用户名: 密码: 验证码:
L1_0 FePt基超高密度磁记录交换耦合介质薄膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
社会的进步和科技的发展带来了信息量的急剧膨胀,这就迫切要求信息存储系统的容量急剧增加。截至目前,在众多的信息存储技术中,磁记录技术是最主要的大容量存储技术。因此,为了增加信息存储容量,就必须增加硬盘的信息存储密度。在保证输出信噪比一定的条件下,记录密度的提高就意味着每个记录位及磁性晶粒体积的减小,为了克服小颗粒时出现的“超顺磁效应”,就需要使用高磁晶各向异性材料作为记录介质,这又会导致信息写入困难,这就是磁记录系统中目前所面临的“三难问题”:即磁头的写入能力、热稳定性、信噪比之间的关系。交换耦合介质是解决这个问题的有效方法,其由高磁晶各向异性的硬磁层和软磁层构成。通过改变硬/软磁层间的交换耦合作用的强弱使记录介质的写入场得到调整,而介质仍然保持了硬磁层高各向异性和热稳定性的优点。由于交换耦合介质中硬磁层的制备条件的不同,所以其结构、磁性及磁化反转机制有所不同。L10FePt合金由于其高的磁晶各向异性和良好的化学稳定性可以被应用到新一代磁存储介质中。因此本论文主要研究基于L10FePt薄膜的交换耦合介质,本论文利用磁控溅射和后退火的方法制备了不同成份、不同厚度的FePt薄膜,以及L10FePt/Fe与L10FePt-MgO/Fe-MgO交换耦合介质薄膜,并利用电感耦合等离子体(ICP),X射线衍射仪(XRD),X射线光电子能谱仪(XPS),透射电镜(TEM),振动样品磁强计(VSM),磁力显微镜(MFM)研究了:成分、厚度及退火温度对FePt薄膜的结构和磁性的影响,L10FePt/Fe交换耦合介质薄膜的磁性及磁化反转、L10FePt-MgO/Fe-MgO交换耦合介质薄膜的微结构和磁学性能。研究结果如下:
     I.硬磁相FePt薄膜的制备与表征
     研究了成分、厚度及退火温度对FePt薄膜的结构和磁性的影响,制备出了高度有序、垂直各向异性很好的L10FePt薄膜。
     (1)当Fe含量从31%到51%改变时,Fe含量为47%的FePt薄膜的有序化最好,薄膜的垂直各向异性最好。在垂直于薄膜平面的方向上磁滞回线的矩形比达到了0.99,矫顽力达到了10.4kOe。退磁态薄膜中相对规则的磁畴的大小为100-300nm。
     (2)当退火温度从400℃到700℃之间变化时,高的退火温度有利于薄膜的L10相的形成。当退火温度到达700℃时,平行于薄膜平面的方向变为难磁化方向,垂直于薄膜平面的方向变为易磁化方向,薄膜的垂直各向异性非常明显。
     (3)对于700℃退火后的FePt薄膜,当FePt厚度从10nm增加到60nm时,垂直于薄膜平面回线的矫顽力逐渐减小,平行于薄膜平面回线的矫顽力逐渐增加,说明薄膜的垂直各向异性减弱。
     Ⅱ.L10FePt/Fe交换耦合介质薄膜的制备与研究
     利用磁控溅射和后退火的方法制备了L10FePt/Fe及L10FePt/Pt/Fe交换耦合介质薄膜,研究了具有不同厚度的Fe的L10FePt/Fe交换耦合介质的磁性和磁化翻转机制及非磁性中间层Pt的厚度对FePt层与Fe层之间耦合作用的影响,获得的主要结果和结论如下:
     (1)当软磁层Fe厚度小于3nm时,薄膜的面内磁滞回线近似于直线,说明FePt/Fe之间的耦合作用较强。Fe厚度大于3nm时,由于退磁能增加,FePt层与Fe层较上层部分之间的耦合减弱,FePt/Fe薄膜的面内磁滞回线类似于软磁薄膜。随着Fe厚度的增加,薄膜的矫顽力逐渐减小,开关场分布逐渐变宽,磁畴尺寸变小,磁畴之间的过渡区变宽。
     (2)由于FePt和Fe的交换耦合长度的限制,Fe厚度小于3nm时,FePt/Fe薄膜之间存在强的界面耦合,磁化反转由磁矩的不可逆转动决定;Fe厚度大于3nm时,随着Fe厚度的增加,FePt/Fe薄膜的磁化反转从刚性磁化反转逐渐变成了交换弹性磁化反转,由于退磁能作用,Fe磁矩逐渐转向面内,磁矩的可逆部分增加。即薄膜的磁化反转经历了一个由刚性磁化反转变为交换弹性磁化反转、最终成为两相磁化反转的过程。
     (3)Henkel曲线和Delta M曲线表明硬磁相L10FePt为连续薄膜,FePt颗粒之间的交换耦合作用非常强。随着Fe层变厚,退磁能增加,偶极相互作用逐渐影响了样品中的磁化反转过程,以致于样品易退磁而难磁化。
     (4)当L10FePt/Pt/Fe薄膜中中间层Pt的厚度增加时,薄膜面外方向的磁滞回线中没有出现两相变化的台阶,薄膜的矫顽力逐渐增加,说明选取的软磁层厚度太大,为了使引入的中间层Pt能够有效的调节硬磁层FePt与软磁层Fe之间的耦合强度,软磁层厚度必须小于3nm。
     Ⅲ.L10FePt-MgO硬磁/Fe-MgO软磁交换耦合介质薄膜
     我们用磁控溅射和后退火方法制备了L10FePt-MgO薄膜及L10FePt-MgO/Fe-MgO交换耦合介质薄膜,研究了其结构和磁性,主要结果如下:
     (1)在FePt薄膜中添加MgO来制备磁记录介质时,有利于形成具有(001)取向、垂直各向异性比较好的、颗粒之间交换耦合作用比较弱的薄膜。而在FePt薄膜中掺杂Si02后,不利于形成(001)取向FePt薄膜。
     (2)当MgO体积含量为20%时,FePt-MgO薄膜具有很好的垂直各向异性,微结构显示FePt-MgO薄膜中FePt颗粒分布均匀、平均尺寸为5.4nm。由α=2.0值及MFM图像可知FePt颗粒之间具有弱的交换作用。这对于实现超高密度磁记录介质具有重要意义。
