用户名: 密码: 验证码:
婴幼儿型青光眼CYP1B1基因及其他候选位点的遗传学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于婴幼儿型青光眼这一与遗传高度相关的疾病,目前已知的与发病相关的基因座有三个:GLC3A、GLC3B和GLC3C,而仅在GLC3A位点找到了致病基因----CYP1B1,该基因在不同人群患者中存在明显的遗传异质性。本研究将首先着眼于CYP1B1基因在中国汉族人群中的突变情况,进而揭示其基因型-表现型-手术疗效关系,来为临床诊断及治疗提供分子生物学依据。在排除这一已知基因致病的患者中,进一步分析疾病与其他两个候选位点的关系。不同于既往研究的是:1.在寻找基因突变的基础上,结合了临床发病特征的数据,构建出基因型-表现型关系,还结合手术疗效的随访数据,发掘出基因对临床预后的影响作用;2.全部采用了散发病例,验证了从家系病例定位的基因座,使其具有更高的可信度;3.尚未有中国汉族病例GLC3B和GLC3C位点的研究报道。第一部分CYP1B1基因与婴幼儿型青光眼表型及疗效关系
     目的:了解中国汉族人群婴幼儿型青光眼的CYB1B1基因突变情况并探寻CYB1B1基因型-表现型-疗效关系。
     方法:
     1.对122例散发的婴幼儿型青光眼患者外周血DNA采用PCR扩增、直接测序法,进行CYP1B1基因编码外显子的突变检测,序列图与正常人群数据库及120份正常对照样本序列比对;
     2.对238例患者进行基因型-表现型回顾性分析(结合本课题组前期己行突变筛查的116例实验数据),分析因素包括:性别、单/双眼发病、发病年龄、起病眼压、角膜横径、角膜透明度评分;
     3.对其中在我院首次手术的192例(306只眼)进行影响手术疗效的多因素分析,分析因素包括:发病年龄、发病-手术时间、手术方式、术前眼压、角膜横径、角膜透明度评分、CYP1B1基因携带状态7个因素与手术成功疗效进行多元Logistic回归分析(Stepwise逐步回归法)、与手术成功时间进行Cox回归生存分析(Stepwise逐步回归法)。
     数据采用SPSS13.0统计学软件分析,以P<0.05为差异具有统计学意义。
     结果:
     1.122份样本中的CYP1B1基因编码外显子区域一共检测出18种不同的突变,其中9种突变为本研究首次发现:g.3836T>C(p.11W>R),g.4022delTC(p.730RFshift,P.221stop),g.4151G>T(p.116D>Y),g.4322G>A(p.173E>K),g.4338T>A(p.178V>E),g.4493G>A(p.230E>K),g.4509T>C(p.235V>A),g.8137T>C(p.434W>R),g.8167C>T(p.R444stop)。共21份病例样本检出突变,突变率为17.2%。
     2.综合本课题组前期实验数据,共238例(116+122)散发婴幼儿型青光眼患者,检测到致病突变的有41例(20+21),总突变率仍为17.2%。其中男性患者的突变率为18.9%,女性患者的突变率为13.0%,差异无统计学意义。双眼患者的突变率为19.5%,单眼患者的突变率为12.7%,差异无统计学意义。携带突变患者的中位数发病年龄为2(0-6)月,不携带突变患者的中位数发病年龄为6(2-12)月,前者的发病时间明显的早于后者,差异具有统计学意义(P<0.05),角膜透明度评分在携带突变患者中更高(P<0.05)。
     3.多元Logistic回归分析,得到CYP1B1基因为手术疗效的相关影响因素(P<0.001),其比值比为OR_(CYP1B1)=0.321。Cox回归生存分析,得到角膜透明度和CYP1B1基因为与手术成功时间的相关影响因素(P<0.01),其比值比分别为OR_(Conea)=1.846,OR_(CYP1B1)=0.468。
     结论:CYP1B1基因的突变与部分婴幼儿型青光眼的发病相关,基因编码外显子区域共检测出18种不同的突变,其中9种突变为本研究首次发现;携带CYP1B1基因突变的患者较无突变者发病年龄更小,角膜透明度更差;CYP1B1基因突变状态为手术疗效的保护性因素,相对无突变患者有更高的手术成功率和更长的手术成功时间。第二部分婴幼儿型青光眼候选位点的遗传学研究
     目的:探讨散发中国汉族婴幼儿型青光眼患者与候选位点GLC3C的关联关系;了解GLC3B位点中候选基因ANGPTL7的突变状况。
     方法:
     1.研究对象为中国汉族人群,患者为第一部分中排除携带CYP1B1基因突变者的152个核心家系(患者加正常双亲),采用荧光标记复合扩增技术,进行覆盖GLC3C位点的12个STR分型,分型结果行传递不平衡检验;
     2.对获得的阳性区间,进一步挑选16个htSNP进行单倍型构建,采用基质辅助激光解析电离飞行时间质谱技术,对126个核心家系进行SNP分型,分型结果行传递不平衡检验;
     3.随机抽取96名患者的DNA制作混合样本池,对GLC3B区域内候选基因ANGPTL7的5个外显子行PCR扩增,直接测序后与数据库正常序列比对。结果:
     1.GLC3C区域内单个STR分型的传递不平衡检验结果显示,在D14S279、D14S555和D14S74的P值<0.05(分别为0.021,0.009601和0.003421),相距仅0.006cM;
     2.阳性区间内所有单个htSNP与疾病的传递不平衡检验P值均>0.05;位于单倍型模块2(rs2111701-rs4020123-rs4903696-rs11159318-rs177216)的TAACG单倍型与疾病的传递不平衡检验P值<0.05(P=0.001),经过10000次的置换检测,该单倍型P值仍<0.05(P=0.0135);
     3.对于GLC3B区域内候选基因ANGPTL7的5个外显子序列,6份混合样本(含96人DNA)与数据库正常序列比对,无杂合峰发现。
     结论:GLC3C位点与中国汉族婴幼儿型青光眼的发病相关;在22kb区间内的5个htSNP单倍型与疾病发病相关,致病基因的确定有待进一步的候选基因筛查。GLC3B区域内候选基因ANGPTL7可能与中国汉族婴幼儿型青光眼的发病不相关。
PartⅠ:Relationship of CYP1B1 Genotype-Phenotype and Operative Effect
     Purposes:To investigate the mutation condition of CYP1B1 gene in Chinese Han infantile glaucoma patients;and to explore the relationship of genotype-phenotype and operative effect.
