用户名: 密码: 验证码:
AC-DC矩阵变换器调制与控制策略的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
AC-DC矩阵变换器是一种拓扑结构新颖的降压型通用整流装置,由于无需大容量储能元件,所以具有结构紧凑、能量密度高、可靠性和可维护性好的优点,非常适合对重量、体积、效率和可靠性要求较高的应用场合。同时,其正弦输入电流的功率因数可以自由调节,最高可达1,具有天然的能量回馈能力,可以输出双极性电压并导通双向电流,允许负载四象限运行,符合理想整流器的基本要求。本文将理论分析、计算机仿真和样机实验相结合,系统、深入地研究了AC-DC矩阵变换器的空间矢量调制策略、新型非线性控制策略和谐振抑制方法等关键技术问题,为AC-DC矩阵变换器的实用化提供了理论支持和技术准备。
     本文首先从AC-DC矩阵变换器的空间矢量调制策略出发,深入分析了AC-DC矩阵变换器的变换关系。为了抑制共模电压峰值和减少窄脉冲的产生,提出了一种利用有效电流矢量代替零电流矢量的改进型空间矢量调制策略及其优化的开关调制模式。然后在考虑换流时间的基础上,推导了使用传统空间矢量调制策略搭配不同开关调制模式,及使用改进型空间矢量调制策略时,窄脉冲产生几率与调制度和扇区角度的关系表达式。理论分析证明,所提算法不仅对共模电压幅值、有效值和谐波含量有明显的抑制效果,还可在更宽的调制度范围内获得较优的输入、输出性能。仿真和实验结果验证了算法的可行性和有效性。
     针对AC-DC矩阵变换器抗电网畸变能力较差的问题,首先定量分析了AC-DC矩阵变换器在电源电压幅值不平衡和波形非正弦情况下的工作特性,推导了输入、输出各电量的解析表达式。然后提出了一种αβ坐标系下空间矢量调制策略的通用实现方法,其特点是可以灵活构造期望输入电流矢量,改变AC-DC矩阵变换器的工作特性。最后以获得平直的输出直流电压为目的,提出了一种期望输入电流矢量的构造方法,可以同时补偿电源电压矢量幅值和角速度不恒定造成的输出直流电压脉动。同时,该补偿控制策略有效减少了开平方、三角函数和反三角函数等复杂运算的次数,更利于工程实现。理论分析的正确性和算法的可行性得到了仿真实验的验证。
     提出了一种基于空间矢量表达和滑模变结构的非线性控制策略。推导了AC-DC矩阵变换器的误差状态空间模型,讨论了滑模切换线的选取方法,给出了滑动模态的可到达条件并设计了开关表。着重研究了控制器参数对变换器性能的影响,从最大化滑模存在域宽度和降低开关频率的角度出发,给出了控制器参数选择方法。实验结果证明,基于本控制策略的AC-DC矩阵变换器具有算法简单、无稳态误差、动态响应速度快、抗网侧干扰能力强和输入功率因数高等优点。
     输入LC滤波器是AC-DC矩阵变换器中不可或缺的重要组成部分,但是其固有的谐振特性易被电源电压中的谐波污染或输入电流中的谐波分量激发,造成变换器无法正常工作。为了在抑制输入滤波器谐振的同时,改善AC-DC矩阵变换器的运行特性,提出了一种两相同步旋转坐标系下的双闭环反馈控制策略。分别利用单周期控制技术和经典控制理论设计了输入电流内环控制器和负载电压外环调节器,并从数学的角度讨论了单周期控制策略与空间矢量调制策略的异同点。提出了一种具有选频特性的主动阻尼控制策略,并将其与输入电流内环控制器相结合,避免了类似算法中复杂的归一化和三角函数运算,降低了软件复杂度。在考虑实际控制器延时的基础上,分析了控制器参数对系统稳定性的影响。提出了一种基于DSP和CPLD的单周期控制器实现方法,使得数字化单周期控制成为可能。实验结果验证了所提算法的有效性和数字单周期控制的可行性。
     本文通过对AC-DC矩阵变换器调制策略和控制策略的研究,得出了一些有意义的经验和结论,为AC-DC矩阵变换器进一步的实用化研究提供了一定的技术基础。
The AC-DC matrix converter (AC-DC MC) is a novel step-down AC-DC power conversion topology possessing many unique advantages over the existing rectifiers. Due to the absence of bulky energy storage components, the AC-DC MC shows a highly compact structure, high power density, high reliability and good maintainability, which make it very suitable for the application areas where weight, volume, efficiency and reliability are of importance. Besides, it can generate DC output with arbitrary polarity and wide-range controllable magnitude while drawing sinusoidal input current from the power source at unity or any specified input power factor, and very easy to extend to regenerative operation. All these highly attractive characteristics make the AC-DC MC an ideal future solution for AC-DC power conversion. Systematic and deeply studies have been conducted in this dissertation focused on the modulation algorithms and the control strategies of the AC-DC MC, as well as its input filter resonance mitigation methods by means of theoretical analysis, computer simulation and prototype experiment. These researches provide theoretical and technological foundation for the practical implementation of the AC-DC MC.
