J]. Science China Physics, Mechanics and Astronomy,2011,54(7):1181-1189.
    [32]Xu L. Research on the High-Efficiency and Energy-Saving Cutting of the Aero Engine Fan Blades[J]. Advanced Materials Research,2010,154-155:273-277.
    [33]Zhang J. Monocrystalline hexagonal-close-packed and polycrystalline face-centered-cubic Co nanowire arrays fabricated by pulse dc electrodeposition[J]. Journal Of Applied Physics,2007,101(5):054310.
    [34]Han X. Influence of crystal orientation on magnetic properties of hcp Co nanowire arrays[J]. Journal Of Physics D:Applied Physics,2009,42(9):095005.
    [35]Ren Y. The effect of structure on magnetic properties of Co nanowire arrays[J]. Journal Of Magnetism And Magnetic Materials,2009,321(3):226-230.
    [36]Cui C X. Effect of deposition voltage and Co2+concentration on the texture and magnetic properties of Co nanowire arrays [J]. Journal Of Crystal Growth,2011,324(1):168-171.
    [37]Vivas L G. Magnetic anisotropy in CoNi nanowire arrays:Analytical calculations and experiments [J]. Physical Review B,2012,85(3)
    [38]Yamane H. Concurrent improvement of magneto-optical and perpendicular magnetic properties in CoPt/Ag stacked structures with ZnO intermediate thin layers[J]. Applied Physics Letters,2013,102(7):072412.
    [39]Xu C-L. Fabrication of CoPd alloy nanowire arrays on an anodic aluminum oxide/Ti/Si substrate and their enhanced magnetic properties[J]. Scripta Materialia,2006,54(9):1605-1609.
    [40]Proenca M. Magnetic interactions and reversal mechanisms in Co nanowire and nanotube arrays[J]. Journal Of Applied Physics,2013,113:093907.
    [41]Pal S. Magnetization reversal dynamics in Co nanowires with competing magnetic anisotropies[J]. Solid State Communications,2011,151(24):1994-1998.
    [42]Razeeb K M. Magnetic properties of nickel nanowires:Effect of deposition temperature[J]. Journal Of Applied Physics,2009,105(8):083922.
    [43]Pan H. Growth of single-crystalline Ni and Co nanowires via electrochemical deposition and their magnetic properties[J]. Journal Of Physical Chemistry B,2005,109(8):3094-3098.
    [44]Wang X W. Size-Dependent Orientation Growth of Large-Area Ordered Ni Nanowire Arrays[J]. The Journal of Physical Chemistry B,2005,109(51):24326-24330.
    [45]Mills D L. Nanomagnetism:Ultrathin Films, Multilayers and Nanostructures[M]. Amsterdam:Elsevier Science,2006
    [46]Ahmad N. Magnetic anisotropy and magnetization reversal in Co/Cu multilayers nanowires[J]. Journal Of Applied Physics,2012,111(7):07C119-107C119-113.
    [47]Jaleh B. Electrochemical fabrication of Cu/Pd multilayer nanowires in polycarbonate template[J]. Iranian Journal of Physics Research,2012,12(3):263-263.
    [48]Saidin N. Journal of Physics:Conference Series[C].:IOP Publishing:012006.
    [49]Elawayeb M. Electrical properties of individual NiFe/Pt multilayer nanowires measured in situ in a scanning electron microscope[J]. Journal Of Applied Physics,2012,111(3):034306-034306-034304.
    [50]Prida V M. Electroplating and magnetostructural characterization of multisegmented Co54Ni46/Co85Ni15nanowires from single electrochemical bath in anodic alumina templates[J]. Nanoscale Research Letters,2013,8(1):263.
    [51]Qi K. Nanoscale characterization and magnetic property of NiCoCu/Cu multilayer nanowires[J]. Nanotechnology,2012,23(50):505707.
    [52]Borza F. Single Step Nanocrystallization of FeCuNbSiB/CoPt (Cu) Soft/Hard Magnetic Multilayer Microwires[J]. Journal Of Alloys And Compounds,2012
    [53]Chiriac H. Preparation and magnetic properties of amorphous NiP and CoP nanowire arrays[J]. Journal Of Magnetism And Magnetic Materials,2004,272:1678-1680.
    [54]Xu J X. Fabrication of amorphous Co and Co-P nanometer array with different shapes in alumina template by AC electrodeposition[J]. Materials Letters,2006,60(17):2069-2072.
    [55]Xue D. The fabrication and characteristic properties of amorphous Fel-xPx alloy nanowire arrays [J]. Nanotechnology,2004,15(12):1752.
