用户名: 密码: 验证码:
先天性脊柱侧凸及其伴发畸形的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分先天性脊柱侧凸伴肋骨及胸廓畸形的研究
     研究背景:先天性脊柱侧凸(congenital scoliosis, CS)常常伴有椎管内畸形、肋骨及胸廓畸形。CS伴发胸廓畸形不仅影响患者外观,更重要的是影响肺脏的正常生长发育,导致不可逆的肺功能损害。目前关于肋骨畸形研究则报道较少。对于脊椎畸形、肋骨畸形与椎管内畸形三者的关系,畸形好发部位等情况报道则更少。对胸廓畸形、肋骨畸形与肺功能的关系研究也较少。
     目的:明确以下四个问题:(1)CS患者肋骨畸形的发生率及特点;(2)CS中脊椎畸形、肋骨畸形与椎管内畸形三者的关系;(3)CS伴发胸廓畸形患者肺功能与胸廓畸形参数的相关性;(4)肋骨畸形与肺功能的关系。
     方法:收集2009年3月~2013年3月因CS在我院手术的患者的全脊柱X线平片、CT及MRI资料,统计肋骨畸形发生情况。对这些患者脊椎畸形合并肋骨畸形和椎管内畸形特点进行回顾性分析。收集同期伴有肺功能障碍的CS患者,分为临床相关肺功能损害及无肺功能损害两组,将肺功能指标与胸廓参数进行相关分析。同时分析各年龄组是否合并肋骨畸形患者术前肺功能参数的差异。
     结果:515例CS患者中,252例伴有肋骨畸形,发生率为48.9%,以凹侧多见,共158例(62.7%,158/252);简单型137例(26.6%),复杂型115例(22.3%)。肋骨畸形中结构异常179例(34.8%),数量异常120例(23.3%)。肋骨畸形好发于下胸段(38.1%,96/252)及中下胸段(21.0%)。简单型肋骨畸形多见于单一区域,而复杂型则多见于两个及以上区域同时发生(P<0.01)。融合肋为最常见的肋骨结构异常(62.0%,111/179,),少肋在下胸段多见。
     CS患者中,椎管内畸形的发生率为37.1%(191/515),其中脊髓空洞症96例次(18.6%),脊髓纵裂125例次:膜性92例次(17.9%),骨性16例次(3.1%),膜性与骨性同时存在17例次(3.3%)。多种畸形常并发存在,以脊髓纵裂和脊髓空洞并发最为多见。肋骨畸形的发生与椎管内畸形的发生有显著差异,CS合并肋骨畸形患者伴发椎管内畸形的几率更大,且多见于复杂型。
     CS患者FEV1、FVC与胸主弯Cobb角,主弯椎体数及胸廓矢横径呈显著性负相关(r=-0.16--0.52),而与左右胸廓高度呈显著性正相关(r=0.27~0.31)。T1-12高度与患者年龄、身高、体重、胸廓横径及胸廓矢纵径呈显著性正相关(r=0.22~0.74);而与胸主弯Cobb角、主弯椎体数、胸后凸Cobb角呈显著性负相关(r=-0.22~-0.29)。A组与B组相比,T1-12高度、胸廓横径及胸后凸Cobb角有显著差异(P<0.05)。A患者T1-12高度变小,横径变大,胸后凸更大。年龄8-18岁组有无合并肺功能损害比较发现T1-12高度、胸廓横径及术后胸后凸Cobb角有显著差异(P<0.05)。合并肋骨畸形的CS较无肋骨畸形患者肺功能更差,尤其是合并有并肋,融合肋的患者(P=0.016和0.014)。然而,肺功能与肋骨畸形的发生部位无明显相关(P>0.05)。
     结论:CS常合并椎管内畸形和肋骨畸形,肋骨畸形的发生率为48.9%。不同类型CS中椎管内畸形及肋骨畸形的发生率有显著差异;CS中不同椎体累及程度与椎管内畸形及肋骨畸形的发生都有显著差异。合并肋骨畸形的CS更易伴发椎管内畸形。CS患者肺功能与胸主弯Cobb角,主弯椎体数及胸廓矢横径呈负相关,而与左右胸廓高度正相关。合并临床相关肺功能患者T1-12高度变小,横径变大,胸后凸更大。合并肋骨畸形尤其是融合肋的CS患者肺功能更差。
     第二部分:先天性脊柱侧凸伴脊髓纵裂的研究
     研究背景:脊髓纵裂(SCM)是一种罕见的先天畸形,但在CS中比较常见。关于CS类型与SCM发生部位、受累节段的关系仍不明确,SCM的自然发病史目前尚不清楚,而且SCM可能在一生中保持稳定。外科手术不一定能改善神经系统症状,骨棘切除后可能再生,分期手术导致矫形更加困难。脊柱矫形手术过程中不去除骨棘或纤维纵膈是否可行,目前对其安全性及有效性研究较少。
