用户名: 密码: 验证码:
永磁盘式强磁选机磁场分布优化设计及钾长石除铁试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与电磁选机相比,永磁选机具有结构简单,耗能少等诸多优点,目前工业上大多数电磁弱磁选机已被永磁选机代替,永磁强磁选机因存在分选空间内磁场分布不合理或处理量低等一系列问题,工业上应用的强磁场磁选机仍然以电磁选机为主。永磁强磁选机的分选性能与磁场分布密切相关,磁场分布是否合理对磁选机分选的效果起决定性作用。对永磁强磁选机磁场分布进行优化设计,提高其单位时间处理量和分选效果,有利于促进强磁选机在工业上的永磁化。因此,本文研究磁场分布,对永磁强磁选机的发展具有重要意义。
     本研究从以下几方面进行研究和分析,对PH型永磁盘式强磁选机磁场分布进行优化设计,得到如下结论:
     (1)介绍PH型永磁盘式强磁选机的结构与分选原理,分析影响尖齿形、半圆形、矩齿形和平面磁极对磁场分布的主要因素,指出永磁盘式磁选机在实际应用中存在的问题。
     (2)采用复变函数数学理论方法求解半圆形、尖齿形和矩齿形几种磁极的磁场分布,推导出分选空间内磁场强度和磁场力理论计算公式。
     (3)运用数学计算分析软件Matlab对分选空间内磁场强度和磁场力公式进行计算,得出分选空间内磁场强度和磁场力的计算数值。与实测值进行对比,结果表明,计算值与实际测量值相近,在允许误差范围内。说明推导的磁场强度和磁场力计算公式能正确反映分选空间内磁场分布规律。本研究将数学计算分析软件Matlab与复变函数推导相结合,简化了磁场分布运算过程,为磁选机磁场分布的数值计算开辟了新途径。
     (4)分别调整尖齿形、半圆形和矩齿形三种磁极对尺寸结构参数,计算不同结构参数条件下磁场分布情况,通过对比分析,对磁场分布进行优化设计。在最佳尺寸参数条件下,尖齿形、半圆形和矩齿形三种磁极对磁极顶点处磁场力大小分别为48.32×108Oe2/cm、42.74×108Oe2/cm和40.01×108Oe2/cm,比较而言,尖齿形磁极对磁选机分选空间内磁场力最高。结合选矿工艺技术要求,采用尖齿形磁极对制造出结构合理的PL型永磁盘式强磁选机试验样机。
     (5)应用PL型永磁盘式强磁选机样机进行钾长石除铁试验研究。根据矿石性质,通过正交试验和条件试验探索背景磁场强度、磁盘转速、矿浆浓度、磁性矿物冲洗水量和磁选时间等各个因素对除铁效果的影响。在最佳试验条件下,进行一段磨矿闭路试验和中矿再磨闭路试验,最终获得较好的除铁效果。原矿中Fe203含量从0.52%下降到0.19%,精矿产率83.32%,除铁率68.29%。将这一试验结果与PH型永磁盘式强磁选机进行对比,结果表明PL型永磁盘式强磁选机样机选别指标和除铁效果更好,且磁盘间距比原磁选机增大2mm,提高了处理能力。从实践上证明了本课题所设计的磁极对结构是合理的。
     (6)运用有限元分析软件ANSYS对尖齿形、半圆形、矩齿形和平面磁极对构成的磁选机分选空间内的磁场分布进行仿真模拟,将微观的磁场分布转化为可视的磁力线分布图、磁通密度矢量图和磁感应强度等值图。结果表明,尖齿形、半圆形、矩齿形和平面磁极对构成的磁选机分选空间内的最高磁场强度分别为2.13T、2.34T、1.96T和1.78T,半圆形磁极对磁极表面磁场强度高于尖齿形磁极对磁极表面的磁场强度。通过对比四种磁极对之间磁力线分布图表明,半圆形磁极对分选空间内磁场梯度低于尖齿形磁极对分选空间内的磁场梯度,所以半圆形磁极对分选空间内磁场力低于尖齿形磁极对分选空间内的磁场力。这一结论与计算结果一致,从理论上揭示了尖齿形磁极对结构的永磁盘式磁选机具有较好分选效果的根本原因。
Comparing with the electromagnetic separator, permanent magnetic separator has some advantages such as simple structure, low energy consumption and so on. In industry, most of the low intensity magnetic electromagnetic separators have been replaced by permanent magnetic separator nowadays.