     (3)对于L10FePt-MgO/Fe-MgO交换耦合介质薄膜,当Fe-MgO厚度增加时,由于FePt-MgO与Fe-MgO薄膜顶部之间的弱的交换耦合作用,薄膜的面内矫顽力先增加后减小。FePt-MgO/Fe-MgO薄膜体系的磁化反转由刚性磁化反转转变为交换弹性行为,随着软磁层Fe-MgO进一步增加,磁化反转最终转变为两相反转过程。
     (4)当L10FePt-MgO/Pt/Fe-MgO交换耦合介质薄膜中非磁性层Pt的厚度为0.25nm时,薄膜的矫顽力由没有加中间层时的10.1kOe减小到了9.3kOe,Pt的厚度进一步增加时,薄膜的矫顽力则会增加,说明中间层Pt的添加能够有效地调制L10FePt-MgO/Pt/Fe-MgO薄膜中的耦合强度。
The social progress and the development of technology have brought a drastic information explosion, which urgently require increasing information storage capacity of recording system. Up to now, among the various information storage technologies, hard disk driver (HDD) is the most important technology for high capacity storage. Therefor, it is necessary to increase the information storage density of HDD. To maintain a reasonable signal to noise ratio (SNR) in HDD, the increasing of recording areal density implies a shrunk of the volume of recording bits, and also the volume of magnetic grains. To overcome the so called "superparamagnetic effect" for small grains, it is necessary to use the magnetic materials with higher anisotropy for medium, which results in a difficulty of writing information. This is the "trilemma issue" in the magnetic recording, viz., the compatibility among writing ability, thermal stability and signal to noise ratio. It is an effective approach to resovle the above issue using exchange coupled media, which is composed of a soft and a hard magnetic layer with large anisotropy. The medium coercivity can be tuned by adjusting the exchange coupling interation between soft and hard magnetic layers, while keeping the advantages of larger anisotropy and thermal stability in hard layer. The microstructure, magnetic property and magnetization reversal process are different due to different fabrication condition of hard magnetic layer in exchange coupled media. LI0FePt is considered to be a potential magnetic hard layer in new generation magnetic recording medium, because of its high magnetocrystalline anisotropy and good chemical stability. Thus the aim of this dissertation is to fabricate LI0FePt based magnetic exchange coupled medium and to study its magnetic property. The FePt thin films with different composition and thicknesses were fabricated by magnetron sputtering and annealing. LI0FePt/Fe and LI0FePt-MgO/Fe-MgO exchange coupled thin films medium were also fabricated. The composition, microstructure, magnetic property and magnetic reversal mechanism were studied by using ICP, XRD, XPS,TEM,VSM and MFM.The main conclusions are as follows.