     目的(1)分析先天性脊柱侧凸伴发脊髓纵裂的临床及影像学特点;(2)比较SCM Ⅰ和SCM Ⅱ型脊髓纵裂的特点、手术治疗及疗效分析;(3)比较是否行预防性骨嵴切除的SCM Ⅰ型脊髓纵裂CS患者的手术效果、随访情况及并发症分析。
     方法回顾性研究2000.3~2013.3年间我院收治的238例CS并SCM患者的临床资料,术前均行全脊柱MRI、CT扫描,将所得常规体格检查及影像学检查资料进行分析CS合并脊髓纵裂畸形的影像学特点及临床表现。根据Pang分型分为SCM Ⅰ和SCMⅡ两组,对两组患者手术方式,结果,并发症发生及随访情况进行对比研究。
     结果脊髓纵裂238例,女性168例(73.30%),男性70例(26.7%)。SCM Ⅰ型89例(37.4%)。SCMⅡ型149例(63.6%)。合并椎板畸形153例(64.3%),半椎体71例(29.8%),肋骨畸形128例(53.8%)。临床表现主要有:142例(59.7%)同时存在其他椎管内畸形,包括脊髓空洞56例(23.5%)、脊髓栓系52例(21.8%)、低位脊髓20例(8.4%)等。椎管外畸形17例:6例合并心脏异常(6.7%),11例泌尿系异常(4.6%)。背部毛发31例,跛行11例,运动耐力下降11例,腰背痛9例,截瘫5例。双下肢/双足异常20例,神经系统体格检查有阳性体征45例。
     膜性纵裂好发于胸段,而骨性纵裂在胸段及腰段两部位同时发生的几率更大(P=0.000)。椎板畸形、半椎体及肋骨畸形的发生在两种SCM中也无显著差异。两组在手术时间,术中出血量,术中自体回输血及异体输血方面均无显著差异。但在术后即刻矫形率及末次随访矫形率方面有显著差异,SCM Ⅰ组神经系统并发症发生率更高。预防性切除骨嵴与不切除骨嵴两组对比,在手术时间,出血量,术后即刻矫形率,末次随访矫形率,TS,AVT,术后并发症,神经系统并发症方面均无明显统计学差异。
     结论先天性脊柱侧凸合并脊髓纵裂多合并有背部皮肤异常及下肢神经缺陷。SCM多位于下胸段及腰段,膜性纵裂累及节段显著多于骨性纵裂。Ⅱ型SCM术后即刻及末次随访矫形率均优于Ⅰ型,而Ⅰ型SCM组神经系统并发症发生率更高。合并SCM的CS,如果无症状或合并稳定的神经系统症状,可以在不切除纵隔的情况下获得良好的矫形而避免神经损伤并发症的发生。
     第三部分先天性脊柱侧凸伴klipple-Feil综合征的研究
     研究背景:Klippel-Feil综合征是一组以颈椎形成及分节障碍为特征的先天性畸形,又称短颈畸形。除了颈椎畸形外常合并其他系统器官的异常。先天性脊柱侧凸为最常见的伴发畸形,目前对CS伴发Klippel-Feil综合征的临床表现及影像学特征研究较少。
     目的:研究CS伴发Klippel-Feil综合征的临床表现及影像学特征;进一步分析其合并脊柱及脊柱外畸形的发生情况。
     方法:回顾性研究2009.1~2013.3年间我院收治的515例CS患者的临床资料,术前均行全脊柱MRI、CT扫描,将所得常规体格检查及影像学检查资料进行分析CS合并Klippel-Feil综合征的影像学特点及临床表现。根据颈椎畸形的位置分为高位(O-C2),中位(C2-C4)及低位畸形(C4-T1),对合并及其畸形的患者研究其伴发脊柱及脊柱外畸形的发生情况。
     结果:总体上,28例CS患者合并有KFS,发生率为5.42%。男性8例,女性20例,平均年龄,颈椎冠状面角度平均为20.6。,矢状面角度平均为29.9。KFSⅠ型有14例(50.0%),型有6例(21.4%),型有8例(28.6%)。先天性颈椎融合多见于中位及低位颈椎区域(85.7%,24/28)。在28例KFS中,11例合并有椎管内畸形,6例合并有骨骼外畸形,13例合并有肋骨畸形。肋骨畸形的发生于KFS无明显相关(P>0.05)。一半患者伴有半椎体畸形,但是半椎体的发生于KFS也无明显相关(P>0.05)。
     结论:在CS患者中KFS的发生率为5.42%,先天性颈椎融合在中低位颈椎区域更常见。合并KFS的CS患者肋骨畸形,椎管内畸形及半椎体的发生率并没有增加。
     第四部分:椎弓根螺钉对儿童椎体及椎管发育影响的研究
     研究背景:动物实验研究表明,儿童椎弓根对椎管及椎体发育有迟滞效应,那么人体应用椎弓根螺钉对椎体的椎管发育的影响如何呢?
