用户名: 密码: 验证码:
可控源音频大地电磁法三维交错采样有限差分数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可控源音频大地电磁法(CSAMT)是在大地电磁法(MT)基础上发展起来的一种人工源频率域测深方法,该方法在矿产资源、油气、地热及工程勘查等领域得到了广泛的应用。当前针对CSAMT的研究主要集中在二维和2.5维,然而CSAMT的源和电磁场本质上是三维,因此CSAMT三维数值模拟是勘探地球物理领域迫切需要解决的前沿问题之一。本文将多重网格法与交错采样有限差分法结合,开展了CSAMT三维数值模拟研究。
     从CSAMT满足的基本方程出发,推导了一次场和二次场所满足的麦克斯韦方程,得出了全空间下层状介质的解析解,通过典型模型数值计算确定了最佳汉克尔滤波系数。将三维交错采样有限差分应用到二次场计算中,推导了磁场分量与电场分量的关系表达式,将CSAMT三维数值模拟的二次场计算问题转换为大型线性方程组的求解,提出了各边界的二次场值为零的简洁边界条件。
     多重网格法中采用标准粗化方法使粗网格单元值等于其对应的八个细网格单元值的加权平均。从磁场的三个分量出发,推导了限制算子和延拓算子,并在计算过程中保证限制算子比延拓算子至少高一阶代数精度。采用对称对角行存储格式,利用两个一维数组进行系数矩阵存储,使总体存储量达到最小。研究了三种磁场散度校正方法(直接磁场散度校正、磁场散度残差复校正、磁场散度残差实校正),并通过实际模型试算证明磁场散度残差实校正为最佳方法。通过多重网格法和两种经典的迭代方法的比较,证明多重网格法误差收敛速度与网格剖分尺度无关,剖分网格数对迭代次数基本没有影响,当网格剖分数大时多重网格法的迭代次数及计算时间均比不完全LU分解双共轭梯度迭代法少。通过研究多重网格层数对计算效率的影响,证明在网格剖分数相同情况下应尽可能增加多重网格层数。结合CSAMT三维数值模拟的特点,编制了基于MPI的三维数值模拟程序,利用相同模型比较了两种程序的计算速度,结果表明多核PC机的并行计算能大大提高计算效率。通过典型模型体的CSAMT三维数值模拟,分析了典型模型体CSAMT赤道装置和轴向装置的异常响应,并对场源附加效应和场源阴影效应进行了研究。
Controlled-source audio-frequency magnetotellurics (CSAMT) method, a frequency domain sounding method using artificial source which is developing from the magnetotellurics (MT) method, has been widely applied to mineral exploration, hydrocarbon exploration, geothermal exploration and engineering exploration. Most studies on CSAMT are focusing on the two dimensional and 2.5 dimensional resistivity models. While the source and the electromagnetic fields of CSAMT are essentially three dimension. Therefore, three dimensional CSAMT numerical simulation is one of the key scientific problems which are urgent to be solved in geophysical surveys. In this paper, the three dimensional CSAMT numerical simulation using multigrid method and staggered-grid finite difference method is studied in depth.
     From the basic principles of the CSAMT, the Maxwell equation of the primary field and the secondary field are derived respectively. The analytical solution of layer model is worked out. The best Hankel filter coefficients are obtained by simulate some typical models. The three dimensional staggered-grid finite difference is applied to the secondary field numerical simulation. Based on the staggered-grid discretization, the relations betwen electrical components and magnetic components are derived. The secondary filed computation of three dimensional CSAMT numerical simulation is transformed to the solution of linear equations systems. The more explicit boundary conditions that the secondary field value is zero in each boundary are introduced.