     Methods:
     1.122 unrelated cases of infantile glaucoma patients were recruited in this study. Peripheral blood was collected and genomic DNA was extracted.The coding sequence in exons was amplified by polymerase chain reaction(PCR)from genomic DNA,then direct DNA sequencing was adopted to identify the variants exclusive in the patients.
     2.Combination with the previous experimental data of our team,we investigated the genotype-phenotype relationship of 238 cases by retrospective study. The analyzed factors included sex,single/both eyes involvement,onset age, intraocular pressure at onset,diameter of cornea,and score of cornea's transparence.
     3.We reviewed the operative effect of 306 eyes in 192 consecutive patients by multiple factors analysis,which underwent initial surgery in our hospital.Seven factors of onset age,time between onset-operate,style of operate,preoperative intraocular pressure,diameter of cornea,score of cornea's transparence,and mutant status of CYP1B1 gene were subjected to multivariate analysis by logistic regression. Cox proportional hazards regression modeling were used to analyze successful time and trace the survival curve.
     The SPSS13.0 statistical software was used for data analysis,and P value was less than 0.05 as the statistical significance.
     Results:
     1.18 different mutations were detected in the 122 cases' coding exons of CYP1B1 gene.Among them,nine mutations were the first checked out in this study. They were g.3836T>C(p.11W>R),g.4022delTC(p.73ORFshift,p.221stop), g.4151G>T(p.116D>Y),g.4322G>A(p.173E>K),g.4338T>A(p.178V>E), g.4493G>A(p.230E>K),g.4509T>C(p.235V>A),g.8137T>C(p.434W>R), g.8167C>T(p.R444stop).There were 21 cases with the exclusive CYP1B1 gene variants in the 122 patients,and the mutation rate was 17.2%.
     2.Combined with the previous data,there were 41 cases with mutations of CYP1B1 gene in 238 cases.The mutation rate was 17.2%,too.The median onset age of patients with mutant CYP1B1 gene was 2(0-6)months,and that was 6(2-12) months in whom without mutation.The former was earlier than the latter statistical significantly(P<0.05).The carriers of mutant CYP1B1 gene were graded higher in corneal transparency(P<0.05).
     3.In multivariate logistic regression,the status of CYP1B1 gene showed statistically significance as independent protective factors for final outcome (P<0.001),and the odds ratio less than 1(OR_(cyp1b1)=0321).In Cox regression,the significant related factors were corneal transparency(P<0.01)and the status of CYP1B1 gene(P<0.01),and the odds ratio were OR_(Conea)=1.846,OR_(Cyp1b1)=0.468.
     Conclusions:The mutant CYP1B1 gene is partly related with the infantile glaucoma. The carriers of mutant CYP1B1 gene may be at earlier onset and with poorer corneal transparency.Mutant CYP1B1 gene is the protective factor for operative effect,and the patients with it have higher success rate and longer successful time.