    [56]Xue D S. Preparation and magnetic properties of Fe0.88-xCoxP0.12amorphous nanowire arrays [J]. Journal Of Magnetism And Magnetic Materials,2007,308(1):1-4.
    [57]Hysteresis Loop. http://uk.tdk-lambda.com/
    [58]Lin Y-C. Crystallinity Control of Ferromagnetic Contacts in Stressed Nanowire Templates and the Magnetic Domain Anisotropy[J]. Nano Letters,2012,12(8):4341-4348.
    [59]Ferromagnetic inductors on commercial nanoporous anodic aluminaCarignan L-P. Ferromagnetic Nanowire Metamaterials:Theory and Applications[J]. Ieee Transactions On Microwave Theory And Techniques,2011,59(10):2568-2586.
    [60]Cullity B D. Introduction to magnetic materials[M]. Wiley-IEEE Press,2011
    [61]Jiang H C. Obliquely sputtered TbFe giant magnetostrictive films with in-plane anisotropy[J]. Ieee Transactions On Magnetics,2005,41(4):1222-1225.
    [62]Munakata M. B-concentration dependence on anisotropy field of CoFeB thin film for gigahertz frequency use[J]. Ieee Transactions On Magnetics,2005,41(10):3262-3264.
    [63]Ma Q L. Effect of Mg interlayer on perpendicular magnetic anisotropy of CoFeB films in MgO/Mg/CoFeB/Ta structure[J]. Applied Physics Letters,2012,101(12):122414.
    [64]Leitao D. Delocalized versus localized magnetization reversal in template-grown Ni and Ni80Fe20nanowires[J]. Journal Of Magnetism And Magnetic Materials,2010,322(9):1319-1322.
    [65]Leighton B. Reversal modes in asymmetric Ni nanowires[J]. Journal Of Magnetism And Magnetic Materials,2012
    [66]Vazquez M. Magnetization reversal in Co-base nanowire arrays[J]. physica status solidi(b),2011,248(10):2368-2381.
    [67]Landeros P. Reversal modes in magnetic nanotubes[J]. Applied Physics Letters,2007,90(10):102501.
    [68]Escrig J. Geometry dependence of coercivity in Ni nanowire arrays[J]. Nanotechnology,2008,19(7):075713.
    [69]Bachmann J. Size effects in ordered arrays of magnetic nanotubes:Pick your reversal mode[J]. Journal Of Applied Physics,2009,105(7):07B521.
    [70]Albrecht O. Experimental evidence for an angular dependent transition of magnetization reversal modes in magnetic nanotubes[J]. Journal Of Applied Physics,2011,109(9):093910.
    [71]Skomski R. Nanomagnetics[J]. Journal of Physics:Condensed Matter,2003,15(20):R841-R896.
    [72]Vivas L G. Coercivity of ordered arrays of magnetic Co nanowires with controlled variable lengths[J]. Applied Physics Letters,2011,98(23):232507.
    [73]Kumar A. Competition between shape anisotropy and magnetoelastic anisotropy in Ni nanowires electrodeposited within alumina templates[J]. Physical Review B,2006,73(6)
    [74]Liu Z. Shape Anisotropy and Magnetization Modulation in Hexagonal Cobalt Nanowires[J]. Advanced Functional Materials,2008,18(10):1573-1578.
    [75]Ciureanu M. Magnetic properties of electrodeposited CoFeB thin films and nanowire arrays [J]. Electrochimica Acta,2005,50(22):4487-4497.
    [76]Paulus P M. Low-temperature study of the magnetization reversal and magnetic anisotropy of Fe, Ni, and Co nanowires[J]. Journal Of Magnetism And Magnetic Materials,2001,224(2):180-196.
    [77]Schlorb H. Magnetic nanowires by electrodeposition within templates[J]. physica status solidi(b),2010,247(10):2364-2379.
    [78]Clime L. Magnetostatic interactions in dense nanowire arrays[J]. Journal Of Magnetism And Magnetic Materials,2006,297(1):60-70.
    [79]Clime L. Characterization of individual ferromagnetic nanowires by in-plane magnetic measurements of arrays[J]. Journal Of Magnetism And Magnetic Materials,2006,299(2):487-491.
    [80]Stoner E. A mechanism of magnetic hysteresis in heterogeneous alloys[J]. Magnetics, IEEE Transactions on,1991,27(4):3475-3518.
    [81]Frei E. Critical size and nucleation field of ideal ferromagnetic particles[J]. Physical Review,1957,106:446-455.
    [82]Aharoni A. Angular dependence of nucleation by curling in a prolate spheroid[J]. Journal Of Applied Physics,1997,82(3):1281-1287.