     In order to ensure a coarse grid filed value is equal to the weighted average of corresponding eight fine grids, a standard coarsening strategy is employed in multigrid method. The restriction operators and the interpolation operators are derived based on three magnetic field components. And the algebraic precision of restriction operators is one order higher than the interpolation operators at least. For sparse and large matrix in CSAMT three dimensional simulation, diagonally symmetrical row storage method is used. A great deal of storage space is saved by using two one dimensional arrays to store the matrix. Three divergence correction methods are presented from the characteristic that magnetic divergence in Maxwell equations is zero. Those methods are directly divergence correction of magnetic field (DDCM), divergence residual plural correction of magnetic field (RPCM) and divergence residua real correction of magnetic field (RRCM). Some geo-electrical models are simulated using the three divergence correction methods. The results show that RRCM is the best divergence correction method. Compared with the two traditional iteration methods, the convergence rate of multigrid method is nearly independent of meshing size. In large scale meshing grids, the computational time and iteration numbers of multigrid method is much fewer than ILU-BICG method. The result shows that more multigrid layers are better in the same meshing grids. According to the characteres of three dimensional CSAMT numerical simulation, we developed three dimensional CSAMT numerical modeling program using Message Passing Interface (MPI) technique. The computational speed of the two programs is compared with the same model. The result shows that the parallel algorithm based on multi-core PC can improve the computational efficiency greatly as well.
     In the last part of this paper, some typical model’s responses of equatorial setting and axial setting are analyzed by CSAMT three dimensional numerical simulation. And the overprint effect and shadow effect of the source are also studied with three dimensional numerical simulation.
引文
Adams M F, Algebralic multigrid methods for direct frequency response analyses in solid mechanics[J]. Comput. Mech. 2007, 39(3):497-507.
    Alumbaugh D L, Newman G A, Prevost L et al., Three-dimensional wideband electromagnetic modeling on massively parallel computers[J]. Radio Science. 1996, 31(1):1-23.
    Anderson W L, Computation of Green’s tensor integrals for three-dimensional electromagnetic problems using fast Hankel transforms[J]. Geophsyics. 1984, 49(10):1754-1759.
    Anderson W L. A hybrid fast Hankel transform algorithm for electromagnetic modeling[J]. Geophysics. 1989, 54(2):263-266.
    Aruliah D, Ascher U. Multigrid preconditioning for Krylov methods for time-harmonic Maxwell's time-harmonic Maxwell's Equation in 3D[J]. SIAM Journal of Science Computation. 2003, 24(2):702-718.
    Avdeev D B. Three-dimensional electromagnetic modelling and inversion from theory to application[J]. Surveys in Geophysics. 2005, 26(6): 767-799.
    Avdeev D B, Avdeeva A. 3D magnetotelluric inversion using a limited-memory quasi-Newton optimization[J]. Geophysics. 2009, 74(3): 45-57.
    Badea E A, Everett M E, Newman G A, et al. Finite-element analysis of controlled-source electromagnetic induction using Coulomb-gauged potentials[J]. Geophysics. 2001, 66(3): 786-799.
    Bakr S A, Mannseth T. Feasibility of simplified integral equation modeling of low-frequency marine CSEM with a resistive target[J]. Geophysics. 2009, 74(5): 107-117.
    Bennett C L, Weeks W L. Electromagnetic pulse response of cylindrical scatters[C]. Boston: Northeastern University, 1968.
    Boerner D E, Wright J A, Thurlow J G, et al. Tensor CSAMT studies at the Buchans Mine in central Newfoundland[J]. Geophysics. 1993, 58(1): 12-19.
    Braess D. Towards algebraic multigrid for elliptic problems of second order[J]. Computing. 1995, 55(3):379-393.
    Brandt A. Multi-Level Adaptive Solutions to Boundary-Value Problems[J]. Mathematics of Computation. 1977, 31(138): 333-390.
    Bunks C, Saleck F M, Zaleshi S, et al. Multiscale seismic waveform inversion[J]. Geophysics. 1995, 60(5): 1457-1473.
    Chai J, Toh K. Preconditioning and iterative solution of symmetric indefinite linear systems arising from interior point methods for linear programming[J]. Computational Optimization and Applications. 2007, 36(2): 221-247.
    Coggon J H. Electromagnetic and electrical modeling by the finite-element method[J]. Geophysics. 1971, 36(2): 132-155.
    De Groot-Hedlin C, Constable S. Inversion of magnetotelluric data for 2D structure with sharp resistivity contrasts[J]. Geophysics. 2004, 69(1): 78-86.
    De Leon D. A new wavelet multigrid method[J]. Journal of Computational and Applied Mathematics. 2008(220): 675-685.