     PartⅡ:Genetic Study on Candidate Loci of Infantile Glaucoma
     Purposes:To investigate the association relation between the occurrence of infantile glaucoma and the GLC3C locus;and to find out the mutational condition of candidate gene ANGPTL7 in GLC3B locus.
     Methods:
     1.152 nuclear families(patients and their parents)without mutant CYP1B1 gene were recruited in this study.By using the Fluorescence Labeled Multiplex-PCR Technique,12 short tandem repeats(STRs)were genotyped covering the GLC3C locus,and transmission disequilibrium test(TDT)was performed.
     2.In the positive regions,16 haplotype tag SNPs(htSNPs)were choosed to construct haplotypes.By means of MALDI-TOF MS(Matrix-assisted laser desorption/ionization Time-of-flight Mass Spectrometry),126 trios were genotyped, and transmission disequilibrium test was applied again.
     3.96 cases randomly selected to create DNA pools.Five exons of ANGPTL7 gene were amplified by PCR from the DNA pools,then direct DNA sequencing was adopted.Compare the sequence of the patients and the normal population in database.
     Results:
     1.By the single STR's TDT,there were three markers existing transmission disequilibrium in GLC3C.They were D14S279(P=0.021),D14S555(P=0.009601) and D14S74(P=0.003421).The region was 0.006cM long.
     2.All the single htSNPs in the positive STR regions were no statistical difference in TDT.In the block2(rs2111701-rs4020123-rs4903696-rs11159318-rs 177216),the haplotype TAACG was proved to be transmission disequilibrium (P=0.001).After 10~4 times of Permutation test,the haplotype was still significantly manifesting transmission disequilibrium(P=0.0135).
     3.As for candidate gene ANGPTL7 in GLC3B locus,the sequence of five exons between the 6 DNA pools(containing 96 patients)and the normal ones in database was not any heterozygosis to be found.
     Conclusions:We confirmation the GLC3C locus is associated with the infantile glaucoma in Chinese Hans.A haplotype(including five htSNPs and 22 kilo-basepair long)is related on the occurrence of the disease,and further candidate genes screen should be carried out to dig out the pathogenic or susceptible gene.The candidate gene ANGPTL7 in GLC3B maybe not correlated with the Chinese Han infantile glaucoma patients.
引文
[1] Quigley HA. Number of people with glaucoma worldwide[J]. Br J Ophthalmol, 1996, 80(5):389-393.
    [2] Arnold C, Christopher PH, Bernadette M. Global report on birth defects: The hidden toll of dying and disabled children[R]. New York: March of Dimes Birth defects Foundation, 2006.
    [3] 李美玉.青光眼学[M].北京: 人民卫生出版社, 2004:515-519.
    [4] 李凤鸣. 眼科全书.北京: 人民卫生出版社, 1996: 1962-1974.
    [5] Hu DN. Prevalence and mode of inheritance of major genetic eye diseases in China[J]. J Med Genet, 1987, 24(10):584-588.
    [6] Gencik A, Gencikova A, Ferak V. Population genetical aspects of primary congenital glaucoma. I. Incidence, prevalence, gene frequency, and age of onset[J]. Hum Genet, 1982, 61(3):193-197.
    [7] Sarfarazi M, Stoilov I, Schenkman JB. Genetics and biochemistry of primary congenital glaucoma[J]. Ophthalmol Clin North Am, 2003, 16(4):543-544.
    [8] Sarfarazi M, Akarsu AN, Hossain A, et al. Assignment of a locus (GLC3A) for primary congenital glaucoma (buphthalmos) to 2p21 and evidence for genetic heterogeneity [J]. Genomics, 1995, 30(2): 171-177.
    [9] Akarsu AN, Turacli ME, Aktan SG, et al. A second locus ( GLC3B) for primary congenital glaucoma (Buphthalmos) maps to the lp36 region[J]. Hum Mol Genet, 1996, 5(8): 1199-1203.
    [10] Stoilov IR, Sarfarazi M. The third genetic locus(GLC3C) for primary congenital glaucoma (PCG) maps to chromosome 14q24.3[A]. The Association for Research in Vision and Ophthalmology (ARVO) Annual Meeting, Fort Lauderdale (FL), 2002.
    [11] Stoilov I, Akarsu AN , Sarfarazi M. Identification of three different truncating mutations in cytochrome P45O1B1(CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos ) in families linked to the GLC3A locus on chromosome 2p21 [J]. Hum Mol Genet, 1997, 6(4):641-647.
    [12] Stoilov 1, Akarsu AN, Alozie 1, et al. Sequence analysis and homology modeling suggest that primary congenital glaucoma on 2p21 results from mutations disrupting either the hing region or the conserved core structures of cytochrome P4501Bl[J].Am J Hum Genet, 1998,62(3):573-584.