    [83]Schabes M E. Micromagnetic theory of non-uniform magnetization processes in magnetic recording particles[J]. Journal Of Magnetism And Magnetic Materials,1991,95(3):249-288.
    [84]Henry Y. Statistical analysis of the magnetization processes in arrays of electrodeposited ferromagnetic nanowires[J]. Physical Review B,2002,66(18):184430.
    [85]Hertel R. Micromagnetic simulations of magnetostatically coupled Nickel nanowires[J]. Journal Of Applied Physics,2001,90(11):5752-5758.
    [86]Vivas L G. Magnetic anisotropy in ordered textured Co nanowires[J]. Applied Physics Letters,2012,100(25):252405.
    [87]Lacroix L-M. Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles:Evidences for Stoner-Wohlfarth behavior and large losses[J]. Journal Of Applied Physics,2009,105(2):023911-023911-023914.
    [88]Sun L. Tuning the properties of magnetic nanowires[J]. Ibm Journal Of Research And Development,2005,49(1):79-102.
    [89]Li D. Template-based Synthesis and Magnetic Properties of Cobalt Nanotube Arrays[J]. Advanced Materials,2008,20(23):4575-4578.
    [90]Lupu N. Electrodeposited Nanowires and their Applications[M]. InTech
    [91]Mancoff F B. Angular dependence of spin-transfer switching in a magnetic nanostructure[J]. Applied Physics Letters,2003,83(8):1596.
    [92]Stancu A. Micromagnetic and preisach analysis of the first order reversal curves (FORC) diagram[J]. Journal Of Applied Physics,2003,93(10):6620-6622.
    [93]Kashi M A. Magnetostatic Interaction Investigation of CoFe Alloy Nanowires by First-Order Reversal-Curve Diagrams[J]. Ieee Transactions On Magnetics,2013,49(3):1167-1171.
    [94]Mayergoyz I. Generalized Preisach model of hysteresis[J]. Magnetics, IEEE Transactions on,1988,24(1):212-217.
    [95]Alikhanzadeh-Arani S. Magnetic characterization of FeCo nanowire arrays by first-order reversal curves[J]. Current Applied Physics,2013,13(4):664-669.
    [96]Pike C. First-order reversal curve diagram analysis of a perpendicular nickel nanopillar array[J]. Physical Review B,2005,71(13)
    [97]B. ron F. First-order reversal curve diagrams of magnetic entities with mean interaction field:A physical analysis perspective[J]. Journal Of Applied Physics,2008,103(7):07D908.
    [98]Tsai T. The growth morphology and crystallinity of electroless NiP deposition on silicon[J]. Applied Surface Science,2004,233(1-4):180-190.
    [99]Yokoshima T. Micropattern Formation for Magnetic Recording Head Using Electroless CoFeB Deposition[J]. Journal Of The Electrochemical Society,2002,149(8):C375.
    [100]Chu S-Z. Fabrication and Characteristics of Ordered Ni Nanostructures on Glass by Anodization and Direct Current Electrodeposition[J]. Chemistry Of Materials,2002,14(11):4595-4602.
    [101]Fei W D. Characterization of fiber texture by omega-scan x-ray diffraction[J]. Review Of Scientific Instruments,2009,80(9):093903.
    [102]Harrison R J. FORCinel:An improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing[J]. Geochemistry, Geophysics, Geosystems,2008,9(5)
    [103]Kirk D. Structural study of amorphous CoFeB thin films exhibiting in-plane uniaxial magnetic anisotropy[J]. Physical Review B,2009,79(1)
    [104]Hindmarch A. Origin of in-plane uniaxial magnetic anisotropy in CoFeB amorphous ferromagnetic thin films[J]. Physical Review B,2011,83(21)
    [105]Yamanouchi M. Domain Structure in CoFeB Thin Films With Perpendicular Magnetic Anisotropy [J]. IEEE Magnetics Letters,2011,2:3000304-3000304.
    [106]Yu H. High propagating velocity of spin waves and temperature dependent damping in a CoFeB thin film[J]. Applied Physics Letters,2012,100(26):262412.
    [107]Jiang J J. Ultrahigh frequency properties of discontinuous CoFeB/SiO2multilayer films with high resistivity[J]. Transactions Of Nonferrous Metals Society Of China,2007,17:S725-S729.
    [108]Zhang X. Soft magnetic properties, high frequency characteristics, and thermal stability of co-sputtered FeCoTiN films[J]. Journal Of Alloys And Compounds,2009,474(1-2):273-278.
    [109]Cohen M H. Metastability of amorphous structures[J].,1964
    [110]Egami T. Structural relaxation in amorphous alloys-compositional short range ordering[J]. Materials Research Bulletin,1978,13(6):557-562.