     1.Fabrication and characterization of FePt thin films
     LI0FePt thin films with highly ordered degree and good perpendicular anisotropy have been prepared. The effects of compositions, thicknesses and annealing temperature on structure and magnetic property of FePt films have been studied.
     (1)For the FePt films with Fe content varying from31at.%to51at.%, a high ordered degree and good perpendicular anisotropy were abtained in Fe47Pt53thin films. The squareness and the coercivity of out-of-plane loop is0.99and10.4kOe, respectively. The relative round magnetic domains with sizes of100nm-300nm are observed.
     (2) When the annealing temperature varies from400℃to700℃, higher annealing temperature is beneficial to the formation of LI0FePt thin films. For the film annealed at700℃, the in-plane direction changes into hard magnetization direction and out-of-plane direction changes into easy magnetization direction,the perpendicular anisotropy of FePt thin films are very obvious.
     (3)For the700℃-annealed films,when the thickness increases from10nm to60nm,the out-of-plane coercivities decreases and the in-plane coercivities increases gradually, revealing that the perpendicular anisotropy of FePt thin films decreases.
     Ⅱ. Fabrication and studies of LI0FePt/Fe exchange coupled thin films
     ZI0FePt/Fe thin films and LI0FePt/Pt/Fe thin films were prepared by using magnetron co-sputtering and annealing. The magnetic property, magnetization reversal mechanism of LI0FePt/Fe thin films and the influence of Pt middle layer on exchange coupled strength between FePt layer and Fe layer were studied. The main conclusions are as follows.
     (1)When the Fe thickness is less than3nm, the in-plane M-H loops of FePt/Fe bilayer thin films close to straight line, suggesting that the exchange coupled strength is very strong between FePt layer and Fe layer. When Fe thickness is larger than3nm, the in-plane M-H loops of FePt/Fe bilayer thin films similar to soft magnetic thin films due to increasing demagnetization energy. As Fe thickness become thicker, the out-of-plane coercivities decrease, the switch field distribution become wider, the size of magnetic domain become smaller and the domain wall width become wider.
     (2)When Fe thickness is less than3nm, the strong interface exchange couple exist between FePt layer and Fe layer and the magnetization reversal process dominated by irreversible rotation. When the Fe thickness is larger than3nm, the magnetic reversal process varies from rigid magnetic reversal to exchange spring magnetic reversal with increasing Fe thickness. The magnetization of Fe turns to in-plane direction gradually and reversible Fe magnetization increase due to demagnetization energy. This is to say the magnetization reversal process of LI0FePt/Fe thin films starts from a rigid magnetic reversal, and then change to exchange spring magnetic reversal,finally a two-phase reversal process.
     (3)LI0FePt thin films are continuous films and exchange couple strength between FePt grains are very strong, demonstrated by Henkel curves and Delta M curves. As Fe become thicker, the magnetic reversal process of sample are influenced by magnetic dipole interaction, thus it is easy to demagnetize sample and hard to magnetize.
     (4) When the Pt middle layer thickness increases, there are no two-phase step in out-of-plane M-H loops and, the out-of-plane coercivities increase. These results show that the exchange couple is not strong enough between FePt layer and Fe layer when Fe thickness is3nm. So less than3nm Fe thickness is necessary to regulate exchange couple strength between FePt layer and Fe layer.
     Ⅲ.LI0FePt-MgO hard layer/Fe-MgO soft layer exchange coupled thin films
     The microstructure and magnetic property of LI0FePt-MgO thin films and LI0FePt-MgO/Fe-MgO exchange coupled thin films were studied.The main conclusions are as follows.
     (1)LI0FePt-MgO thin films with good perpendicular anisotropy and weak exchange couple between FePt grains have been prepared through doing MgO into FePt thin films, whereas the SiO2doping are not beneficial to the formation of (001)orientation in FePt thin films.
     (2)The FePt-MgO thin films show good perpendicular anisotropy when the MgO content is20vol.%.The microstructure shows that the FePt grains distribute uniformly in MgO matrix and the average grains size is close to5.4nm.The relatively weak exchange coupling was obtained by the small a value of2.0, which was confirmed by MFM images.This is important for achieving an ultra-high magnetic recording area density.