    [13] Tang YM, Wo YY, Stewart J, et al. Isolation and characterization of the human cytochrome P450 CYP1B1 gene[J]. J Biol Chem, 1996, 271(45):28324-28330.
    [14] Chakrabarti S, Kaur K, Kaur I, et al. Globally, CYP1B1 mutations in primary congenital glaucoma are strongly structured by geographic and haplotype backgrounds[J]. Invest Ophthalmol Vis Sci, 2006,47(1):43-47.
    [15] Bejjani BA, Stockton DW, Lewis RA, et al. Multiple CYP1B1 mutations and incomplete penetrance in an inbred population segregating primary congenital glaucoma suggest frequent de novo events and a dominant modifier locus[J]. Hum Mol Genet, 2000, 9(3):367-374.
    [16] Sitorus R, Ardjo SM, Lorenz B, et al. CYP1B1 gene analysis in primary congenital glaucoma in Indonesian and European patients[J]. J Med Genet, 2003,40(1):e9.
    [17] Belmouden A, Melki R, Hamdani M, et al. A novel frameshift founder mutation in the cytochrome P450 1B1 (CYP1B1) gene is associated with primary congenital glaucoma in Morocco[J]. Clin Genet, 2002, 62(4):334-339.
    [18] Reddy AB, Kaur K, Mandal AK, et al. Mutation spectrum of the CYP1B1 gene in Indian primary congenital glaucoma patients[J]. Mol Vis, 2004, 10: 696-702.
    [19] Panicker SG, Mandal AK, Reddy AB, et al. Correlations of genotype with phenotype in Indian patients with primary congenital glaucoma[J]. Invest Ophthalmol Vis Sci, 2004,45(4): 1149-1156.
    [20] Mashima Y, Suzuki Y, Sergeev Y, et al. Novel cytochrome P4501B1 (CYP1B1) gene mutations in Japanese patients with primary congenital glaucoma[J]. Invest Ophthalmol Vis Sci, 2001,42(10): 2211-2216.
    [21] Chen Y, Jiang D, Sun X, et al. CYP1B1 and MYOC mutations in 116 Chinese patients with primary congenital glaucoma[J]. Arch Ophthalmol, 2008, 126(10): 1443-1447.
    [22] Stanislav IT, Graeme W, Vincent R, et al. Gene Expression Profile of the Human Trabecular Meshwork: NEIBank Sequence Tag Analysis[J]. Invest Ophthalmol Vis Sci, 2003, 44(6):2588-2596.
    [23] Kuchtey J, K(?)llberg ME, Gelatt KN, et al. Angiopoietin-like 7 Secretion Is Induced by Glaucoma Stimuli and Its Concentration Is Elevated in Glaucomatous Aqueous Humor[J]. Invest Ophthalmol Vis Sci, 2008,49(8): 3438-3448.
    [24] Firasat S, Riazuddin SA, Hejtmancik JF, et al. Primary congenital glaucoma localizes to chromosome 14q24.2-24.3 in two consanguineous Pakistani families[J]. Mol Vis, 2008,14:1659-1665.
    [25] Lander ES, Schork NJ. Genetic dissection of complex traits[J]. Science, 1994, 265(5181): 2037-2048.
    [26] Zhao H. Family-based association studies[J]. Stat Methods Med Res, 2000, 9(6): 563-587.
    [27] Hinds DA, Stokowski RP, Patil N, et al. Matching strategies for genetic association studies in structured populations[J].Am J Hum Genet,2004,74(2):317-325.
    [28]Spielman RS,McGinnis RE,Ewens WJ.Transmission test for linkage disequilibrium:the insulin gene region and insulin-dependent diabetes mellitus(IDDM)[J].Am J Hum Genet,1993,52(3):506-513.
    [29]Abecasis GR,Cookson WO,Cardon LR.Pedigree tests of transmission disequilibirum[J].Eur J Hum Genet,2000,8(7):545-551.
    [30]Melki R,Lefort N,Brezin AP,et al.Association of a common coding polymorphism (N453S)of the cytochrome P450 1B1(CYP1B1)gene with optic disc cupping and visual field alteration in French patients with primary open-angle glaucoma[J].Mol Vis,2005,11:1012-1017.
    [31]Colomb E,Kaplan J,Garchon HJ.Novel cytochrome P450 1B1(CYP1B1)mutations in patients with primary congenital glaucoma in France[J].Hum Mutat,2003;22(6):496.
    [32]Curry SM,Daou AG,Hermanns P,et al.Cytochrome P4501B1 mutations cause only part of primary congenital glaucoma in Ecuador[J].Ophthalmic Genet,2004;25(1):3-9.