     Based on the in-depth analysis of the basic space vector modulation (SVM) strategy, an improved SVM method is developed for practical implemented AC-DC MC. The objectives of reducing the common-mode voltage (CMV) and eliminating the narrow pulses are accomplished by replacing the zero space vectors with suitable couple of active ones. Further considering the commutation time, the relationship between the modulation index, the sector angle and the probability of narrow pulse in the conventional and the proposed SVM method are derived. The proposed scheme not only can reduce the magnitude, the root mean square value and the harmonic components of the CMV, but also guarantees a better input and output performance in wider modulation ratio range. Simulation and experimental results verified the conclusions and the validity of the optimized strategy.
     In order to improve the poor performance of the AC-DC MC when the power source is distorted, the input and output characteristics of the AC-DC MC are theoretically analyzed in the conditions that the source voltages are unbalanced and non-sinusoidal respectively. Then, a universal implementation method in the αβ stationary coordinates for the SVM strategy is proposed, which allows the change of the performance of the AC-DC MC by flexibly modifying the demanded input current vector. At last, an input current reference construction method is proposed with the purpose of generating steady output DC voltage. The proposed compensation strategy not only eliminates the low-frequency ripples at the output side of the AC-DC MC caused by the magnitude and the angular frequency variation of the source voltage vector, but also simplifies the calculation process by reducing the requirements for complex real-time calculation operations including square root, trigonometric functions and anti-trigonometric functions. The correctness of the theoretical investigation is verified and the effectiveness of the proposed compensation method is testified by computer simulations.
     A novel direct control method applying the sliding-mode variable structure control technique and the space vector approach, aiming at both regulating the input currents and the output voltage, is presented. The proposed method is developed based on the modeling of the variable structure system considering the switching matrix and the dynamics of its associated input and output filters. Afterwards, the sliding surfaces and the switching laws are determined, the sliding surface reaching conditions are checked and the entire switching table is established. With the purposes of maximizing the sliding mode extension domain and minimizing the switching losses, the influence of the controller parameters to the converter performance is investigated in detail, and a practical parameter tuning approach is given. The designed sliding mode controller is tested by simulations and experiments. The obtained results show that the proposed control scheme guarantees fast dynamic response and precise control actions, especially ensuring a unity input power factor regardless of the system parameters and providing better output behavior with distorted source voltages.
     The input LC filter is essential in the AC-DC MC system, but its inherent resonance figure makes it easily to be excited by the harmonic pollution in the power source or by the harmonic components in the input currents drawn by the converter itself. This phenomenon may cause instability during operation, even result in severe system failure. With the purpose of enhancing the performance of the AC-DC matrix converter, a double closed-loop control method is proposed under the dq rotating reference frame. The inner-loop input current controller and the outer-loop load voltage controller are designed based on the one-cycle control (OCC) algorithm and the classical control theory respectively. And the consistency of the proposed OCC control method and the SVM strategy is mathematically proofed. A frequency selective active damping (AD) method by employing the grid-side input currents as feedback signals is developed so as to mitigate the input filter resonance actively. The proposed AD method is introduced into the inner-loop OCC controller to avoid the requirement of normalization and complex modulation index control in the existing strategies. A model including the proposed method and the input filter is established with considering delay caused by the actual controller, based on which, the active damping parameter design principle is investigated. A realization approach of the proposed OCC controller is proposed, which is suitable for the implemented digital control system utilizing DSP and CPLD chips. The experimental results are given to demonstrate the correctness of the theoretical analysis and the practicability of the proposed digital OCC control approach.
     This dissertation mainly pays attention on the modulation and control strategies of the AC-DC matrix converter. Some valuable experience and ideal results are given, which found the technological foundation for the AC-DC matrix converter's further industry applications.
引文
[1]F. Lov, M. Ciobotaru, D. Sera, etc. Power electronics and control of renewable energy systems[C]. IEEE PEDS'07,2007:6-28.
    [2]钱照明,盛况.大功率半导体器件的发展与展望[J].大功率变流技术,2010.1:1-9.
    [3]B. T. Ooi, M. Kazerani. Unified power flow controller based on matrix converter[C]. IEEE PESC'96,1996:502-507.
    [4]N. Mohan, T. Undeland, P. W. Robbins. Power electronics converters, applications and design[M]. USA:John Wiley & Sons,2003.
    [5]王兆安,杨军,刘金军.谐波抑制和无功功率补偿[M].北京:机械工业出版社,1998.
    [6]宋文男,刘宝仁.电力系统谐波分析[M],北京:水利电力出版社,1995.
    [7]W. E. Reid. Power quality issues-standards and guidelines[J]. IEEE Transactions on Industry Applications.1996,32(3):625-632.
    [8]陈伯时,陈敏逊.交流调速系统[M].北京:机械工业出版社,1998.
    [9]陈坚.电力电子学-电力电子变换和控制技术[M].北京:高等教育出版社,2002.
    [10]N. Mohan, T. Undeland, W. P. Robbins.电力电子学-变换器、应用和设计[M].北京:高等教育出版社,2004.
    [11]贺益康,潘再平.电力电子技术基础[M].浙江:浙江大学出版社,1995.
    [12]张立,黄两一.电力电子场控器件及其应用[M].北京:机械工业出版社,1996.
    [13]林渭勋.现代电力电子电路[M].浙江:浙江大学出版社,2002.
    [14]王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,2003.
    [15]胡崇岳.现代交流调速技术[M].北京:机械工业出版社,1999.