     High intensity permanent magnetic separator existed a series of problems, for instance, unreasonable magnetic field distribution in separation space and lower work capacity, so high intensity permanent magnetic electromagnetic separators remain primary in actual application. High intensity permanent magnetic separator performance is closely related to magnetic field distribution.
     The optimization design for high intensity permanent magnetic separator magnetic field distribution and improving the processing capacity per unit time and the separation effect are profitable to propel and accelerate high intensity permanent magnetic separator industrialization. This study is important for the development of permanent magnetic separator.
     The following aspects were studied and analyzed in this paper to optimize the magnetic field distribution of high intensity permanent magnetic separator developed by Professor Peng Huiqing.
     1) Tthe high intensity permanent magnetic separator structure and separation principle developed by Professor Peng Huiqing were introduced in the paper. The main factors that impact magnetic field distribution of tooth shape, half round, rectangular profile and plane pole were analyzed. Meanwhile, the problems of the application were also pointed out.
     2) The magnetic field distribution of semicircular, teeth shape and moment profile was studied with the complex variable function and other physical mathematical means. The calculation formula of separation space magnetic field intensity and magnetic force was obtained.
     3) The separation space magnetic field intensity and magnetic force numerical values was obtained by analyzing the separation space magnetic field intensity and magnetic force calculation formula with the mathematical calculation and analysis software Matlab. The calculation results were similar to the actual measured value compared with the measured value, and it shows that magnetic field intensity and magnetic force formula can correctly reflect the distribution of magnetic field in the separation space. The calculation and analysis software Matlab combined with complex function mathematical derivation, simplified the operation process of distribution of magnetic field, and laid the theoretical foundation for the numerical calculation of magnetic field distribution in magnetic separator.
     4) The calculation of magnetic field distribution under conditions of different structural parameters was processed with adjusting the teeth shape, semi-circular and serrate three poles on the size structure parameters through comparative analysis, the distribution of magnetic field optimization design. The results show that the magnetic force of the magnetic pole teeth shape high magnetic separator space. Combined with the technology requirement of mineral processing, sharp teeth-shaped pole to produce permanent disk type strong magnetic separator with the advantages of reasonable structure was adopted in this paper.
     5) The test research of new type high intensity permanent magnetic separator prototype of potash feldspar deforestation was applied. According to the character of the ore, the disk speed, slurry concentration, magnetic minerals of flushing water and magnetic separation time and other factors on the iron removal effect through orthogonal experiments and condition tests to explore the background magnetic field intensity. Under the optimum conditions, a grinding circuit and middling regrinding closed-circuit test was presented for obtaining a better effect of removing iron.Fe2O3content in ore decreased from0.52%to0.19%. The concentrate yield reached83.32%and the iron removal rate reached68.29%. The test results were compared with the original permanent disk type strong magnetic separator, which show that the new high intensity permanent magnetic separator classification index and iron removal effect is better.
     6) The advanced finite element analysis software ANSYS was used to analyze the tooth shape, half round, rectangular profile and plane distribution of the magnetic separator magnetic separation space formed by the magnetic field simulation. The microscopic distribution of magnetic field was changed into visible distribution of magnetic line of force, the magnetic flux density vector, and the magnetic induction intensity contour map. The simulation results through comparative analysis, to reveal the fundamental reason of tooth shape magnetic with high magnetic field.
引文
[1]王常任.磁电选矿[M].北京:冶金工业出版社,2005.