    [33]Hollander DA,Sarfarazi M,Stoilov I,et al.Genotype and phenotype correlations in congenital glaucoma:CYP1B1 mutations,goniodysgenesis and clinical characteristics[J].Am J Ophthalmol,2006,142(6):993-1004.
    [34]Stoilov IR,Costa VP,Vasconcellos JP,et al.Molecular genetics of primary congenital glaucoma in Brazil[J].Invest Ophthalmol Vis Sci,2002,43(6):1820-1827.
    [35]陈宇虹.婴幼儿型青光眼和青少年型青光眼的候选基因筛查和定位.[D].上海:复旦大学,2007.
    [36]Plasilova M.Stoilov I.Sarfarazi M,et al.Identification of a single ancestral CYP1B1mutation in Slovak Gypsies(Roms)affected with primary congenital glaucoma[J].J Med Genet,1999,36(4):290-294.
    [37]Bejjani BA,Lewis RA,Tomey KF,et al.Mutations in CYP1B1,the gene for cytochrome P4501B1,are the predominant cause of primary congenital glaucoma in Saudi Arabia[J].Am J Hum Genet,1998,62(2):325-333.
    [38]William Klug.DNA Structure and Analysis[A].In:Essentials of GeneticsEd 5~(th)[M].New York:McGraw-Hill,2004.
    [39]David WM.Protein Classification and Structure Prediction[A].In:Bioinformatics Sequence and Genome Analysis 2~(nd)[M].New York:Cold Spring Harbor Laboratory Press,2004.
    [40]李凤鸣.眼的生理生化.[A].见:中华眼科学.第二版[M].北京:人民卫生出版社,2004:233-234.
    [41]Choudhary D,Jansson I,Stoilov I,et al.Metabolism of retinoids and arachidonic acid by human and mouse cytochrome P450 1b1[J].Drug Metab Dispos,2004,32(8):840-847.
    [42]Wei Y,Lin DH,Kemp R,et al.Arachidonic acid inhibits epithelial Na channel via cytochrome P450(CYP)epoxygenase-dependent metabolic pathways[J].J Gen Physiol,2004,124(6):719-727.
    [43]Nakagawa K,Holla VR,Wei Y,et al.Salt sensitive hypertension is associated with a dysfunctional Cyp4a10 gene and kidney epithelial sodium channel[J].J Clin Invest,2006,116(6):1696-1702.
    [44]Sun P,Lin DH,Wang T,et al.Low Na intake suppresses expression of CYP2C23 and arachidonic acid-induced inhibition of ENaC[J].Am J Physiol Renal Physiol,2006,291(6):F1192-1200.
    [45]Verkman AS.Knock-out models reveal new aquaporin functions[J].Handb Exp Pharmacol,2009,190:359-381.
    [46]Isabel O V,Christopher P,Birgit L.Evolution of central corneal thickness in children with congenital glaucoma requiring glaucoma surgery[J].Graefes Arch Clin Exp Ophthalmoi,2008,246(3):397-403.
    [47]张文彤.世界优秀统计工具SPSS11.0统计分析教程(高级篇)[M].北京:北京希望电子出版社,2002:91-92,304-306.
    [48]Alsheikheh A,Klink J,Klink T,et al.Long-term results of surgery in childhood glaucoma[J].Graefes Arch Clin Exp Ophthalmol,2007,245(2):195-203.
    [49]Zhang X J,Huang W,Yang S,et al.Psoriasis genome-wide association study identifies susceptibility variants within LCE gene cluster at 1q21[J].Nat Genet,2009,41(2):205-210.
    [50]Jurinke C,van den Boom D,Cantor CR,et al.The use of MassARRAY technology for high throughput genotyping[J].Adv Biochem Eng Biotechnol,77:57-74.
    [51]Rodi CP,Darnhofer-Patel B,Stanssens P,et al.A strategy for the rapid discovery of disease markers using the MassARRAY system[J].Biotechniques.2002,Suppl:62-66,68-69.
    [52]Zhang K,Calabrese P,Nordborg M,et al.Haplotype block structure and its applications to association studies:power and study designs[J].Am J Hum Genet,2002,71(6):1386-1394.
    [53]童大跃.混合DNA样品池扩增法及其应用[J].生物技术通讯,1999,10(3):213-216.
    [54]李照海,覃红,张洪.遗传学中的统计方法[M].北京:科学出版社,2006:90-93.
    [55]Dudbridge F.Pedigree disequilibrium tests for multilocus haplotypes[J].Genet Epidemiol,2003,25(2):115-121.
    [56] Dudbridge F. Likelihood-based association analysis for nuclear families and unrelated subjects with missing genotype data[J]. Hum Hered, 2008, 66(2):87-98.