    [16]A. L. Julian, G. Oriti. AC-DC traction drive application of a regenerative rectifier using AC/AC matrix converter theory[C]. IEEE IAS'03,2003:198-204.
    [17]J. W. Kolar, M. Baumann, F. Schafmeister, etc. Novel Three-phase AC-DC-AC Sparse Matrix Converter[J]. IEEE APEC'02,2002:777-787.
    [18]L. Gyugyi. Generalized theory of statie Power frequency changers[D]. Manehester, UK:Salford University,1970.
    [19]L. Gyugyi, B.R.Pelly. Static Power frequency changers-theory, performance & application[J]. USA:J. Wiley,1970.
    [20]居吉,佩莱,王孝祥等(译).静止功率变换器[M].北京:冶金工业出版社,1988.
    [21]M. Venturini. A new sine wave in sine wave out conversion technique which eliminates reactive elements[C]. Powercon'7,1980:1-15.
    [22]J. Rodriguez, M. Rivera, J. W. Kolar, P. W. Wheeler. A review of control and modulation methods for matrix converters [J]. IEEE Transactions on Industrial Electronics,2012,59(1):58-70.
    [23]A. Alesina, M.Venturini. Solid-state power conversion:an analysis approach to generalized transformer synthesis[J]. IEEE Transactions on Circuit and Systems, 1981,28(4):319-330.
    [24]A. Alesina, M. Venturini. Analysis and design of optimum amplitude nine switch direct AC-AC converters. IEEE Transactions on Power Electronies,1989,14(1): 101-112.
    [25]J. Rodriguez, E. Silva, F. Blaabjerg, etc. Matrix converter controlled with the direct transfer function approach:Analysis, modelling and simulation[J]. International Journal of Electronics,2005,92(2):63-85.
    [26]L. Zhang, C. Watthanasaran, W. Shepherd. Control of AC-AC matrix converter for unbalanced and/or distorted supply voltage[C], IEEE PESC'01,2001:1108-1113.
    [27]S. Bernet, S. Ponnaluri, R. Teichmann. Design and loss comparison of matrix converters and voltage-source converters for modern AC drives[J]. IEEE Transactions on Industrial Electronics,2002,49(2):304-314.
    [28]J. Rzasa. Capacitor clamped multilevel matrix converter controlled with Venturini method[C]. EPE'08,2008:357-364.
    [29]D. Casadei, G. Serra, A. Tani, etc. Optimal use of zero vectors for minimizing the output current distortion in matrix converters[J]. IEEE Transactions on Industry Electronic,2009,56(2):326-336.
    [30]黄科元.矩阵式变换器的空间矢量调制及其应用研究[D].杭州:浙江大学,2005.
    [31]于勇.矩阵变换器的空间矢量凋制、系统集成及应用研究[D].浙江:浙江大学, 2005.
    [32]佘宏武,林桦,王兴伟,等.矩阵变换器在非正常输入电压下的控制策略[J].中国电机工程学报,2009,29(33):28-33.
    [33]H. J. Cha, P. N. Enjeti. An approach to reduce common-mode voltage in matrix converter[J]. IEEE Transactions on Industrial Applications,2003,39(4): 1151-1159.
    [34]F. Blaabjery, D. Casadei, C. Klumpner, etc. Comparison of two current modulation strategies for matrix converters under unbalanced input voltage conditions[J]. IEEE Transactions on Industrial Electronics,2002,49(2):289-296.
    [35]易灵芝,李志勇,朱建林,等.输入非平衡条件下矩阵变换器两种电流偏置角调制策略的谐波分析[J].电力自动化设备,2004,24(6):29-33.
    [36]L. N. Wang, D. N. Zhou, K. Sun, etc. A novel method to enhance the voltage transfer ratio of matrix converter[C]. IEEE TENCON'04,2004:81-84.
    [37]陈希有.矩阵式电力变换器在非对称输入条件下的原理与仿真[D].哈尔滨:哈尔滨工业大学,1999.
    [38]陈希有,陈学允.矩阵式电力变换器的无功功率分析[J].中国电机工程学报,1999,19(11):5-9.
    [39]陈希有,陈学允.一般矩阵式变换器的等效电路及其应用[J].电工技术学报,1999,15(5):31-34.
    [40]陈希有,陈学允.基于PARK变换的空间矢量调制矩阵变换器的暂态分析[J].中国电机工程学报,2000,20(5):80-84.
    [41]王毅,陈希有,徐殿国.空间矢量调制矩阵变换器闭环控制的研究[J].中国电机工程学报,2003,23(6):164-169.
    [42]杨梅,孙凯,黄立培.矩阵式变换器的空间矢量脉宽调制优化方法[J].电机与控制学报,2009,13(6):886-890.
    [43]孙凯,黄立培,松濑贡规.基于矩阵式变换器的异步电动机矢量控制[J].清华大学学报(自然科学版),2004,44(7):909-912.
    [44]孙凯,黄立培,梅杨.矩阵式变换器驱动异步电机调速系统的非线性自抗扰控制[J].电工技术学报,2007,22(12):39-45.
    [45]杨梅,孙凯,黄立培.矩阵式变换器的输入功率因数控制[J].清华大学学报(自然科学版),2009,49(4):469-472.
    [46]陆海慧,陈伯时,夏承光.矩阵式交-交变换器[J].电力电子技术,1997,31(1): 105-108.