    Dmitriev I V. Electromagnetic fields in inhomogeneous media:Proceedings of the computational center(in Russian)[Z]. Moscow State University,1969.
    Dmitriev I V, Nesmeyanova N I. Integral equation method in three-dimensional problems of low-frequency electrodynamics[J]. Computer mathmetic model. 1991, 3(2): 313-317.
    Fomenko E Y, Mogi T. A new computation method for a staggered grid of 3D EM field conservative modeling[J]. Earth Planets Space. 2002, 54(2): 499-509.
    FourniéM, Karaa S. Iterative methods and high-order difference schemes for 2D elliptic problems with mixed derivative[J]. Journal of Applied Mathematics and Computing. 2006, 22(3): 349-363.
    Ganquan X, J L E, L M. 3-D electromagnetic modeling and nonlinear inversion[J]. Geophysics. 2000, 65(3): 804-822.
    Haber E, Ascher U M. Fast finite volume simulation of 3D electromagnetic problems with highly discontinuous coefficients[J]. SIAM Journal on Scientific Computing. 2000, 22(6): 1943-1961.
    Haber E, Ascher U M, Aruliah D A, et al. Fast simulation of 3D electromagnetic problems using potentials[J]. Journal of Computational Physics. 2001, 163(1): 150-171.
    Hohmann G W. Three-dimensional induced polarization and electromagnetic modeling[J]. Geophysics. 1975, 40(2): 309-324.
    Howard P A. Multigrid methods for elliptic optimal control problems[D]. Rice University,2006.
    Kerry K, C W. Adaptive finite-element modeling using unstructured grids:The 2D magnetotelluric example[J]. Geophysics. 2006, 71(6): 291-299.
    Key K. 1D inversion of multicompoment, multifrequency marine CSEM data: Methodology and synthetic studies for resolving thin resistive layer[J]. Geophysics. 2009, 74(2): 9-19.
    Key K, Weiss C. Adaptive finite-element modeling using unstructured grids: The 2D magnetotelluric example[J]. Geophysics. 2006, 71(6): 291-299.
    Kong F N, Johnstad S E, Rosten T, et al. A 2.5D finite-element-modeling difference method for marine CSEM modeling in stratified anisotropic media[J]. Geophysics. 2008, 73(1): 9-19.
    Lee K H, Pelekanos G. Algebraic multigrid preconditioner for homogeneous scatters in electromagnetics[J]. IEEE Trans. On Antennas and Propagation. 2006,54(7):2081-2087.
    Li Y. 2D marine controlled-source electromagnetic modeling: Part I-An adaptive finite-element algorithm[J]. Geophysics. 2007, 72(2): 51-62.
    Liu E H, Lamontagne Y. Geophysical application of a new surface integral equation method for EM modeling[J]. Geophysics. 1998, 63(2): 411.
    Lottes J W, Fischer P F. Hybrid multigrid/schwarz algorithms for the spectral element method[J]. Journal of Scientific Computing. 2005, 24(1): 45-78.
    Mackie R L, Madden T R. Conjugate direction relaxation solutions for 3D Magnetotelluric modeling[J]. Geophysics. 1993,58(7):1052-1057.
    Mackie R L, Madden T R, Wannamaker P E. Three-dimensional magnetotelluric modeling using difference equations---Theory and comparisons to integral equation solutions[J]. Geophysics. 1993, 58(2): 215-226.
    Mittet R. High-order finite-difference simulations of marine CSEM surveys using a correspondence principle for wave and diffusion fields[J]. Geophysics. 2010, 75(1): 33-50.
    Mora P. Nonlinear integral equations for electromagnetic inverse problems[J]. Geophysics. 1987, 52(9): 1211-1228.
    Moucha R. Multigrid methods for forward and inverse resistivity problems in geophysics[D]. University of Toronto, 2003.
    Nam M J, Kim H J, Song Y, et al. 3D magnetotelluric modelling including surface topography[J]. Geophysical Prospecting. 2007, 55(2): 277-287.
    Newman G A, Alumbaugh D L. Frequency-domain modeling of airborne electromagnetic responses using staggered finite differences[J]. Geophysics Prospecting. 1995, 43(8): 1021-1042.