    [2]Nedelcu. S.. Watson. J.H.P.. Magnetic separator with transversally magnetised disk permanent magnets [J]. Minerals Engineering,2002,15(5):355-359.
    [3]孙仲元.磁选理论[M].长沙:中南工业大学出版社,1987.
    [4]张裕发.DPMS湿式永磁磁选机在福建省连城锰矿的应用[J].中国锰业,2008,26(3)42.-43.
    [5]Song.M, Kim.S, Lee.K. Development of a Magnetic Filter System Using Permanent Magnets for Separating Radioactive Corrosion Products from Nuclear Power Plants [J]. Sep. Sci. Technol.2004,39(5):1037-1057.
    [6]John G. Rayner,T. J. Napier-Munn. A mathematical model of recovery of dense medium magnetics in the wet drum magnetic separator[J]. Int. J. Miner. Process.2003,(69):157-173.
    [7]冯定五,孙仲元.永磁磁选机的现状与发展[J]国外金属矿选矿,1992,(12):1-5.
    [8]王美华,吴祥林.新磁路永磁筒式磁选机的特点及应用[J].金属矿山,2001,298(4):28-30.
    [9]冯慈璋.静态电磁场[M].西安:西安交通大学出版社,1985.
    [10]Bikbov.M.A., Karmazin.V.V., Bikbov.A.A.. Low-intensity magnetic separation:Principal stages of a separator development-What is the next step?[J].Phys. Sep. Sci. Eng,2004,13(2): 53-67.
    [11]王常任,孙仲元,郑龙熙.磁选设备磁系设计基础[M].北京:冶金工业出版社,1990.11.
    [12]Rayner J.G., Napier-Munn T.J.. Mechanism of magnetics capture in the wet drum magnetic separator [J]. Minerals Eng,2000,13(3):277-285.
    [13]毕德显.电磁场理论[M].北京:电子工业出版社,1985,02.
    [14]曹志良.永磁磁选技术的新进展[J].金属矿山,1997,(6):15-17.
    [15]曹志良,徐永仁,詹海青等.湿式永磁强磁选机分选赤铁矿石试验研究[J].金属矿山,2007,375(9):94-96.
    [16]邹继斌,刘宝廷,崔淑梅等.磁路与磁场[M].四川:成都电讯工程学院出版社,1987.01.
    [17]赵昱东.分选弱磁性矿磁选机的技术进展[J].江西冶金,2000,20(3):22-26.
    [18]徐建铭.永磁磁体设计的新进展[J]原子能科学技术,1988,22(1):77-81.
    [19]M.D.. LI; T.LI; M.W...Development of Crimm roll-type high intensity magnetic separators with rare-earth permanent magnets[J]. Kuangye Gongcheng,1993,13(1):32-34.
    [20]陈建生,杨钢,裘宝泉.磁选机的现状和发展趋势(一)[J].矿山机械,2009,37(17):75-79.
    [21]彭会清,蒋美仙.稀土湿式永磁带式强磁选机的优化设计[J].南方冶金学院学报,2002,23(1):76-78.
    [22]刘鹏,焦红光,陈清如.永磁高梯度磁选机的发展现状及解析[J].矿山机械,2008,36(21):116-118.
    [23]米夏夏.斜环永磁高梯度磁选机的研制及应用[D].长沙:中南大学,2010:25-30.
    [24]陈建生,杨钢,裘宝泉.磁选机的现状和发展趋势(二)[J].矿山机械,2009,37(17):75-79.
    [25]PA.奥古斯多等.新型磁选机和磁分级机的改进特点[J].国外金属矿选矿,2001,(7):2-7.
    [26]徐建成,徐建民.齿尖磁极相对的磁场求解中几个问题的探讨[J].有色金属,2004,56(1):80-82.
    [27]李春梅,张宗华,高利坤.稀土永磁材料(NdFeB)的现状及发展趋势[J].云南冶金,2003,32(3):12-15.
    [28]Gerber. R.. Magnetic filtration of ultra-fine particles[J]. Dig intermag Conf,1984,20 (5):1159-1164.