    [47]陈伯时,陆海慧.矩阵式交-交变换器及其控制[J].电力电子技术,1999,33(1):8-11.
    [48]朱贤龙,黄海俊,陆海慧,等.基于空间矢量调制的三相交-交矩阵式变换器的研制与研究方向[J].电气传动,1999,29(2):1 1-14.
    [49]A. Ishiguro, T. Furuhashi, S. okuma. A novel control method for forced commutated cycloconverters using instantaneous values of input line-to-line voltages[J]. IEEE Transactions on Industrial Electronics,1991,38(3):166-172.
    [50]穆新华,庄心复.交-交型矩阵变换器的双电压控制原理及波形合成[J].南京航空航天大学学报,1997,29(2):151-157.
    [51]穆新华,庄心复,陈怀亚.双电压控制的矩阵变换器的开关状态与仿真分析[J].电工技术学报,1998,13(1):46-5.
    [52]J. Oyama, X. Xia, T. Higuchi, etc. Displacement angle control of matrix converter[C]. IEEE PESC'97,1997:1033-1039.
    [53]孙尧.矩阵变换器若干关键问题研究[D].湖南:中南大学,2010.
    [54]刘洪臣,陈希有,冯勇,等.双电压合成矩阵变换器共模电压的研究[J].中国电机工程学报,2004,24(12):182-186.
    [55]方永丽.矩阵变换器控制策略及其双馈调速控制方法的研究[D].江苏:中国矿业大学,2006.
    [56]刘洪臣,陈希有,沈涛,等.用于抑制矩阵变换器共模电压的零输出换相策略[J].中国电机工程学报,2005,25(3):29-32.
    [57]陈希有,陈允学.双电压合成矩阵变换器无功功率的控制与输入电流消谐[J].电气传动,2001,1:11-15.
    [58]J. K. Kang, H. Hara, A. M. Hava, etc. The matrix converters drive performance under abnormal input voltage conditions[J]. IEEE Transactions on Power Electronics,2002,17(5):721-730.
    [59]J. K. Kang, H. Hara, E. Yamamoto, etc. Input harmonics damping for high Power quality applications of matrix converter[C]. IEEE IAS'03,2003:1498-1503.
    [60]H. Hara, E. Yamamoto, K. J. Koo, etc. Improvement of output voltage control performance for low-speed operation of matrix converter[J]. IEEE Transactions on Power Electronics,2005,20(6):1372-1378.
    [61]Z. Idris, M. Hamzah, A. Omar. Implementation of single-phase matrix converter as a direct AC-AC converter synthesized using sinusoidal pulse width modulation with passive load condition[C]. IEEE PEDS'05,2005:1536-1541.
    [62]Y. D. Yoon, S. K. Sul. Carrier-based modulation technique for matrix converter[J]. IEEE Transactions on Power Electronics,2006,21(6):1691-1703.
    [63]P. C. Loh, R. Rong, F. Blaabjerg, P. Wang. Digital carrier modulation and sampling issues of matrix converters[J]. IEEE Transactions on Power Electronics,2009, 24(7):1690-1700.
    [64]P. Kiatsookkanatorn, S. Sangwongwanich. A unified PWM strategy for matrix converters and its dipolar PWM realization[C]. IEEE IPEC'10,2010:3072-3079.
    [65]Y. D. Yoon, S. K. Sul. Carrier-based modulation method for matrix converter with input power factor control and under unbalanced input voltage conditions[C]. IEEE APEC'07,2007:310-314.
    [66]S. Thuta, K. Mohapatra, N. Mohan. Matrix converter over-modulation using carrier-based control:Maximizing the voltage transfer ratio[C]. IEEE PESC'08, 2008:1727-1733.
    [67]T. Satish, K. Mohapatra, N. Mohan. Steady state over-modulation of matrix converter using simplified carrier based control[C]. IEEE IECON'07,2007: 1817-1822.
    [68]P. Loh, R. Rong, F. Blaabjerg, etc. Carrier-based modulation schemes for various three-level matrix converters[C]. IEEE PESC'08,2008:1720-1726.
    [69]D. Casadei, G. Serra, A. Tani. The use of matrix converters in direct torque control of induction machines[J]. IEEE Transactions on Industrial Electronics,2001,48(6): 1057-1064.
    [70]C. Ortega, A. Arias, C. Caruana, etc. Improved waveform quality in the direct torque control of matrix-converter-fed PMSM drives[J]. IEEE Transactions on Industrial Electronics,2010,57(6):2101-2110.
    [71]X. Dan, F. Rahman. A modified DTC for matrix converter drives using two switching configurations[C]. EPE'09,2009:1-10.
    [72]K. B. Lee, F. Blaabjerg. Sensorless DTC-SVM for induction motor driven by a matrix converter using a parameter estimation strategy[J]. IEEE Transactions on Industrial Electronics,2008,55(2):512-521.
    [73]J. X. Wang, J. G. Jiang. Variable-structure direct torque control for induction motor driven by a matrix converter with over modulation strategy[C]. IEEE IPEMC'09, 2009:580-584.
    [74]X. Dan, F. Rahman. An improved DTC for matrix converter drives using multi-mode ISVM and unity input power factor correction[C]. EPE'09,2009: 1-10.
    [75]S. Kouro, P. Cortes, R. Vargas, etc. Model predictive control, a simple and powerful method to control power converters[J]. IEEE Transactions on Industrial Electronics,2009,56(6):1826-1838.