    Newman G A, Recher S, Tezkan B, et al. 3D inversion of a scalar radio magnetotelluric field data set[J]. Geophysics. 2003, 68(3): 791-802.
    Pardo D, Torres-Verdin C, Demkowicz L F. Feasibility study for 2D frequency-dependent electromagnetic sensing through casing[J]. Geophysics. 2007, 72(3): 111.
    Park M K, Seol S J, Kim H J. Sensitivities of generalized RRI method for CSAMT survey[J]. Geosciences Journal. 2006, 10(1): 75-84.
    Pedersen L B, Engels M. Routine 2D inversion of magnetotelluric data using the determinant of the impedance tensor[J]. Geophysics. 2005, 70(2): 33-41.
    Pessel M, Gebert D. Multiscale electrical impedance tomography[J]. Journal of Geophysical Research. 2003, 108(B1): 2054.
    Pflaum C. A multigrid conjugate gradient method[J]. Applied Numerical Mathematics. 2008(58): 1803-1817.
    Pridmore D F, Hohmann G W. An investigation of finite-element modeling for electrical and electromagnetic data in three dimensions[J]. Geophysics. 1981, 46(5): 1009-1024.
    Qian W, Boerner D E. Electromagnetic response of a discretely grounded circuit---An integral equation solution[J]. Geophysics. 1994, 59(11): 1680-1694.
    Radzevicius S. Practical 3-D Migration and Visualization for Accurate Imaging of Complex Geometries with GPR[J]. Journal of Environmental and Engineering Geophysics. 2008, 13(2): 99-112.
    Ralph-Uwe B. Numerical modelling in geo-electromagnetics: Advances and challenges[J]. Surveys in Geophysics. 2009, 30(5): 225-245.
    Rijo L. Modeling of electric and electromagnetic data[D]. University of Utah, 1977.
    Rodi W L. A technique for improving the accuracy of finite element solutions for magnetotelluric data[J]. Geophys Journal Internet. 1976, 44(2): 483-506.
    Rodi W, Mackie R L. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion[J]. Geophysics. 2001, 66(1): 174.
    Sheehan B P. Multigrid methods for isotropic neutron transport[D]. University of Colorado, 2007.
    Siripunvaraporn W, Egbert G. An efficient data-subspace inversion method for 2-D magnetotelluric data[J]. Geophysics. 2000, 65(3): 791-803.
    Smith J T. Conservative modeling of 3-D electromagnetic fields, Part I, Properties and error analysis[J]. Geophysics. 1996, 61(7): 1308-1318.
    Smith J T. Conservative modeling of 3-D electromagnetic fields, Part II, Bi-conjugate gradient solution and an accelertor[J]. Geophysics. 1996, 61(7): 1319-1324.
    Smith J T, Booker J R. Rapid inversion of two-and three-dimensional magnetotelluric data[J]. Journal of Geophysical Research. 1991, 96(B3): 3905-3922.
    Song Y, Kim H J, Lee K H. An integral equation representation of wide-band electromagnetic scattering by thin sheets[J]. Geophysics. 2002, 67(3): 746-754.
    Spitzer K. A 3-D finite-difference algorithm for DC resistivity modeling using conjugate gradient methods[J]. Geophysics Journal International. 1995, 123: 903-914.
    Streich R. 3D finite-difference frequency-domain modeling of controlled-source electromagnetic data: Direct solution and optimization for high accuracy[J]. Geophysics. 2009, 74(5): 95-105.
    Tabarovsky L A. Application of integral equation method to geoelectrical problem[J]. Nauka(in Russian). 1975.
    Troiano A, Di Giuseppe M G, Petrillo Z, et al. Imaging 2D structures by the CSAMT method: application to the Pantano di S. Gregorio Magno faulted basin (Southern Italy)[J]. Journal of Geophysics and Engineering. 2009, 6(2): 120-130.
    Unsworth M J, Traves B J, Chave A D. Electromagnetic induction by a finite electric dipole source over a 2-D earth[J]. Geophysics. 1993, 58(1): 198-214.