    [29]Mihai Lungu. Separation of small nonferrous particles using a two successive steps eddy-current separator with permanent magnets[J].Int. J. Miner. Process.2009 (93):172-178.
    [30]Meier-Staude.R, Schlett.Z, Lungu.M. A new possibility in Eddy-Current separation[J]. Minerals Eng,2002,15(4):287-291.
    [31]洪家凯.湿式强磁选机选别钛铁矿的研究应用[J].金属矿山,1997,258(12):39-40.
    [32]彭会清.复变函数法在磁选机磁场边值问题中的应用[J].南方冶金学院学报,1993,14(3):206-213.
    [33]彭会清.磁选机磁场解析法研究及应用[D].武汉:武汉理工大学,2007.
    [34]Lungu.M, Rem.P. Eddy-Current Separation of Small Nonferrous Particles By a Single-Disk Separator With Permanent Magnets[J]. IEEE Trans Magn,2003,39(4):2062-2067.
    [35]Zhang.S., Rem.P.C., Forssberg.E..Particle trajectory simulation of two-drum eddy current separators [J]. Resour, Conserv. Recycl,1999,26(2):71-90.
    [36]彭会清,余玲,蔡启林等.湿式永磁带式强磁选机磁场分布研究[J].金属矿山,1997,258(12):341-345.
    [37]郭天纲、潘德强、郑广智.浅析磁选机磁路结构设计及磁场特性[J].矿山机械,2010,38(16):76-77.
    [38]冯定五.干式永磁高梯度磁选机的研制[J].矿冶,1997,6(2):35-38.
    [39]Hantil.F., Mihai.M., Popescu C..Performances of a waste recycling separator with permanent magnets [J]. J Mater Process Technol,2007,181(1):246-248.
    [40]徐建民.湿式永磁筒式磁选机卸矿装置的研制[J].金属矿山,2003,321(3):57.
    [41]熊红荣.永磁筒式磁选机的中心轴结构研究[J].云南冶金,2010,39(3):23-24.
    [42]Lorenzen.H.W, Zickermann.R., Schafer.D. Homogenization of the Magnetic Field in the Air-Gap of a Permanent Magnet Superconductor Bearing [J]. IEEE Trans Appl Supercond, 2001,11(1):1793-1796.
    [43]WANG.Q., DALY., ZHAO.B.Development of high magnetic field superconducting magnet technology and applications in China[J]. Cryogenics,2007, (47):364-379.
    [44]彭会清,胡淼,刘艳杰.新型永磁干式强磁选机在长石除铁中的试验研究[J].矿山机械,2011,23(6):31-35.
    [45]王志国,王晓明,刘承帅.现代磁选理论及技术的发展与应用[J].矿冶,2009,18(2):27-29.
    [46]Kohnlechner R., Schlett Z., Lungu M. et al.. A new wet Eddy-current separator [J]. Resources. Conserv. Recycl,2002,37(1):55-60.
    [47]胡明振.湿式永磁强磁选机磁系研究及设备研制[D].武汉:武汉理工大学,2011.
    [48]Lungu.M., Schlett.z..Vertical drum eddy-current separator with permanent magnets [J]. Int. J. Miner. Process,2001,63(4):207-216.
    [49]徐冬林.简化齐大山选矿厂浮选车间工艺流程的试验研究[J].金属矿山,2001,(6):34-36.
    [50]冯旭滨.国外矿用磁选设备的现状与性能分析[J].煤矿机械,1999,(1):4-5.
    [51]易敬曾.磁场计算与磁路设计[M].四川:成都电讯工程学院出版社,1987.01.
    [52]杨元芳,杨兵.固定磁系永磁盘式回收机[J].矿业快报,2001,(21):19-20.
    [53]夏红峰.国内磁选设备的研究现状及发展趋势[J].金属矿山,2010,(9):111-114.
    [54]彭会清,余永富,熊晨曦,等.复变函数法在平面磁系磁场分布研究中的应用[J].金属矿山,2006,364(10):38-40.