    [76]M. Rivera, R. Vargas, J. Espinoza, etc. Behavior of the predictive DTC based matrix converter under unbalanced AC-supply[C]. IEEE PESC'07,2007:202-207.
    [77]R. Vargas, J. Rodriguez, U. Ammann, etc. Predictive current control of an induction machine fed by a matrix converter with reactive power control [J]. IEEE Transactions on Industrial Electronics,2008,55(12):4362-4371.
    [78]F. Morel, J. M. Retif, L. S. Xue, etc. A predictive control for a matrix converter-fed permanent magnet synchronous machine[C]. IEEE PESC'08,2008:15-21.
    [79]R. Vargas, U. Ammann, J. Rodriguez, etc. Predictive strategy to control common-mode voltage in loads fed by matrix converters[J]. IEEE Transactions on Industrial Electronics,2008,55(12):4372-4380.
    [80]R. Vargas, U. Ammann, J. Rodriguez. Predictive approach to increase efficiency and reduce switching losses on matrix converters[J]. IEEE Transactions on Power Electronics,2009,24(4):894-902.
    [81]P. Correa, J. Rodriguez, M. Rivera, etc. Predictive control of an indirect matrix converter[J]. IEEE Transactions on Industrial Electronics,2009,56(6):1847-1853.
    [82]M. Rivera, P. Correa, J. Rodriguez, etc. Predictive control of the indirect matrix converter with active damping[C]. IEEE IPEMC,2009:1738-1744.
    [83]J. Rodriguez, J. Kolar, J. Espinoza, etc. Predictive current control with reactive power minimization in an indirect matrix converter[C]. IEEE ICIT,2010: 1839-1844.
    [84]N. Burany. Safe control of four-quadrant switches[J]. IEEE IAS'89,1989: 1190-1194.
    [85]P. W. Wheeler, D. A. Grant. Reducing the semiconductor losses in a matrix converter[C]. IEE Colloquium on Variable Speed Drives and Motion Control, 1992:1-5.
    [86]L. Empringham, P. W. Wheeler, J. C. Clare. Intelligent commutation of matrix converter bi-directional switch cells using novel gate drive techniques[C]. IEEE PESC'98,1998:707-713.
    [87]L. Empringham, P. W. Wheeler, J. C. Clare. A matrix converter induction motor drive using intelligent gate drive level current commutation techniques [C]. IEEE IAS'00,2000:1936-1941.
    [88]P. W. Wheeler, J. C. Clare, L. Empringham. Enhancement of matrix converter output waveform quality using minimized commutation times[J]. IEEE Transactions on Industrial Electronics,2004,51(1):240-244.
    [89]P. W. Wheeler, J. C. Clare, L. Empringham. A vector controlled MCT matrix converter induction motor drive with minimized commutation times and enhanced waveform quality[C]. IEEE IAS'02,2002:466-472.
    [90]M. Ziegler, W. Hofmann. Semi natural two steps commutation strategy for matrix converters[C]. IEEE PESC'98,1998:727-731.
    [91]B. H. Kwon, B. D. Min, J. H. Kim. Novel commutation technique of AC-AC converters[J]. iEE Proceedings on Electrical Power Applications.1998,145(4): 295-300.
    [92]J. H. Youm, B. H. Kwon. Switching technique for current-controlled AC-to-AC converters[J]. IEEE Transactions on Industrial Electronics,1999,46(2):309-318.
    [93]M. Ziegler, W. Hofmann. Implementation of a two steps commutated matrix converter[C].IEEE PESC'99,1999:175-180.
    [94]M. Ziegler, W. Hofmann. A new two steps commutation policy for low cost matrix converters[C]. IEEE PESC'00,2000:445-450.
    [95]J. Mahlein, J. Igney, J. Weigold. Matrix converter commutation strategies with and without explicit input voltage sign measurement[J]. IEEE Transactions on Industrial Electronics,2002,49(2):407-414.
    [96]王兴伟,林桦,佘宏武,等.矩阵变换器电压型两步换流策略及实现[J].电工技术学报,2010,25(4):103-108.
    [97]马星河,谭国俊,方永丽,等.矩阵变换器变步长换流策略[J].电工技术学报,2007,22(9):93-98.
    [98]M. Ziegler, W. Hofmann. New one-step commutation strategies in matrix converters[C]. IEEE PEDS'Ol,2001:560-564.
    [99]J. Adamek, W. Hofmann, M. Ziegler. Fast commutation process and demand of bidirectional switches in matrix converters[C]. IEEE PESC'03,2003:1281-1286.
    [100]蔡文.矩阵式三相交流-直流变换器的研究[D].上海:上海大学,2008.
    [101]C. T. Pan, T. C. Chen, J. J. Shieh. A zero switehing loss matrix converter[C]. IEEE PESC'93,1993:545-550.
    [102]H. L. Hey, H. Pinheiro, J. R. Pinheiro. A new soft-switching AC-AC matrix converter, with a single active commutation auxiliary circuit[C]. IEEE PESC'95, 1995:965-970.
    [103]M. V. M. Villaca, A. J. Perin. A soft switched direct frequeney changer[C]. IEEE IAS'95,1995:2321-2326.
    [104]周大宁,刘亚东,黄立培.RB-IGBT矩阵变换器传动系统中的一种新颖两步换流策略[J].电工电能新技术,2006,25(3):1-4.