    Unsworth M J, Lu X, Watts M D. CSAMT exploration at Sellafield: Characterization of a potential radioactive waste disposal site[J]. Geophysics. 2000, 65(4):1070.
    Urquhart S A, Zonge K L. Combining CSAMT and MT in difficult exploration environments[J]. The Leading Edge. 1997,16(4): 383-384.
    Walker P W, West G F. A robust integral equation solution for electromagnetic scattering by a thin plate in conductive media[J]. Geophysics. 1991, 56(8):1140-1152.
    Wang R, Di Q Y, Wang M Y, et al. Research on the effect of 3D body between transmitter and receivers on CSAMT response using Integral Equation method[J]. Chinese Journal of
    Geophysics-Chinese Edition. 2009, 52(6):1573-1582.
    Wang T, Hohmann G W. A finite-difference time-domain solution for three-dimensional electromagnetic modeling[J]. Geophysics. 1993, 58(4):797-809.
    Wannamaker P E, Stodt J A, Rijo L. Two-dimensional topographic response in magnetotellurics modeled using finite element[J]. Geophysics. 1986, 51(11):2131-2144.
    Wannamaker P E. Advances in three-dimensional magnetotelluric modeling using integral equations[J]. Geophysics. 1991, 56(11):1716-1728.
    Wannamaker P E. Tensor CSAMT survey over the sulphur springs thermal area, Valles Caldera, New Mexico, United States of America, Part I: Implications for structure of the western caldera[J]. Geophysics. 1997, 62(2): 451-465.
    Ward S H, Hohman G W. Electromagnetic theory for geophysical applications in M. N. Nabighian[M]. Electromagnetic methods in applied geophysics, SEG, 1988, 131-312.
    Weave R J T, Agarwal A K, Pu X H. Three-dimensional finite-difference modeling of the magnetic field in geo-electromagnetic induction[J]. Three Dimensional Electromagnetics,S.E.G. 1999, Geophysical Developments Series 7: 426-443.
    Wesseling P. An Introduction to multigrid methods[M]. Singapore: JOHN WILEY& SONS, 1991.
    Wilson J, Naff R. Multigrid preconditioned conjugate-gradient solver for mixed finite-element method[J]. Computational Geosciences. 2009, 21(3): 321-330.
    Xiong Z H, Raiche A, Sugeng F. Efficient solution of full domain 3D electromagnetic modeling problems[J]. Explor. Geophys. 2000, 31(1): 158-161.
    Xiong Z. EM modeling three-dimensional structures by the method of system iteration using integral equatios[J]. Geophysics. 1992, 57(8): 1556-1561.
    Xiong Z, Tripp A C. Electromagnetic scattering of large structures in layered earth using integral equation[J]. Radio Science. 1995, 30(5): 921-929.
    Xiong Z. Electromagnetic modeling of 3-D structures by the method of system iteration using integral equations[J]. Geophysics. 1992, 57(12): 994-1003.
    Xiong Z, Tripp A C. 3-D electromagnetic modeling for near-surface targets using integral equations[J]. Geophysics. 1997, 62(4): 1097-1106.
    Xu Y, Yue R. Preliminary Understanding of near-field effect of CSAMT in electricazimuthally anisotropic half-Space[J]. Journal of Environmental and Engineering Geophysics. 2006, 11(2): 67-72.
    Yee K S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Trans. Ant. Prop. 1966, 14: 302-307.
    Yuji M, Toshihiro U. 3D magnetotelluric modeling using T- finite-element method[J]. Geophysics. 2004, 69(1): 108-119.
    Zhang J, Mackie R L, Madden T R. 3-D resistivity forward modeling and inversion using conjugate gradients[J]. Geophysics. 1995, 60(5): 1313-1325.
    Zhdanov M S, Lee S K, Yoshioka K. Integral equation method for 3D modeling of electromagnetic fields in complex structures with inhomogeneous background conductivity[J]. Geophysics. 2006, 71(6): 333-345.
    Zhebel. A Multigrid method with matrix-dependent transfer operator for 3D diffusion problems with jump coefficients[D]. Germany: TU Bergakademie Freiberg, 2006.
    鲍光淑,张碧星,敬荣中,等.三维电磁响应积分方程法数值模拟[J].中南工业大学学报(自然科学版).1999,30(5):472-474.