    [55]周寿增,董清飞.超强永磁体-稀土铁系永磁材料[M].北京:冶金工业出版社,2004.02
    [56]Fukui.S, Abe.R, Ogawa.J. Study on optimization design of superconducting magnet for magnetic force assisted drug delivery system[J]. Phys C Supercond Appl,2007,463(1): 1315-1318.
    [57]赵瑞敏,董恩海.永磁辊式强磁磁选机研制及应用[J].非金属矿,2009,32(1):64-66.
    [58]李泽.YCJ型高梯度永磁强磁磁选机的应用[J].非金属矿,2008,31(4):75-78.
    [59]邹欣伟,张敏刚,孙刚等.稀土永磁材料的研究进展[J].科技情报开发与经济,2008,]8(12):113-116.
    [60]Merayo, J.M.G, Primdahl.F,Brauer.P.The orthogonalization of magnetic systems[J]. Sens Actuators A Phys,2001,89(3):185-196.
    [61]彭会清,胡明振,刘艳杰.基于COSMOS的永磁盘式磁选机磁盘结构优化设计[J].机械设计,2011,39(1):92-94.
    [62]林莘.永磁机构与真空断路器[M].北京:机械工业出版社,2002.06.
    [63]李卫,朱明刚.高性能稀土永磁材料及其关键制备技术[J].中国有色金属学报,2004,14(1):332-336.
    [64]Jiao.G, Rahn.C.D. Field Weakening for Radial Force Reduction in Brushless Permanent-Magnet DC Motors [J]. IEEE Trans Magn,2004,40(5):3286-3292.
    [65]戴惠新.选矿技术问答[M].北京:化学工业出版社,2008.04
    [66]汤玉和,顾帼华,黄雄林.周期式水平磁系高梯度磁选机的磁路计算和聚磁介质研究[D].长沙:中南大学,2010:29-33.
    [67]Klevets.N.L. Optimal design of magnetic systems [J]. J Magn Magn Mater,2006,306 (2): 281-291.
    [68]Gieras J F, Wing M. Permanent Magnet Motor Technology-Design and Application [M]. Basel, Switzerland:Marcel Dekker AG,2002.
    [69]杨应昌,张晓东,孔麟书等.新型RE-Fe-N系金属间化合物的结构与磁性[J].中国稀土学报,1990,8(4):376-377.
    [70]彭会清,余玲,蔡启林,幸世祥,张悦规.永磁带式强磁场磁选机磁场分布研究[J].矿山机械.1998,27(04):54-57.
    [71]Lee.J, Yoo.J. Topology optimization of the permanent magnet type MRI considering the magnetic field homogeneity [J]. J Magn Magn Mater,2010,322(9):1651-1654.
    [72]Jou.M., Shiaub.J.K., Sun C.C. Design of a magnetic braking system [J]. J Magn Magn Mater, 2006,304(1):234-236.
    [73]Klevets.N.L. Synthesis of magnetic systems producing field with maximal scalar characteristics [J]. J Magn Magn Mater,2005,285(3):401-409.
    [74]Nishijima.S. Magnetic force control technique in industrial application[J]. Phys C Supercond Appl,2010,470(20):1795-1798.
    [75]M.A.拉夫连季耶夫,B.B.沙巴特.复变函数论方法[M].北京:高等教育出版社,2006.
    [76]彭会清,刘艳杰,胡明振.新型湿式永磁强磁选机结构分析及对钾长石除铁试验研究[J].矿山机械,2010,38(23):88-90.
    [77]赵洪力,郑世阳,张万庆.强磁选机用于石英砂除铁效果的比较[J].非金属矿,2005,28(3):39-4.
    [78]Dahe Xiong, Shuyi Liu, Jin Chen. New technology of pulsating high gradient magnetic separation [J]. Int. J. Miner. Process.1998,54(2):111-127.
    [79]陶果,邱阿瑞,柴建云等.永磁同步伺服电动机的磁场分析与参数计算[J].清华大学学报(自然科学版),2004,44(10):1317-1320.