    [57] Barrett JC, Fry B, Mailer J, et al. Haploview: analysis and visualization of LD and haplotype maps[J]. Bioinformatics, 2005,21(2):263-265.
    [58] Gibbs RA, Belmont JW, Hardenbol P, et al. The International HapMap Project[J]. Nature, 2003,426(6968): 789-796.
    [59] Kruglyak L, Nickerson DA. Variation is the spice of life[J]. Nat Genet, 2001, 27(3): 234-236.
    [60] Reich DE, Gabriel SB, Altshuler D. Quality and completeness of SNP databases[J]. Nat Genet, 2003, 33(4): 457-458.
    [61] Collins FS, Guyer MS, Charkravarti A. Variations on a theme: cataloging human DNA sequence variation[J]. Science, 1997,278(5343): 1580-1581.
    [62] Kuhner MK, Beerli P, Yamato J, et al. Usefulness of single nucleotide polymorphism data for estimating population parameters[J]. Genetics, 2000, 156(1): 439-447.
    [63] Collins A, Lonjou C, and Morton NE. Genetic epidemiology of single-nucleotide polymorphisms[J].Proc NatiAcad Sci U S A, 1999,96(26): 15173-15177.
    [64] Goldstein DB, Ahmadi KR, Weale ME, et al. Genome scans and candidate gene approaches in the study of common diseases and variable drug responses[J]. Trends Genet, 2003, 19(11):615-622.
    [65] Johnson GC, Esposito L, Barratt BJ, et al. Haplotype tagging for the identification of common disease genes[J]. Nat Genet, 2001,29(2): 233-237.
    [66] Schulze TG, Zhang K, Chen YS, et al. Defining haplotype blocks and tag single-nucleotide polymorphisms in the human genome[J]. Hum Mol Genet 2004; 13(3): 335-342.
    [67] Gabriel SB, Schaffner SF, Nguyen H, et al. The structure of haplotype blocks in the human genome[J]. Science, 2002,296(5576): 2225-2229.
    [68] Ota M, Mizuki N, Katsuyama Y, et al. The Critical Region for Behcet Disease in the Human Major Histocompatibility Complex Is Reduced to a 46-kb Segment Centromeric of HLA-B, by Association Analysis Using Refined Microsatellite Mapping[J]. Am J Hum Genet, 1999,64(5): 1406-1410.
    [69] Zhang Y, Leaves NI, Anderson GG, et al. Positional cloning of a quantitative trait locus on chromosome 13ql4 that influences immunoglobulin E levels and asthma[J]. Nat Genet, 2003, 34(2):181-186.
    [70] Mizuki N, Ota M, Yabuki K, et al. Localization of the Pathogenic Gene of Behc.et's Disease by Microsatellite Analysis of Three Different Populations[J]. Invest Ophthalmol Vis Sci, 2000,41(12): 3702-3708.
    [71] Keicho N, Ohashi J, Tamiya G, et al. Fine Localization of a Major Disease-Susceptibility Locus for Diffuse Panbronchiolitis[J]. Am J Hum Genet, 2000, 66(2):501-507.
    [72] Ota M, Katsuyama Y, Kimura A, et al. A Second Susceptibility Gene for Developing Rheumatoid Arthritis in the Human MHC is Localized within a 70-kb Interval Telomeric of the TNF Genes in the HLA Class III Region[J]. Genomics, 2001, 71(3): 263-270.
    [73] Dawson E, Abecasis GR, Bumpstead S, et al. A first-generation linkage disequilibrium map of human chromosome 22[J]. Nature, 2002,418(6897): 544-548.
    [74] Bousquet I, Dujardin G, Slonimski PP. ABC1, a novel yeast nuclear gene has a dual function in mitochondria: it suppresses a cytochrome b mRNA translation defect and is essential for the electron transfer in the bc 1 complex[J]. EMBO J, 1991,10(8): 2023-2031.
    [75] Macinga DR, Cook GM, Poole RK, et al. Identification and characterization of aarF, a locus required for production of ubiquinone in Providencia stuartii and Escherichia coli and for expression of 2'-N-acetyltransferase in P. stuartii[J]. J Bacteriol, 1998, 180(1): 128-135.
    [76] Kimura K, Wakamatsu A, Suzuki Y, et al. Diversification of Transcriptional Modulation: Large-scale Identification and Characterization of Putative Alternative Promoters of Human Genes[J]. Genome Res, 2006, 16(1): 55-65.
    [1]Sutter TR,Tang YM,Hayers CL,et al.Complete cDNA Sequence of a Human Dioxin-inducible mRNA Identifies a New Gene Subfamily of Cytochrome P450 That Maps to Chromosome 2[J].J Biol Chem,1994,269(18):13092-13099.