     (3)With the soft Fe-MgO layer being added, the in-plane coercivity increases and then decreases due to the weak exchange coupled interaction between hard layer FePt-MgO and upper soft Fe-MgO layer. The magnetization process of the bilayer system transforms from a coherent magnetization to an exchange spring behavior, and finally a two-phase magnetization reversible process with increasing soft layer thickness.
     (4)When a0.25nm Pt middle layer was inserted into FePt-MgO/Fe-MgO bilayers, the out-of-plane coercivity decreases to9.3kOe from10.1kOe.The out-of-plane coercivity increases with further increasing of the Pt middle layer thickness.It is obvious that the Pt middle layer can effectively regulate exchange couple strength between FePt-MgO hard layer and Fe-MgO soft layer.
引文
[1]Y. Shiroishi, K. Fukuda, I.Tagawa, H. Iwasaki, S. Takenoiri, H. Tanaka, H. Mutoh, and N. Yoshikawa, IEEE Trans. Magn.45,3816 (2009).
    [2]D. Goll, Int. J. Mat. Res.100,652 (2009).
    [3]维基百科http://zh. wikipedia.org/wiki/%E7%A 1%AC%E7%9B%98
    [4]J. H. Judy, J. Magn. Magn. Mater.235,235 (2001).
    [5]H. N. Bertram, Theory of Magnetic Recording, Cambridge University Press,1994.
    [6]江苏多维科技有限公司磁性传感技术介绍(2012).
    [7]S. N. Piramanayagam, J. Appl. Phys.102,011301 (2007).
    [8]D. Weller and A. Moser, IEEE Trans. Magn.35,4423 (1999).
    [9]D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, M. F. Toney, M. Schwickert, J.-U. Thiele, and M. F. Doerner, IEEE Trans. Magn.36,10 (2000).
    [10]Z. H. Lu, P. B. Visscher and W. H. Butler, IEEE Trans. Magn.43,2941 (2007).
    [11]E. C. Stoner and E. P. Wohlfarth, Phil. Trans. Roy. Soc.240,599 (1948).
    [12]R. H. Victora, Phys. Rev. Lett.63,457 (1989).
    [13]W. K. Shen, J. M. Bai, R. H. Victora, J. H. Judy, and J. P. Wang, J. Appl. Phys.97,10N513 (2005).
    [14]E. F. Kneller, Member, IEEE, and R. Hawig, IEEE Trans. Magn.,27,3588 (1991).
    [15]E. E. Fullerton, J. S. Jiang, and S. D. Bader, J. Magn. Magn. Mater.200,392 (1999).
    [16]D. Suess, J. Lee, J. Fidler, T. Schrefl, J. Magn. Magn. Mater.321,545 (2009).
    [17]F. B. Hagedorn, J. Appl. Phys.41,2491 (1970).
    [18]D. Suess, J. Magn. Magn. Mater.308,183 (2007).
    [19]A. Y. Dobin, and H. J. Richter, J. Appl. Phys.101,09K108 (2007).
    [20]D. Goll, S. Macke, and H. Kronmueller, Physica B 403,338 (2008).
    [21]G. Asti, M. Ghidini, R. Pellicelli, C. Pernechele, and M. Solzi, Phys. Rev. B 73,094406 (2006).
    [22]G Varvaro, F. Albertini, E. Agostinelli, F. Casoli, D. Fiorani, S. Laureti, P. Lupo, P. Ranzieri, B. Astinchap, and A M Testa, New J. Phys.14,073008 (2012).
    [23]X. Shen, M. Kapoor, R. Field, and R. H. Victora, IEEE Trans. Magn.,43,676 (2007).
    [24]R. H. Victor, and X. Shen, IEEE Trans. Magn.,41,537 (2005).
    [25]J. P. Wang, W. K. Shen, J. M. Bai, R. H. Victoral, J. H. Judy, and W. L. Song, Appl. Phys. Lett. 86,142504 (2005).
    [26]W. K. Shen, J. P. Wang, J. Appl. Phys.100,096113 (2006).
    [27]J. P. Wang, W. K. Shen, and J. M. Bai, IEEE Trans, Magn.,41,3181 (2005).
    [28]J. P. Wang, W. K. Shen, and S. Y. Hong, IEEE Trans. Magn.43,682 (2007).
    [29]王颖,博士毕业论文,兰州大学(2009).