    [80]Hu,Z.H,Li.J.Effect of hot deformation temperature on the magnetic and mechanical properties of NdFeB magnets prepared by spark plasma sintering[J]. J Magn Magn Mater,2011,323(1):104-107.
    [81]徐建民,徐建成.圆柱形多级磁选机磁场分布和场强梯度的解析计算[J].有色金属,2001,53(4):66-69.
    [82]高明炜,王常任,杨秀媛.齿板型磁介质的磁场特性及其工艺参数的研究[J].金属矿山,1985,(1):32-37.
    [83]包洁,刘佐民.高温滚动轴承参数化建模及其热变形研究[J].武汉理工大学,2009,31(2):87-90.
    [84]张修海,熊惟皓,李燕芳等.烧结钕铁硼永磁材料的研究进展[J].机械工程材料.2008,32(11):5-9.
    [85]Yamzaki.Y,Moyuru Ochiai.M,Holz.A.Toshito Hara.Application of neural network algorithm to CAD of magnetic systems[J].Neurocomputing,1996,13(2):217-230.
    [86]龚曙光,谢桂兰,黄云清ANSYS参数化编程与命令手册[M].北京:机械工业出版社,2009.10.
    [87]张田.湿式半逆流磁选机的新改进[J].矿业快报,2000,343(13):7-9.
    [88]Mao.S.D,Yang.H.Q.Corrosion behaviour of sintered NdFeB coated with A1/A1203 multilayers by magnetron sputtering[J].Appl Surf Sci,2011,257(9):3980-3984.
    [89]彭会清,蒋美仙,余玲.许瓦兹变换法在YDQC-500 Ⅱ型强磁选机中的应用[J].有色金属(选矿部分).2002,13(01):91-94.
    [90]彭会清.磁流体静力分选中矿粒的垂直沉降[J].有色金属(选矿部分).1985,33(05):32-37.
    [91](英)宾斯(K.J.Binns),Ⅰ:英)劳伦松(P.J.Lawrenson).电场与磁场问题的分析与计算[M].北京:人民教育出版社,1980.
    [92]彭会清,蔡启林,余玲,张悦规,幸世祥YDQC—500 Ⅱ型湿式永磁带式强磁场磁选机的研制[J].有色金属(选矿部分).1997,25(04):55-59.
    [93]谢淑兰.永磁磁选机简体加工工艺[J].有色金属,2009,61(94):116-118.
    [94]彭会清,余玲,李明富YGQC磁选机磁系调节系统的模糊综合评判[J].矿山机械.2003,15(10):26-29.
    [95]彭会清,余玲.磁流体静力分选机的磁系设计及计算[J].矿冶.1995,33(03):42-46.
    [96]彭会清..磁场强度公式H=HOe-cx的边值条件及分离变量法的理论推导[J].江西有色金属.1988,31(05):46-47.
    [97]宋斌燕,周清雷.对CTB型永磁筒式磁选机冲散水管的改进[J].矿山机械,2008,36(23):116.
    [98]Sanz.S, Garcia-Tabares.L., Ivan M. Evaluation of Magnetic Forces in Permanent Magnets [J]. IEEE Trans Appl Supercond,2010,20(3):846-850.
    [99]应去非,崔祜林.常用电工材料及其选用[M].北京:机械工业出版社,2003.09
    [100]Campbell.P, Chari. M.V.K., Angeio. J.D. Tree-dimensional Finite Element Solution of Permanent Magnet Machines[J]. IEEE Trans on MAG.1981,17(6):2997-2999
    [101]李卫,朱明刚.高性能金属永磁材料的探索和研究进展[J].中国材料进展,2009,28(9-10):62-72.
    [102]彭会清,胡海祥,李骥等.浮选中矿选择性分级再磨工艺机理研究[J].矿业研究与开发.2010,13(03):12-17.
    [103]徐建民,李润.对辊式强磁选机分选空间磁场分布和场强梯度的解析计算[J].矿冶,2001,10(3):43-46.