    [105]K. Sun, D. Zhou, L. Huang, etc. A novel commutation method of matrix converter fed induction motor drive using RB-IGBT[J]. IEEE Transactions on Industrial Applications,2007,43(3):777-786.
    [106]Y. Seki, Y. Harada, N. Iwamuro, etc. A new IGBT with a monolithic over-current protection circuit[C]. IEEE ISPSD'94,1994:31-35.
    [107]Z. J. Shen, S. P. Robb. Monolithic integration of the vertical IGBT and intelligent protection circuit[C]. IEEE ISPSD'96,1996:295-298.
    [108]J. Luo, Y. Liang, B. Cho. Design of IGBT protection circuit for smart power integration[J]. IEEE Transactions on industrial electronics,2000,47(4):744-750.
    [109]R. Pagano, A. Raciti. Evolution in IGBT's protection against short circuit behaviors by gate-side circuitry[C]. IEEE ISIE'02,2002:913-9188.
    [110]S. Musumeci, R. Pagano, A. Raciti, etc. A novel protection technique devoted to the improvement of the short circuit raggedness of IGBT's[C], IEEE IECON'03, 2003:1733-1738.
    [111]周大宁.基于RB-IGBT的矩阵变换器-异步电机驱动系统的设计[D].北京:清华大学,2006.
    [112]C. L. Neft. AC power supplied static switching apparatus having energy recovery capability[P], US,1987:No.4697230.
    [113]J. I. Itoh, I. Sato, A. Odaka. A novel approach to practical matrix converter motor drive system with reverse blocking IGBT[C], IEEE PESC'04,2004:2380-2385.
    [114]J. Mahlein, M. Bruckmann, M. Braun. Passive protection strategy for a drive system with a matrix converter and an induction machine[J]. IEEE Transactions on Industrial Electronics,2002,49(2):297-303.
    [115]L. N. Wang, F. Y. Xu., S. Kai. A novel safe shutdown strategy for matrix converter even under fault condition[C], IEEE APEC'05,2005:1786-1790.
    [116]S. Bouehiker, G. A. Capolino, M. Poloujadoff. Vector control of a permanent-magnet synchronous motor using AC-AC matrix converter[J]. IEEE Transactions on Power Electronics,1998,13(6):1089-1099.
    [117]C. Ortega, A. Arias, C. Caruana, etc. Improved Waveform Quality in the Direct Torque Control of Matrix-Converter-Fed PMSM Drives[J]. IEEE Transactions on Industry Electronics,2010,57(6):2101-2110.
    [118]T. H. Liu, D. F. Chen, C. K. Hung. Nonlinear controller design and implementation for a matrix-converter based PMSM drive system[J]. IEE Proceedings on Electric Power Applications,2005,152(5):1037-1048.
    [119]C. Klumpner, P. Nielsen, I. Boldea, etc. A new matrix converter motor for industry applications[J], IEEE Transactions on Industrial Electronics,2002,49(2):325-335.
    [120]安川电机公司.产品手册:Matrix converter varispeed AC,2006.
    [121]T. F. Podlesak, D. C. Katsis, P. W. Wheeler, etc. A 150-kVA vector-Controlled Matrix Converter Induction Motor Drive [J]. IEEE Transactions on industry Electronics,2005,41(3):841-847.
    [122]L. Zhang, C. Watthanasam. A matrix converter excited doubly-fed induction machine as a wind power generator[C].7th International Conference on Power Electronics and Variable Speed Drives,1998:532-537.
    [123]L. Zhang, C. Watthanasam, W. Shepherd. Application of a matrix converter for the power control of variable speed wind turbine driving doubly-fed induction generator[C]. IECON'97,1997:906-911.
    [124]R. Cardenas, R. Pena, J. Clare etc. Control of the reactive power supplied by a matrix converter[J]. IEEE Transactions on Energy Conversion,2009,24(1): 301-303.
    [125]R. Cardenas, R. Pena, P. W. Wheeler, etc. Control of the reactive power supplied by a WECS based on an induction generator fed by a matrix converter[J]. IEEE Transactions on Industrial Electronics,2009,56(2):429-438.
    [126]黄科元,贺益康,卞松江.矩阵式变换器交流励磁的变速恒频风力发电系统研究[J].中国电机工程学报,2002,22(11):100-105.
    [127]黄科元,贺益康.矩阵式变换器励磁的双馈风力发电机系统[J].太阳能学报,2002,23(6):732-737.
    [128]张华强,王新生,徐殿国.矩阵变换器在变速恒频风力发电中的应用研究[J].电力器件,2006,29(3):859-863.
    [129]D. Katsis, P. W. Wheeler, J. C. Clare, etc. A Three-phase utility power supply based on the matrix converter[C]. IEEE IAS'04,2004:1447-1451.
    [130]P. Snary, B. Bhangu, C. M. Bingham, etc. Matrix converter for sensorless control of PMSMs and other auxiliaries on deep-sea ROVs[J]. IEE Proceedings on Electric Power Applications,2005,152(2):382-392.
    [131]D. J. Holmes, T. A. Lipo. Implementation of a controlled rectifier using AC-AC matrix converter theory[J]. IEEE Transactions on Power Electronics,1992,7(1): 240-249.