    [30]D. Suess, Appl. Phys. Lett.89,113105 (2006).
    [31]D. Goll, A. Breitling, L. Gu, P. A. van Aken, and W. Sigle, J. Appl.Phys.104,083903 (2008).
    [32]D. Goll, A. Breitling, and S. Macke, IEEE Trans. Magn.,44,3472 (2008).
    [33]K. Gao, and H. N. Bertram, IEEE Trans. Magn.38,3675 (2002).
    [34]K. Gao, X. Wang, and H. N. Bertram, J. Appl. Phys.93,7840 (2003).
    [35]J. P. Wang, Nature Mater.4,191 (2005).
    [36]Y. Y. Zou, J. P. Wang, C. H. Hee, and T. C. Chong, Appl. Phys. Lett.82,2473 (2003).
    [37]C. H. Hee, Y. Y. Zou, and J. P. Wang, J. Appl. Phys.91,8004 (2002).
    [38]M. Albrecht, G. Hu, I. L. Guhr, and et al., Nature Mater.4,203 (2005).
    [39]R. L. White, R. M. H. New and R. F. W. Pease, IEEE Trans. Magn.33,990 (1997).
    [40]B. D. Terris and T. Thomson, J. Phys. D:Appl. Phys.38, R199 (2005).
    [41]M. Todorovic, S. Schultz, J. Wong, and A. Scherer, Appl. Phys. Lett.74,2516 (1999).
    [42]王芳,博士学位论文,山西师范大学(2011).
    [43]C. H. Lai, C. H. Yang, and C. C. Chiang, Appl. Phys. Lett.83,4550 (2003).
    [44]B. D. Terris, D. Weller, L. Folks, J. E. E. Baglin, and A. J. Kellock, J. Appl. Phys.87,7004 (2000).
    [45]H. Wang, M. T. Rahman, H.B. Zhao, Y. Isowaki, Y. Kamata, A. Kikitsu, and J. P. Wang, J. Appl. Phys.109,07B754 (2011).
    [46]R. Ruiz, H. Kang, F. A. Detcheverry, E. Dobisz, D. S. Kercher, T. R. Albrecht, J. J. de Pablo, and P. F. Nealey, Science 321,936 (2008).
    [47]S. H. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser, Science 287,1989 (2000).
    [48]M. T. Rahman, N. N. Shams, and C. H. Lai, Nanotechnology 19,325302 (2008).
    [49]H. Katayama, S. Sawamura, Y. Ogimoto, J. Nakajima, K. Kojima, and K. Ohta, J. Magn. Soc. Jpn.23,233 (1999).
    [50]H. Saga, H. Nemoto, H. Sukeda, and M. Takahashi, Jpn. J. Appl. Phys.38,1839 (1999).
    [51]M. Alex, A. Tselikov, T. McDaniel, N. Deeman, T. Valet, C. David, IEEE Trans. Magn.37, 1244(2001).
    [52]J. U. Thiele, S. Maat, E. E. Fullerton, Appl. Phys. Lett.82,2859 (2005).
    [53]魏福林,白建民,杨正,磁性材料及器件39,1(2008).
    [54]T. W. McDaniel, J. Phys. Condens. Matter 17, R315 (2005).
    [55]E. Gage et al., presented at ISOM Conference, Singapore, paper We-H-05 (2007).
    [56]J. G. Zhu, and X. Zhu, IEEE Trans. Magn.44,125 (2008).
    [57]S. Okamoto, N. Kikuchi, and O. Kitakami, Appl. Phys. Lett.93,102506 (2008).
    [58]M. Igarashi, Y. Suzuki, H. Miyamoto, Y. Maruyama, and Y. Shiroishi, J. Appl. Phys.105, 1358(2009).
    [59]R. Wood, M. Williams, A. Kavcic, and J. Miles, IEEE Trans. Magn.,45,917 (2009).
    [60]http://moneyweek.dooland.com/site/magazine/article.php?id=244106.
    [61]T. J. Zhou, Z. M. Yuan, S. H. Leong, B. H. Low, C. L. Ong, L. Wang, B. Liu, C. M. Cheong, and S. B. Hu, IEEE Trans. Magn.46,738(2010).
    [1]顾培夫,薄膜技术,杭州:浙江大学出版社,(1990).
    [2]蔡殉,石玉龙,周建,现代薄膜材料与技术,上海,华东理工大学出版社,(2007).