    陈伯舫,侯作中,范国华.有限差分法计算三维地形影响的电磁感应[J].地震学报.1998, 20(5): 541-544.
    陈桂波.各向异性地层中电磁场三维数值模拟的积分方程算法及其应用[博士学位论文]. 吉林:吉林大学,2009.
    陈国良.并行计算-结构,算法,编程[M].北京:高等教育出版社,2002.
    陈金窗,戴光明.微机网络并行计算及2.5维CSAMT正演的并行实现[J].物探化探计算技术,1997,19(2):103-107.
    底青云,王妙月,王若.有限元法2.5维CSAMT数值模拟[J].地球物理学进展. 2004,19(2): 317-324.
    底青云,王若.可控源音频大地电磁数据正反演及方法应用[M].北京:科学出版社, 2008.
    董良国,马在田,曹景忠,等.一介弹性波方程交错网格高阶差分解法[J].地球物理学报. 2000,43(3):411-419.
    都志辉.高性能计算之并行编程技术—MPI并行程序设计[M].北京:清华大学出版社,2001.
    付长民,底青云,王妙月.海洋可控源电磁法三维数值模拟[J].石油地球物理勘探.2009, 44(3):358-363.
    付长民,底青云,王妙月.计算层状介质中电磁场的层矩阵法[J].地球物理学报.2010, 53(1):177-188.
    高彦伟,郭华,周伟.利用多重网格方法研究波动方程正反演问题进展[J].世界地质. 2002,2(1):23-25.
    龚强.CSAMT二维正演研究[硕士学位论文].武汉:中国地质大学,2007.
    葛永斌,田振夫,马红磊.三维泊松方程的高精度多重网格解法[J].应用数学,2006, 19(2):313-318.
    郭新军,张智诠,周立伟,等.计算像管三维静电场的多重网格法[J].红外与激光工程. 2003,41(5):112-117.
    何继善.可控源音频大地电磁法[M].长沙:中南大学出版社,1990.
    胡善政.可控源音频大地电磁法三维数值模拟研究[硕士学位论文].北京:中国地质大学,2006.
    胡祖志,陈英,何展翔,等.大地电磁并行模拟退火约束反演及应用[J].石油地球物理勘探,2010,45(4):597-601.
    黄临平,戴世坤.复杂条件下三维电磁场有限元计算法[J].地球科学-中国地质大学学报.2002,27(6):775-779.
    金建铭.电磁场有限单元法[M].西安:西安电子科技大学出版社,1998.
    Kanfman A A,Keller G V.频率域和时间域电磁测深[M].北京:地质出版社,1987.
    李帝铨,底青云,王光杰,等.CSAMT探测断层在北京新区规划中的应用[J].地球物理学进展.2008,23(6):1963-1969.
    李金铭.地电场与电法勘探[M].北京:地质出版社,2005.
    李晓梅,莫则尧.多重网格算法综述[J].中国科学基金.1996(1):4-11.
    李焱,胡祥支,吴桂桔,等.基于MPI的二维大地电磁正演的半行计算[J].地震地质,2010,32(3):392-401.
    林昌洪.大地电磁张量阻抗三维共轭梯度反演研究[博士学位论文].北京:中国地质大学(北京),2009.
    林昌洪,谭捍东,佟拓.大地电磁法三维共轭梯度反演研究(英文)[J].Applied Geophysics.2008,5(4):314-321.
    林昌洪,谭捍东,佟拓.大地电磁三维快速松弛反演并行算法研究(英文)[J].AppliedGeophysics.2009,6(1):77-83.
    刘长生.基于非结构化网格的三维大地电磁自适应矢量有限元数值模拟[博士学位论文]. 长沙:中南大学,2009.
    刘超群.多重网格法[M].北京:科学出版社,1993.
    刘超群.多重网格法及其在计算流体力学中的应用[M].北京:清华大学出版社,1995.
    刘海飞,阮百尧,柳建新.变阻尼共轭梯度算法及其性能分析[J].地球物理学进展. 2008, 23(1):89-93.