    [132]梅杨,孙凯,黄立培.基于逆阻式IGBT的三相/单相矩阵式变换器[J].电工技术学报,2007,22(3):91-95.
    [133]杨喜军,王建全,张峦国,等.矩阵整流器电流SVM算法的仿真分析[J].系统仿真学报,2007,19(5):1072-1077.
    [134]徐仕,殷冠贤,徐殿国.车用新型AC-DC矩阵式变换器[J].电工技术学报,2011,26(8):64-70.
    [135]S. Ishii, H. Hara, T. Higuchi, etc. Bidirectional DC-AC conversion topology using matrix converter technique[C]. IEEE IPEC'10,2010:2768-2773.
    [136]王辉,粟梅,孙尧,等.应用于V2G的AC/DC矩阵变换器[J].中国电机工程学报,2013,33(9):34-41.
    [137]冯波,林桦,王兴伟,等.AC-DC矩阵变换器空间矢量优化调制模式研究[J].中国电机工程学报,2012,32(33):7-14.
    [138]杨兴华,杨喜军,张哲民,等.矩阵整流器单周期控制策略的研究[J].电工技术学报,2011,27(2):38-44.
    [139]曾雨竹.对矩阵变换器若干问题的研究[D].浙江:浙江大学,2007.
    [140]R. Garcia-Gil, J. M. Espi, E. Sanchis-Kildcrs, etc. Bi-directional three-phase rectifier with high-frequency isolation and power factor correction[C]. IEEE PESC'04,2004:2869-2874.
    [141]S. Ratanapanachote, H. J. Cha, P. N. Enjeti. A digitally controlled switch mode power supply based on matrix converter[J]. IEEE Transactions on Power Electronics,2006,21(1):124-130.
    [142]文锋,姜久春,郭慧萍.基于矩阵变换器的AC/DC变换器[J].电工技术学报,2009,24(3):128-131.
    [143]F. Yue, P. W. Wheeler, J. C. Clare. Cancellation of 3rd common-mode voltage generated by matrix converter[C]. IEEE IECON'05,2005:1217-1222.
    [144]F. Bradaschia, M. C. Cavalcanti, E. Ibarra, etc. Generalized pulse-width-modulation to reduce common-mode voltage in matrix converters[C]. IEEE ECCE'09,2009:3274-3281.
    [145]R. Vargas, U. Ammann, J. Rodriguez, etc. Predictive strategy to control common-mode voltage in loads fed by matrix converters[J]. IEEE Transactions on Industrial Electronics,2008,55(12):4372-4380.
    [146]R. K. Gupta, K. K. Mohapatra, A. Somani, etc. Direct-matrix converter-based drive for a three-phase open-end-winding ac machine with advanced features[J]. IEEE Transactions on Industrial Electronics,2010,57(12):4032-4042.
    [147]T. D. Nguyen, H. H. Lee. Modulation strategies to reduce common-mode voltage for indirect matrix converters[J]. IEEE Transactions on Industrial Electronics, 2012,59(1):129-140.
    [148]张兴,童诚,杨淑英,等.基于双空间矢量调制的双级矩阵变换器共模电压抑制研究[J].中国电机工程学报,2010,30(18):33-38.
    [149]A. Antoni, P. W. Wheeler. Elimination of waveform distortions in matrix converters using a new dual compensation method[J]. IEEE Transactions on Industrial Electronics,2007,54(4):2079-2087.
    [150]何必,林桦,佘宏武,等.矩阵变换器在窄脉冲作用下的性能改善[J].中国电机工程学报,2009,29(27):42-47.
    [151]王兴伟,林桦,邓建,等.实际应用中的矩阵变换器空间矢量调制算法及优化调制模式[J].中国电机工程学报,2011,31(30):7-15.
    [152]何必,林桦,佘宏武,等.矩阵变换器在窄脉冲作用下的性能改善[J].中国电机工程学报,2009,29(27):42-47.
    [153]A. Antoni, P. W. Wheeler. Elimination of waveform distortions in matrix converters using a new dual compensation method[J]. IEEE Transactions on Industrial Electronics,2007,54(4):2079-2087.
    [154]冯波,林桦,王兴伟,等.AC-DC矩阵变换器空间矢量优化调制模式研究[J].中国电机工程学报,2012,32(33):7-14.
    [155]孙尧,粟梅,王辉,等.双级矩阵变换器的非线性分析及其补偿策略[J].中国电机工程学报,2010,30(12):20-27.
    [156]何必,林桦,佘宏武,等.矩阵变换器在窄脉冲作用下的性能改善[J].中国电机工程学报,2009,29(27):42-47.
    [157]H. Wilfried, Z. Marcus. Multi-step commutation and control policies for matrix converters[J]. Journal of Power Electronics,2003,3(1):24-32.
    [158]D. Casadei, G. Serra, A. Tani. A general approach for the analysis of the input power quality in matrix converters[J]. IEEE Transactions on Power Electronics, 1998,13(5):882-891.
    [159]陈希友,陈学允,韦奇.改进矩阵变换器在非对称输入情况下的空间矢量调制方法[J].电工技术学报,2004,19(2):77-82.
    [160]L. X. Wei, Y. Matushita, T. A. Lipo. A compensation method for dual-bridge matrix converters operating under distorted source voltages[C], IEEE IECON'03, 2003:2078-2084.