    [104]林河成.稀土永磁材料的现状及发展[J].粉末冶金工业,2010,20(2):47-51.
    [105]John G. Rayner, T. J. Napier-Munn. A mathematical model of concentrate solids content for the wet drum magnetic separator[J]. Int. J. Miner. Process.,2008,70(1):53-65.
    [106]陈善宝,张志强.硅钢片磁参数快速测量的宽度效应处理[J].华中理工大学学报,1998,26(1):82-84.
    [107]万吉高,尹俊美,武海军等.加工性能优良的高阻金钯铁铝合金[J].贵金属,2010,31(4):32-36.
    [108]苏俊宏.直接积分法计算磁场分布[J].西安工业学院学报,1994,14(2):103-109.
    [109]岳建峰,湛清,张传福等.准一维铁镍合金材料的制备研究进展及应用展望[J].硬质合金,2010,27(2):124-128.
    [110]王晓远,赵方,丁亚明等.Halbach阵列用于盘式无铁心永磁同步电动机的结构仿真研究[J].微电机,2006,39(9):22-25.
    [111]许辅瑶.强磁场永磁磁选机优化设计及试验研究[D].武汉:武汉理工大学,2008:45-49.
    [112]陈志新,艾光华,任祥君.稀土永磁磁场分布研究方法的评述[J].稀土.2005,23(04):42-45.
    [113]张朝晖,李树奎.ANSYS11.0有限元分析理论及工程应用[M].北京:电子工业出版社,2008.03.
    [114]许建民.CXY稀土永磁摇摆磁系筒式磁选机的研制[J].金刚石与磨料磨具工程,2003,134(2):36-40.
    [115]Solidworks公司. COSMOS works professional [M].北京:机械工业出版社,2007.
    [116]Svoboda.J, Fujita.T. Recent developments in magnetic methods of material separation [J]. Minerals Engineering,2003,16(9):785-792.
    [117]张振明,贾晓明.磁选机驱动功率计算公式的建立及应用[J].河北理工学院学报,2001,23(3):6-8.
    [118]郭年琴,黄国平,王海宁.矿井通风网络三维仿真系统的开发[J].中国钨业,2005,20(5):42-45.
    [119]彭会清.DQC-500 Ⅱ型强磁选机的分选数学模型研究[J].有色金属(选矿部分).2002,37(03):76-79.
    []20]谢淑兰.磁选机高场强磁系装配方法研究[J].矿冶,2008,17(2):97-99.
    [121]谢龙汉,耿煜,邱婉.ANSYS电磁场分析[M].北京:电子工业出版社,2012.
    [122]沈沄,郭年琴.图档信息提取与工程数据管理系统的设计与实现[J].矿山机械,2008,36(6):47-50.
    [123]田文胜,刘阳,学勤等.Visual Basic编程指南[M].北京:清华大学出版社,2003.
    [124]张倩,胡仁喜,康士廷.ANSYS 12.0电磁学有限元分析从入门到精髓[M].北京:机械工业出版社,2010.
    [125].朱明晋,马厚筠,罗时健,余玲..稀土永磁高场强干式磁选机的研制[J].有色金属(选矿部分).1993,38(06):59-64.
    [126]叶先磊,史亚杰ANSYS工程分析软件应用实例[M].北京:清华大学出版社,2003.09.
    [127]顿月芹,孔宇.基于VB调用ANSYS与MATLAB的电机电磁场计算[J].微特电机,2006,(2):11-13.
    [128]彭会清,李明富,余玲.基于VB的磁选机优化设计系统研究[J].金属矿山,2003,326(8):36-38.
    [129]Nakai. Y, Mishima.F., Akiyama,Y. Development of Magnetic Separation System for Powder Separation[J]. IEEE Trans Appl Supercond,2010,20(3):941-944.
    [130]杨江尧.电工纯铁矫顽力的测试及应注意的问题[J].磁性材料及器件,1983,14(4):40-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700