    [2]Shehin SE,Stephenson RO,Greenlee WF.Transcriptional regulation of the human CYP1B1gene.Evidence for involvement of an aryl hydrocarbon receptor response element in constitutive expression[J].J Biol Chem,2000,275(10):6770-6776.
    [3]Stoilov I,Akarsu AN,Sarfarazi M.Identification of three different truncating mutations in cytochrome P4501B1(CYP1B1)as the principal cause of primary congenital glaucoma (Buphthalmos)in families linked to the GLC3A locus on chromosome 2p21[J].Hum Mol Genet,1997,6(4):641-647.
    [4]Tang YM,Wo YY,Stewart J,et al.Isolation and characterization of the human cytochrome P450 CYP1B1 gene[J].J Biol Chem,1996,271(45):28324-28330.
    [5]Tang YM,Chen GF,Thompson PA,et al.Development of an antipeptide antibody that binds to the C-terminal region of human CYP1B1[J].Drug Metab Dispos,1999,27(2):274-280.
    [6]Ogueta SB,Schwartz SD,Yamashita CK,et al.Estrogen receptor in the human eye:influence of gender and age on gene expression[J].Invest Ophthalmol Vis Sci,1999,40(9):1906-1911.
    [7]Jansson I,Stoilov I,Sarfarazi M,et al.Effect of two mutations of human CYP1B1,G61E and R469VV,on stability and endogenous steroid substrate metabolism[J],Pharmacogenetics,2001, 11(9): 793-801.
    [8] Chen H, Howald WN, Juchau MR. Biosynthesis of all-trans-retinoic acid from all-trans-retinol: catalysis of all -trans-retinol oxidation by human P-450 cytochromes[J]. Drug Metab Dispos, 2000,28(3): 315-322.
    [9] Choudhary D, Jansson I, Stoilov I, et al. Metabolism of retinoids and arachidonic acid by human and mouse cytochrome P450 1b1[J]. Drug Metab Dispos, 2004, 32(8): 840-847.
    [10] Coca-Prados M, Escribano J. New perspectives in aqueous humor secretion and in glaucoma: the ciliary body as a multifunctional neuroendocrine gland[J]. Prog Retin Eye Res, 2007,26(3): 239-262.
    [11] Libby RT, Smith RS, Savinova OV, et al. Modification of Ocular Defects in Mouse Developmental Glaucoma Models by Tyrosinase[J]. Science, 2003,299(5612): 1578-1581.
    [12] Bejjani BA, Xu L, Armstrong D, et al. Expression patterns of cytochromeP4501B1 (Cyplb1) in FVB/N mouse eyes[J]. Exp Eye Res, 2002,75(3): 249-257.
    [13] Choudhary D, Jansson I, Rezaul K, et al. Cyplbl protein in the mouse eye during development: An immunohistochemical study[J]. Drug Metab Dispos, 2007, 35(6): 987-994.
    [14] Doshi M, Marcus C, Bejjani BA, et al. Immunolocalization of CYP1B1 in normal, human, fetal and adult eyes[J]. Exp Eye Res, 2006, 82(1): 24-32.
    [15] Gould DB, John SW. Anterior segment dysgenesis and the developmental glaucomas are complex traits[J]. Hum Mol Genet, 2002, 11(10): 1185-1193.
    [1]Chung CS.Genetic Epidemiology[M].New York:Academic Press,1978.
    [2]Morton NE,Morton NE.Outline of Genetic Epidemioloigy[M].New York:Karger,1982:1-5.
    [3]Khoury MJ.Genetic epidemiology and the future of disease prevention and public health[J].Epidemiol Rev,1997,19(1):175-180.
    [4]Nagy A,Perrimon N,Sandmeyer S,et al.Tailoring the genome:the power of genetic approaches[J].Nat Genet 2003;33(suppl):276-284.
    [5]Merikangas KR,Risch N.Genomic priorities and public health[J].Science,2003,302(5645):599-601.
    [6]Burke W.Genomics as a probe for disease biology[J].N Engl J Med,2003,349(10):969-974.
    [7]Burton PR,Tobin MD,Hopper JL.Key concepts in genetic epidemiology[J].Lancet,2005,366(9489):941-951.
    [8]Cordell HJ,Clayton DG Genetic association studies[J].Lancet,2005,366(9491):1121-1131.
    [9]Morton NE.Sequential tests for the detection of linkage[J].Am J Hum Genet 1955;7(3):277-318.
    [10]Chotai J.On the LOD score method in linkage analysis[J].Ann Hum Genet,1984,48(4):359-378.