    [3]高本辉,崔素言,真空物理,北京:科学出版社,(1983).
    [4]唐伟忠,薄膜材料制备原理、技术及应用,北京:冶金工业出版社,(2003).
    [5]李宝河,冯春,于广华,高磁晶各向异性磁记录薄膜材料,北京:冶金工业出版社,(2012).
    [6]石景燕,李振海,电感耦合等离子体发射光谱法在化学分析中的应用,河北电力技术,43,(2003).
    [7]陆架和,陈长彦,现代分析技术,北京:清华大学出版社,(1995).
    [8]http://baike.baidu.eom/view/3822937.htm
    [9]王颖,博士毕业论文,兰州大学,(2009).
    [10]郭沁林,实验技术,36,405(2007).
    [11]常铁军,祁欣,材料近代测试分析方法,哈尔滨:哈尔滨工业大学出版社,157.
    [12]郑伟涛,薄膜材料与薄膜技术,北京:化学工业出版社,(2004).
    [13]吴晓京,透射电子显微镜,上海计量测试,29,33(2002).
    [14]刘亚丕,磁性材料及器件,2,29(2006).
    [15]曹江伟,博士毕业论文,兰州大学,(2006).
    [16]B. D. Cullity, C.D.Graham, Introduction to magnetic materials, IEEE Press, (2009).
    [17]S. N. Piramanayagam, Tow C. Chong, Developments in Data Storage:Materials Perspective, John Wiley& Sons-Publishing, Inc., Hoboken, New Jersey, (2012).
    [18]魏福林,白建民,杨正,磁性材料及器件,39,1(2008).
    [19]武彩霞,硕士毕业论文,兰州大学,(2006).
    [20]肖春涛,磁学及磁性材料导论,兰州:兰州大学出版社,(2003).
    [21]T. Keitoku, J.Ariake, N. Honda, and K. Ouchi, J.Magn.Magn. Mater.34,235 (2001).
    [22]白建民,博士毕业论文,兰州大学,(2002).
    [23]大内一弘,中国讲演报告,兰州大学,(2004).
    [24]杨正,磁记录物理,兰州:兰州大学出版社,(1986).
    [25]严格,博士毕业论文,兰州大学,(1995).
    [26]J. Kim, Dissertation, Lehigh University, (2001).
    [27]P. I. Mayo, K. O'Grady, P. E. Kelly, J. Cambridge, L. Sanders, T. Yogi, R. W. Chantrell, J. Appl. Phys.69,4733 (1991).
    [28]P. I. Mayo, A. Bradbury, R. W. Chantrell, P. E. Kelly, H. E. Jones, and P. R. Bissell, IEEE Trans. Magn.26,228 (1991).
    [29]N. Li, B. M. Lairson, O. H. Kwon, J. Magn. Magn. Mater.205,1(1999).
    [30]S. K. Chen, F. T. Yuan, W. C. Chang, T. S. Chin, J. Magn. Magn. Mater.239,471 (2002).
    [31]S. Thamm, and J. Hesse, J. Magn. Magn. Mater.154,254 (1996)。
    [32]J. Feng, N. Matsushita, S. Nakagawa, and M. Naoe, J. Magn. Soc. Japan 24,251 (2000).
    [33]G. Bottoni, D. Candolfo, and A. Cecchetti, IEEE Trans. Magn.34,1660 (1998).
    [34]娄元付,博士毕业论文,兰州大学,(2012).
    [35]邱成军,王元化,王义杰,材料物理性能,哈尔滨:哈尔滨工业大学出版社,(2003)
    [36]J. M. D. Coey, Magnetism and Magnetic Materials, Cambridge University Press, (2010).
    [37]Y. K. Takahashi, T. O. Seki, K. Hono, T. Shima and K.Takanashi, J.Appl. Phys.96,475 (2004).
    [1]Y. L. Li, Q. Chen, T. F. Feng, A. P. Huang, and Z. Y. Chen, Mater. Lett.65,2589 (2011).
    [2]J. H. Yin, T. Suzuki, and L. Q. Pan, Chin. Phys. B 17,3907 (2008).
    [3]L. W. Liu, H. Lv, W. Sheng, Y. F. Lou, J. M. Bai, J. W. Cao, B. Ma, and F. L. Wei, Appl. Surf. Sci.258,5770(2012).
    [4]Y. L. Li, A. P. Huang, T. F. Feng, Q. Chen, X. L. Shu, J. Y. Chen, and Z. Y. Chen, Chin. Phys. Lett.28,067502(2011).