    [161]吴保芳,权建州,吴胜华,等.非正常输入条件下SPWM矩阵变换器的前馈补偿控制[J].电工技术学报,2005,20(12):24-29.
    [162]权建州,吴保芳,孙容磊,等.基于前馈补偿的SPWM矩阵变换器控制方法研究[J].中国电机工程学报,2006,26(5):88-94.
    [163]孙凯,黄立培,松濑贡规.矩阵式变换器在非正常工况下的补偿控制[J].清华大学学报(自然科学版),2007,47(7):1093-1096.
    [164]穆效江,陈阳舟.滑模变结构控制理论研究综述[J].控制工程,2007,14(增刊):1-5.
    [165]C. Mauro, M. Mario. Experimental study of a power conditioning system using sliding mode control[J]. IEEE Transactions on Power Electronics,1996,11(5): 731-742.
    [166]S. J. Fernando. Sliding-mode control of boost-type unity power factor PWM rectifiers[J]. IEEE Transactions on Industrial Electronics,1999,46(3):594-603.
    [167]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005.
    [168]薛花,王育飞.基于无源性的并联型有源滤波器自适应滑模控制[J].电力自动化设备,2011,31(9):60-64.
    [169]唐勇奇,赵葵银,汪超.基于滑模变结构控制的三相PWM整流器[J].电力自动化设备,2006,(5):39-41.
    [170]H. Y. Yu, Q. Hu, X. Y. Ding. Fuzzy sliding mode variable structure control of three-phase rectifier[C], IEEE FSKD'07,2007:581-585.
    [171]侯世英,宋星,孙韬,等.基于滑模控制的新型三相双频并网逆变器[J].电力自动化设备,2011,31(12):39-43.
    [172]尚磊,孙丹,胡家兵,等.三相电压型并网逆变器滑模变结构直接功率控制[J].电力系统自动化,2010,34(14):79-83.
    [173]P. S. Ferreira, S. J. Fernando. Direct control method for matrix converters with input power factor regulation[C], IEEE PESC'04,2004:2366-2372.
    [174]J. Monteiro, S. J. Fernando, P. S. Ferreira, etc. Matrix converter-based unified power-flow controllers:advanced direct power control method[J]. IEEE Transactions on Power Delivery,2011,26(1):420-429.
    [175]P. S. Ferreira, S. J. Fernando. Sliding mode direct control of matrix converters[J]. IET Electric Power Applications,2007,1(3):439-448.
    [176]R. Ramos, D. Biel, E. Fossas. A fixed-frequency quasi-sliding control algorithm: application to power inverters design by means of FPGA implementation[J]. IEEE Transactions on Power Electronics,2003,18(1):344-355.
    [177]C. Mauro, M. Mario. Experimental study of a power conditioning system using sliding mode control[J]. IEEE Transactions on Power Electronics,1996,11(5): 731-742.
    [178]张黎,丘水生.滑模控制逆变器的分析与实验研究[J].中国电机工程学报,2006,26(3):59-63.
    [179]D. Casadei, L. Clare, L. Empringham, etc. Large-signal model for the stability analysis of matrix converter[J]. IEEE Transactions on Industrial Electronics,2007, 54(2):939-950.
    [180]D. Casadei, G. Serra, A. Tani, etc. Theoretical and experimental investigation on the stability of matrix converters[J]. IEEE Transactions on Industrial Electronics, 2007,52(5):1409-1419.
    [181]粟梅,覃恒思,孙尧,等.矩阵变换器系统的稳定性分析[J].中国电机工程学 报,2005,25(8):62-69.
    [182]佘宏武,林桦,王兴伟,等.矩阵变换器的阻尼输入滤波器设计[J].电源学报,2011,33(1):19-25.
    [183]粟梅,孙尧,覃恒思,等.矩阵变换器输入滤波器的多目标优化设计[J].中国电机工程学报,2007,27(1):70-75.
    [184]J. C. Wiseman, B. Wu. Active damping control of a high-power current-source rectifier for line-current THD reduction[J]. IEEE Transactions on Industrial Electronics,2005,52(3):758-764.
    [185]Y. W. Li. Control and resonance damping of voltage-source and current-source converters with LC filters[J]. IEEE Transactions on Industrial Electronics,2009, 56(5):1511-1521.
    [186]Y. W. Li, B. Wu, N. R. Zargari, etc. Damping of PWM current-source rectifier using a hybrid combination approach[J]. IEEE Transactions on Power Electronics, 2007,22(4):1383-1393.
    [187]A. M. Qiu, Y. W. Li, B. Wu, etc. High performance current source inverter fed induction motor drive with minimal harmonic distortion[C], IEEE PESC'07,2007: 79-85.
    [188]粟梅,孙尧,覃恒思,等.一种改善矩阵变换器系统动态性能和稳定性的控制方法[J].电工技术学报,2005,20(12):18-23.
    [189]C. Rojas, J. Rodriguez, P. W. Wheeler etc. Predictive current control with input filter resonance mitigation for a direct matrix converter[J]. IEEE Transactions on Power Electronics,2011,26(10):2794-2803.
    [190]K. M. Smedley, C. Slobodan. One cycle control of switching converter[J]. IEEE Transactions on Power Electronics,1995,10(6):625-633.
    [191]A. Z. Sadik, Z. M. Hussain, P. O'Shea. A single-bit digital DC-blocker using ternary filtering[C], IEEE TENCON,2005:1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700