    [11]Davies JL,Kawaguchi Y,Bennett ST,et al.A genome-wide search for human type 1diabetes susceptibility genes[J].Nature,1994,371(6493):130-136.
    [12]Collins A,Lonjou C,Morton NE.Genetic epidemiology of singlenucleotide polymorphisms[J].Proc Natl Acad Sci USA,1999,96(26):15173-15177.
    [13]Cardon LR,Bell JI.Association study designs for complex diseases[J].Nat Rev Genet,2001,2(2):91-99.
    [14]Gibbs RA,Belmont JW,Hardenbol P,et al.The International HapMap Project[J].Nature,2003,426(6968):789-796.
    [15]Johnson GC,Esposito L,Barratt BJ,et al.Haplotype tagging for the identification of common disease genes[J].Nat Genet 2001;29(2):233-237.
    [16]Cardon LR,Abecasis GR.Using haplotype blocks to map human complex trait loci[J]. Trends Genet, 2003, 19(3): 135-140.
    [17] Patil N, Berno AJ, Hinds DA, et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 2001; 294(5547): 1719-1723.
    [18] Chapman JM, Cooper JD, Todd JA, et al. Detecting disease associations due to linkage disequilibrium using haplotype tags: a class of tests and the determinants of statistical power[J].Hum Hered, 2003, 56(1-3): 18-31.
    [19] Zhang K, Calabrese P, Nordborg M, et al. Haplotype block structure and its applications to association studies: power and study designs[J]. Am J Hum Genet, 2002, 71(6): 1386-1394.
    [20] Carlson CS, Eberle MA, Rieder MJ, et al. Selecting a maximally informative set of singlenucleotide polymorphisms for association analyses using linkage disequilibrium[J]. Am J Hum Genet, 2004, 74(1): 106-120.
    [21] Ke X, Durrant C, Morris AP, et al. Efficiency and consistency of haplotype tagging of dense SNP maps in multiple samples[J]. Hum Mol Genet, 2004, 13(21): 2557-2565.
    [22] Bertina RM, Koeleman BP, Koster T, et al. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature, 1994, 369(6475): 64-67.
    [23] Altshuler D, Hirschhorn JN, Klannemark M, et al. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes[J]. Nat Genet, 2000, 26(1):76-80.
    [24] Pennacchio LA, Olivier M, Hubacek JA, et al. An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing[J]. Science, 2001, 294(5540): 169-173.
    [25] McCarthy MI. Progress in defining the molecular basis of type 2 diabetes mellitus through susceptibility-gene identification[J]. Hum Mol Genet, 2004, 13 (suppl 1): R33-41.
    [26] Corder EH, Saunders AM, Strittmatter WJ, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families[J]. Science, 1993, 261(5123): 921-923.
    [27] McCarthy MI, Smedley D, Hide W. New methods for finding disease-susceptibility genes: impact and potential[J]. Genome Biol, 2003,4(10): 119.
    [28] Zareparsi S, Branham KE, Li M, et al. Strong association of the Y402H variant in complement factor H at lq32 with susceptibility to age-related macular degeneration[J]. Am J Hum Genet, 2005, 77(1): 149-153.
    [29] Haines JL, Hauser MA, Schmidt S, et al. Complement factor H variant increases the risk of age-related macular degeneration[J]. Science, 2005, 308(5720): 419-421.
    [30] Klein RJ, Zeiss C, Chew EY, et al. Complement factor H polymorphism in age-related macular degeneration [J]. Science, 2005, 308(5720): 385-389.
    [31] Edwards AO, Ritter R 3rd, Abel KJ, et al. Complement factor H polymorphism and age-related macular degeneration[J]. Science, 2005, 308(5720): 421-424.
    [32] Silander K, Mohlke KL, Scott LJ, et al. Genetic variation near the hepatocyte nuclear factor-4 gene predicts susceptibility to type 2 diabetes[J]. Diabetes, 2004, 53(4): 1141-1149.
    [33] Antoniou AC, Easton DF. Polygenic inheritance of breast cancer: implications for design of association studies[J]. Genet Epidemiol, 2003, 25(3): 190-202.
    [34] Hopper JL, Bishop DT, Easton DF. Population-based family studies in genetic epidemiology[J]. Lancet, 2005, 366(9494):1397-1406.
    [35] Murff HJ, Spigel DR, Syngal S. Does this patient have a family history of cancer? An evidence-based analysis of the accuracy of family cancer history[J]. JAMA, 2004, 292(12):1480-1489.
    [36] John EM, Hopper JL, Beck JC, et al. The Breast Cancer Family Registry: an infrastructure for cooperative multinational, interdisciplinary and translational studies of the genetic epidemiology of breast cancer[J]. Breast Cancer Res, 2004,6(4): R375-389.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700