    [5]J. W. Cao, N. Katayama, Z. Yang, F. L. Wei, Matsumoto, Morisako A, X. X. Liu, and S. Takei, Chin. Phys. Lett.22,2899 (2005).
    [6]Y. C. Duan, B. Ma, F. L. Wei, Z. Z. Zhang, and Q. Y. Jin, Chin. Phys. B 18,2565 (2009).
    [7]G. Asti, M. Ghidini, R. Pellicelli, C. Pernechele, M. Solzi, F. Albertini, F. Casoli, S. Fabbrici, and L. Pareti, Phys. Rev. B 73,094406 (2006).
    [8]T. Narisawa, T. Hasegawa, S. Ishio, and H. Yamane, J. Appl. Phys.109.033918 (2011).
    [9]D. Goll, Int. J. Mat. Res.100,652 (2009).
    [10]T. Seki, T. Shima, K. Takanashi, Y. Takahashi, and E. Matsubara, Appl. Phys.Lett.82,2461 (2003).
    [1]B.Ma, H. Wang, H. Zhao, C. Sun, R. Achaiya, J. P. Wang, J. Appl. Phys.109,083907 (2011).
    [2]G.Varvaro, F. Albertini, E. Agostinelli, F. Casoli, D. Fiorani, S. Laureti, P. Lupo, P. Ranzieri, B. Astinchap, and A. M. Testa, New J. Phys.14,073008 (2012).
    [3]D. Suess, J. Lee, J. Fidler, T. Schrefl, J. Magn. Magn. Mater.321,545 (2009).
    [4]G.P. Zhao, L. Chen, C. W. Huang, N. L. Guo, Y. P. Feng, Solid State Commun.150,1486 (2010).
    [5]G. Asti, M. Ghidini, R. Pellicelli, C. Pernechele, M. Solzi, F. Albertini, F. Casoli, S. Fabbrici, L. Pareti, Phys. Rev. B 73,094406 (2006).
    [6]Z. Xu, S. M. Zhou, J. J. Ge, J. Du, L. Sun, J. Appl. Phys.105,0021 (2009).
    [7]D. Makarov, J. Lee, C. Brombacher, C. Schubert, M. Fuger, D. Suess, J. Fidler, M. Albrecht, Appl. Phys. Lett.96,0003 (2010).
    [8]J. U. Thiele, S. Maat, E. E. Fullerton, Appl. Phys. Lett.82,2859 (2003).
    [9]J. Li, Z. L. Wang, H. Zeng, S. H. Sun, J. P. Liu, Appl. Phys. Lett.82,3743 (2003).
    [10]K. W. Lin, J. Y. Guo, C. Y. Liu, H. Ouyang, J. van Lierop, N. N. Phuoc, T. Suzuki, Phys. Status Solidi A 204,3991 (2007).
    [11]M. Daniila, P. A. Farbera, H. Okumuraa, G.C.Hadjipanayisa, D. Wellerb, J. Magn. Magn. Mater.246,297 (2002).
    [12]D. Goll, A. Breitling, S. Macke, IEEE Trans. Magn.44,3472 (2008).
    [13]A. Breitling, T. Bublat, D. Goll, Phys. Status Solidi-R.3,130 (2009).
    [14]D. Goll, A. Breitling, Appl. Phys. Lett.94,052505 (2009).
    [15]F. Casoli, F. Albertini, L. Nasi, S. Fabbrici, R. Cabassi, F. Bolzoni, C. Bocchi, P. Luches, Acta Mater.58,3594 (2010).
    [16]J. L. Tsai, H. T. Tzeng, G.B. Lin, Appl. Phys. Lett.96,032505 (2010).
    [17]J. L. Tsai, H. T. Tzeng, B.F. Liu, J. Appl. Phys.107,113923 (2010).
    [18]B. Ma, H. Wang, H. B. Zhao, C. J. Sun, R. Acharya, J. P. Wang, IEEE Trans. Magn.46,2345 (2010).
    [19]A. C. Sun, F. T. Yuan, J. H. Hsu, Y. H. Lin, P. C. Kuo, IEEE Trans. Magn.45,2709 (2009).
    [20]J. P. Wang, W. K. Shen, J. M. Bai, IEEE Trans. Magn.41,3181 (2005).
    [21]D. Goll, H. Kronmueller, Physica B 403,1854 (2008).