    刘苗,吴健生,于鹏,等.基于二维小波分解的MT二维反演方法[J].物探与化探.2009,33(3):337-341.
    刘树才,周圣武.三维电法数值模拟中的网格剖分方法[J].物探化探计算技术,1995, 17(1):37-42.
    刘羽.MT Occam并行反演方案及性能分析[J].武汉理工大学学报,2007, 29(12):136-140.
    柳建新,郭荣文,韩世礼,等.CSAMT法在西北深部探矿中的应用研究[J].矿产与地质. 2008,22(3):261-264.
    柳建新,蒋鹏飞,童孝忠,等.不完全LU分解预处理的BICGSTAB算法在大地电磁二维正演模拟中的应用[J].中南大学学报(自然科学版). 2009, 41(2):484-491.
    鲁晶津.地球电磁三维数值模拟的多重网格方法及其应用研究[博士学位论文].合肥: 中国科技大学,2010.
    鲁晶津,吴小平,Klaus,等.三维泊松方程数值模拟的多重网格方法[J].地球物理学进展.2009,24(1):154-158.
    鲁晶津,吴小平,Spitzer K.直流电阻率三维正演的代数多重网格方法[J].地球物理学报.2010,55(3):700-707.
    罗延钟,万乐,杨麟峰.双极源CSAMT法一维正演的等效偶极源近似算法[J].勘查地球物理勘查地球化学文集-第20集电法专辑. 1996.
    罗延钟,张桂青.电子计算机在电法勘探中的应用[M].武汉:武汉地质学院出版社, 1987.
    梅发国,高彦伟,郭华.频域波动方程的多重网格法[J].世界地质.2002,21(4):384-389.
    梅金顺,刘洪.预条件方程组及其应用[J].地球物理学报.2004,47(4):718-722.
    孟永良,罗延钟.双极源CSAMT法二维正演的有限单元算法[M].北京:地质出版社,1996.
    米萨克N.纳比吉安.勘查地球物理电磁法(第一卷理论)(赵经祥译)[M].北京:地质出版社,1992.
    朴化荣.电磁测深法原理[M].北京:地质出版社,1990.
    钱建良,刘家琦.频域波动方程数值解的一种多重网格方法[J].哈尔滨工业大学学报. 1996, 28(2):1-5.
    乔中林.直流电法三维正演多重网格算法研究[硕士学位论文].中国地质大学(北京), 2007.
    阮百尧,徐世浙,徐志锋.三维地形大地电磁场的边界元模拟方法[J].地球科学(中国地质大学学报).2007,32(1):130-136.
    沈金松.用交错网格有限差分法计算三维频率域电磁响应[J].地球物理学报.2003, 46(2):281-289.
    沈金松,孙文博.二维海底地层可控源海洋电磁响应的数值模拟[J].石油物探.2009, 48(02):187-194.
    石昆法.可控源大地电磁法理论与应用[M].北京:科学出版社,1999.
    孙英勋.CSAMT法在高速公路长大深埋隧道勘察中的应用研究[J].地球物理学进展. 2005,20(4):1184-1189.
    谭捍东,余钦范,魏文博.大地电磁法三维快速松弛反演[J].地球物理学报.2003, 46(6):850-856.
    谭捍东,余钦范,John Booker,等.大地电磁法三维交错采样有限差分数值模拟[J].地球物理学报.2003,46(5):706-711.
    谭捍东,佟拓,林昌洪.大地电磁三维正演并行算法研究[J].Applied Geophysics. 2006,03(4):197-202.
    汤井田,何继善.可控源音频大地电磁测深与其应用[M].长沙:中南大学出版社,2006.
    汤井田,王飞燕,任政勇,等.3-D direct current resistivity forward modeling by adaptive multigrid finite element method[J].中南大学学报(英文版),2010,17(3): 587-592.
    田小波,吴庆举,曾融生.弹性波场数值模拟的隐式差分多重网格算法[J].地球物理学报. 2004,47(01):81-88.
    W哈克布思.多重网格方法[M].林群等译,北京:科学出版社, 1988.
    王若,王妙月,卢元林.三维三分量CSAMT法有限元正演模拟研究初探[J].地球物理学进展.2007,22(4):579-585.