    [111]G6mez-Polo C. Structural relaxation and magnetic properties of Co-rich amorphous wire[J]. Journal Of Magnetism And Magnetic Materials,1993,118(1):86-92.
    [112]Inoue A. Preparation of Fe-, Co-, and Ni-based amorphous alloy powders by high-pressure gas atomization and their structural relaxation behavior[J]. Metallurgical Transactions A,1988,19(2):235-242.
    [113]Wang S-L. Effect of the heat treatment on the structure and the properties of the electroless CoFeB alloy [J]. Journal Of Alloys And Compounds,2007,429(1-2):99-103.
    [114]李海华.NaBH4对化学镀CoFeB薄膜的制备和磁性能的影响[J].功能材料,2005,36(7):1002-1004.
    [115]Tian F. Magnetic field assisting DC electrodeposition:general methods for high-performance Ni nanowire array fabrication[J]. Journal Of Physical Chemistry B,2005,109(31):14852-14854.
    [116]Sellmyer D J. Magnetism of Fe, Co and Ni nanowires in self-assembled arrays[J]. Journal of Physics:Condensed Matter,2001,13(25): R433-R460.
    [117]Xu J. Pulsed electrodeposition of monocrystalline Ni nanowire array by intermittent symmetric square wave[J]. Materials Letters,2008,62(10-11):1491-1494.
    [118]Shimizu T. Preparation of Ultrahigh-Density Magnetic Nanowire Arrays beyond1Terabit/Inch2on Si Substrate Using Anodic Aluminum Oxide Template[J]. Japanese Journal Of Applied Physics,2011,50(6):06GE01.
    [119]Nielsch K. Uniform Nickel Deposition into Ordered Alumina Pores by Pulsed Electrodeposition[J]. Advanced Materials,2000,12(8):582-586.
    [120]Spiegel J. Microwave Conference,2009. EuMC2009. European[C].: IEEE:582-585.
    [121]Zeng H. Magnetic properties of self-assembled Co nanowires of varying length and diameter[J]. Journal Of Applied Physics,2000,87(9):4718.
    [122]Lin S-C. Conformal Deposition of Ni-P on Anodic Aluminum Oxide Template[J]. Electrochemical and Solid-State Letters,2008,11(1):D1.
    [123]Dow W-P. Filling mechanism in microvia metallization by copper electroplating[J]. Electrochimica Acta,2008,53(28):8228-8237.
    [124]Sharif R. Magnetic and magnetization properties of CoFeB nanowires[J]. Journal Of Magnetism And Magnetic Materials,2007,310(2):e830-e832.
    [125]Ye Y. Magnetic Nanotubes:Synthesis, Properties, and Applications[J]. Critical Reviews In Solid State And Materials Sciences,2012,37(2):75-93.
    [126]Dobson P J. Nanomedicine:Design and Applications of Magnetic Nanomaterials, Nanosensors and Nanosystems, by Vijay K. Varadan, Linfeng Chen and Jining Xie:Scope:monograph, reference. Level:postgraduate, advanced undergraduate, early career researcher, researcher, engineers[J]. Contemporary Physics,2012,53(4):378-379.
    [127]Irshad M. AIP Conference Proceedings[C].625.
    [128]Wang W. Synthesis of metallic nanotube arrays in porous anodic aluminum oxide template through electroless deposition[J]. Materials Research Bulletin,2006,41(8):1417-1423.
    [129]Zuo Y. Synthesis of alumina nanowires and nanorods by anodic oxidation method[J]. Materials Letters,2006,60(24):2937-2940.
    [130]Wang X. Fabrication and characterization of anodic aluminum oxide template[J]. Microelectronic Engineering,2003,66(1):166-170.
    [131]Escrig J. Angular dependence of coercivity in magnetic nanotubes[J]. Nanotechnology,2007,18(44):445706.
    [132]Sharif R. Effect of Magnetic Field Annealing Upon Co-Rich Nanowires[J]. Ieee Transactions On Magnetics,2006,42(10):2778-2780.
    [133]Kernion S J. Giant induced magnetic anisotropy In strain annealed Co-based nanocomposite alloys[J]. Applied Physics Letters,2012,101(10):102408.
    [134]Hofmann B. Stress-induced magnetic anisotropy in nanocrystalline FeCuNbSiB alloy[J]. Journal Of Magnetism And Magnetic Materials,1996,152(1-2):91-98.
    [135]Vega V. Torque magnetometry analysis of magnetic anisotropy distribution in Ni nanowire arrays[J]. physica status solidi (a),2011,208(3):553-558.
    [136]Patterson A. The Scherrer formula for X-ray particle size determination[J]. Physical review,1939,56(10):978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700