    [22]D. Goll, Int. J. Mater. Res.100,652 (2009).
    [23]严格,博士毕业论文,兰州大学,(1995).
    [24]W. K. Shen, and J. P. Wang, J. Appl. Phys.100,096113 (2006).
    [25]K. K. M. Pandey, J. S. Chen, G. M. Chow, J. F. Hu, and B. C. Lim, J. Appl. Phys.105. 07B733 (2009).
    [1]D. Goll, Int. J. Mater. Res.100,652 (2009).
    [2]G. Varvaro, F. Albertini, E. Agostinelli, F. Casoli, D. Fiorani, S. Laureti, P. Lupo, P. Ranzieri, B. Astinchap, and A. M. Testa, New J. Phys.14,073008 (2012).
    [3]D. Suess, T. Schrefl, S. Fahler, M. Kirschner, G.Hrkac, F. Dorfbauer, J. Fidler, Appl. Phys. Lett. 87,012504 (2005).
    [4]L. W. Liu, W. Sheng, J. M. Bai, J. W. Cao, Y. F. Lou, Y. Wang, F. L. Wei, J. Lu, Appl. Surf. Sci. 258,8124(2012).
    [5]M. Aniya, A. Shimada, Y. Sonobe, K. Sato, T. Shima, K. Takanashi, S. J. Greaves, T. Ouchi, T. Homma, IEEE Trans. Magn.46,2132 (2010).
    [6]J. J. Lin, Z. P. Pan, S. Karamat, S. Mahmood, P. Lee, T. L. Tan, S. V. Springham, R. S. Rawat, J. Phys. D Appl. Phys.41,095001 (2008).
    [7]K. Kang, Z. G. Zhang, C. Papusoi, T. Suzuki, Appl. Phys. Lett.84,404(2004).
    [8]Y. F. Ding, J.S.Chen, E. Liu, Thin Solid Films 474,141 (2005).
    [9]T. Suzuki, Fellow, IEEE, Z. G Zhang, A. K. Singh, J. H. Yin, A. Perumal, H. Osawa, IEEE Trans. Magn.41,555 (2005).
    [10]Y. Peng, J. G. Zhu, D. E. Laughlin, J. Appl. Phys.99,08F907 (2006).
    [11]A. C. Sun, Y. C. Tsai, F. T. Yuan, J. H. Hsu, P. C. Kuo, IEEE Trans. Magn.44,3531 (2008).
    [12]C. P. Luo. D. J. Sellmyer, Appl. Phys. Lett.75,3162 (1999).
    [13]T. O. Seki, Y. K. Takahashi, K. Hono, J. Appl. Phys.103,023910 (2008).
    [14]T. A. George, Y. S. Yu, L. P. Yue, R. Skomski, D. J. Sellmyer, Magnetics, IEEE Trans. Magn. 46,2435(2010).
    [15]T. Narisawa, T. Hasegawa, S. Ishio, H. Yamane, J. Appl. Phys.109, (2011) 033918.
    [16]T. J. Zhou, B. C. Lim, B. Liu, Appl. Phys. Lett.94,152505 (2009).
    [17]C. J. Jiang, J. S. Chen, J. F. Hu, G. M. Chow, J. Appl. Phys.107,123915 (2010).
    [18]S. Okamoto, N. Kikuchi, O. Kitakami, T. Miyazaki, Y. Shimada, K. Fukamichi, Appl. Phys. Lett.66,024413 (2002).
    [19]D. Goll, A. Breitling, Appl. Phys. Lett.94,052502 (2009).
    [20]Y. K. Takahashi, T. O. Seki, K. Hono, T. Shima, K. Takanashi, J. Appl. Phys.96,475 (2004).
    [21]B. Ma, H. Wang, H. B. Zhao, C. J. Sun, R. Acharya, J. P. Wang, J. Appl. Phys.109,083907 (2011).
    [22]J. S. Chen, B. C. Lim, J. F. Hu, Y. F. Ding, G. M. Chow, G. Ju, J. Phys. D Appl. Phys.41, 205001 (2008).
    [23]L. S. Huang, J. F. Hu, G. M. Chow, J. S. Chen, J. Appl. Phys.109,063910 (2011).
    [24]S. N. Piramanayagam, Tow C. Chong, Developments in Data Storage:Materials Perspective, John Wiley& Sons-Publishing, Inc., Hoboken, New Jersey,235 (2012).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700