    王月英.基于MPI的三维波动方程有限元法并行正演模拟[J].石油物探,2009,48(3):221-225.
    王志刚,何展翔,魏文博.井中垂直双极源体积分方程法三维模拟研究[J].地球物理学进展.2007,22(06):1802-1808.
    魏永强.三维电阻率正演计算中的多重网格法研究[硕士学位论文].抚州:东华理工大学, 2010.
    吴东阳.多重网格方法在工程电磁场数值计算中的应用研究[硕士学位论文].沈阳:沈阳工业大学, 2009.
    吴小平,汪彤彤.利用共轭梯度算法的电阻率三维有限元正演[J].地球物理学报.2003, 46(3):428-432.
    吴小平,徐果明.电阻率三维反演中偏导数矩阵的求取与分析[J].石油地球物理勘探. 1999,34(4):363-372.
    吴小平,徐果明.利用ICCG迭代技术加快电阻率三维正演计算[J].煤田地质与勘探. 1999,27(3):62-66.
    吴小平,徐果明,李时灿.利用不完全Cholesky共轭梯度法求解点源三维地电场[J].地球物理学报.1998,41(6):848-854.
    席玉萍.代数多重网格法在直流电法有限元模拟中的应用[硕士学位论文].中南大学, 2009.
    肖映雄.代数多重网格算法研究及其在固体力学计算中的应用[硕士学位论文].湘潭大学,2006.
    徐凯军,李桐林,张辉,等.利用积分方程法的大地电磁三维正演[J].西北地震学报. 2006,28(2):104-107.
    徐世浙.地球物理中的有限单元法[M].北京:科学出版社,1994.
    徐世浙,阮百尧,周辉,等.大地电磁场三维地形影响的数值模拟[J].中国科学(D辑:地球科学).1997,27(1):15-20.
    徐世浙,于涛,李予国.电导率分块连续变化的二维MT有限元模拟(1)[J].高校地质学报. 1995,1(2):65-73.
    徐志锋,吴小平.可控源电磁三维频率域有限元模拟[J].地球物理学报.2010,53(8): 1931-1939.
    许广春,习铁宏,段洪芳.可控源音频大地电磁法(CSAMT)在隧道勘察中的应用[J].工程勘察.2008(6):68-71.
    阎述,陈明生.电偶极源频率域电磁测深三维地电模型有限元正演[J].煤田地质与勘探. 2000,28(3):50-56.
    殷长春.赤道向频率域电磁测深三维电磁模拟技术的研究[J].石油地球物理勘探,1994, 29(6):746-757.
    殷文.基于频率域高阶有限差分的正演模拟及并行算法[J].吉林大学学报(地球科学版),2008,38(1):144-151.
    张辉,李桐林,董瑞霞.体积分方程法模拟电偶源三维电磁响应[J].地球物理学进展. 2006,21(02):386-390.
    张继锋.基于电场双旋度方程的三维可控源电磁法有限单元法数值模拟[博士学位论文]. 长沙:中南大学,2008.
    张军华,臧胜涛,单联瑜,等.高性能计算机的发展现状及趋势[J].石油地球物理勘探.2010,45(6):918-925.
    张秋菊.时域有限差分电磁仿真软件的三维网格剖分及其设计[硕士学位论文].电子科技大学,2005.
    张智诠,周立伟,陶禹.多重网格法求解静电像管三维电场的若干问题研究[J].装甲兵工程学院学报.2004,23(01):35-43.
    赵广茂,李桐林,王大勇,等.基于二次场二维起伏地形MT有限元数值模拟[J].吉林大学学报(地球科学版).2008,38(06):1055-1059.
    赵国泽,陈小斌,汤吉.中国地球电磁法新进展和发展趋势[J].地球物理学进展.2007,22(4):1171-1180.
    周军.大地电磁测深视电阻率与阻抗相位联合反演研究[硕士学位论文].成都理工大学, 2008.
    周熙襄,钟本善,严忠琼,等.有限单元法在直流电法勘探正问题中的应用[J].物探与化探.1980, 4(3):1-57.
    朱威.二维大地电磁正反演人机交互解释系统研究[硕士学位论文].吉林大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700