     目的:研究椎弓根螺钉在7岁以下儿童未成熟脊柱应用的可靠性,评估椎弓根螺钉对随访2年以上的儿童椎管及椎体的影响。
     方法收集我院2003年1月~2010年12月收治的35例,小于7岁的儿童患者,其中男16例,女19例;年龄23~84个月,平均53个月(4.4岁),均因先天性脊柱侧凸在我院行手术治疗并随访2年以上。将这些患者术前,术后及随访时X线片,CT进行分组测量。通过测量椎体及椎管正侧位X线参数,分别比较置螺钉椎体与邻近未置螺钉椎,单侧螺钉与双侧螺钉,融合范围内与融合范围外未置钉椎参数变化,并用部分有完整CT资料病例检验X线测量的准确性,明确椎弓根螺钉是否影响儿童椎管及椎体发育。
     结果35例患者共有212颗椎弓根螺钉植入,其中4例有术后及随访CT。随访时年龄:47-167月,平均105.3±7.2月;随访时间:25-97个月,平均52.3±5.1月;总体上190节段纳入测量,其中77节段无螺钉,113节段有螺钉;99节段双侧螺钉,14节段单侧螺钉。总体上:胸段与腰段有螺钉组与无螺钉组相比:椎体及椎管各参数无统计学差异。有螺钉组胸段与腰段相比发现侧位椎间隙高度、投影面积,正位椎体高度及投影面积有明显差异:腰椎均大于胸段(腰椎椎体的生长速度快于胸椎);无螺钉组胸段与腰段相比仅侧位投影面积腰段大于胸段。单侧螺钉组与双侧螺钉组相比无统计学差异。融合范围内椎体组与融合范围外椎体组相比,仅椎间隙高度有差异。
     结论椎弓根螺钉对儿童椎体及椎管的发育并没有迟滞效应,椎弓根螺钉技术对儿童脊柱是一项可靠的内固定技术。
Part I Rib and cage deformities in congenital scoliosis
     Summary of Background Data Rib deformities and intraspinal anomalies often co-exist in individuals with congenital scoliosis (CS). Rib deformities may assist in diagnosing occult anomalies in these patients. The incidence of rib anomalies in patients with CS and the relationship between rib and vertebral abnormalities have not been reported. CS may progress rapidly in patients with thoracic cage or rib deformities. Few reports have evaluated the association among the pulmonary function, thoracic and rib deformities in CS patients.
     Objective (1) To identify the incidence and characteristics of rib anomalies in patients with CS;(2) To determine the relationship of thoracic cage parameters and preoperative pulmonary function tests (PFTs) in CS patients;(3) If patients with rib deformity have greater impairment of PFTs than those without rib deformity.
     Methods We conducted a study of515patients who underwent surgery for CS at one spine center between Jan2009and Mar2013. Rib anomalies included numerical and structural changes, which we classified as simple or complex. The incidence and associations of rib, vertebral, and intraspinal abnormalities in these patients were analyzed. A total of218patients with CS and pulmonary dysfunction (FVC<80%) was conducted in the same period. The demographic distribution, medical records, PFTs and radiographs of all patients were collected. The association of PFTs and thoracic cage deformities was analyzed.
     Results Of the515patients,252(48.9%) had rib anomalies, including120(47.6%) with numerical variation and179(71.0%) with structural changes. Missing ribs were most common, constituting45.2%of anomalies (114/252). Fused ribs were the most common structural change (62.0%). Rib changes were most common in patients with thoracic and thoracolumbar vertebral anomalies, and occurred most frequently on the concavity of the scoliosis (62.7%) and in the lower thoracic region (40.9%). The incidence of intraspinal anomalies was37.1%(191/515), and these were most common in patients with thoracic vertebral anomalies, and with upper and middle thoracic rib anomalies.
     In total,143patients (65.6%) had a clinically relevant impairment of pulmonary function. They had smaller BMI, larger thoracic transverse and anteroposterior diameter, more thorax height, scoliotic angle and number of involved vertebra than no clinically impairment. PFTs were significant negative correlation with scoliotic angle, number of involved vertebra and thoracic sagittal diameter, while thorax height is significant positive. PFTs do not correlate with T1-12height, but significantly associated with the rib anomalies. The FVC and FEV1were significantly lower in patients with rib anomalies than without rib anomalies.
     Conclusions The incidence of rib anomalies was48.9%in surgical CS patients. The type of rib abnormality varied with vertebral anomaly location and type. The incidence of intraspinal anomalies was significantly higher in patients with than in those without rib anomalies. PFTs correlate significantly with scoliotic angle, number of involved vertebra, thoracic sagittal diameter and thorax height. PFTs were significantly lower in patients with rib anomalies, particular to the patients with fused rib.
     Part Ⅱ Split spinal cord malformations in congenital scoliosis
     Summary of Background Data Split spinal cord malformations(SCM) is a rare entity, which presents distinct clinical characteristics and requires different managements compared with other more common occult spinal dysraphism.
     Objective To analyze the patients of SCM in congenital scoliosis(CS) for their clinical features, radiological findings and outcome of surgery, which can throw light on the subject to others, who have less scope of finding these cases frequently.
     Methods A total of238patients with SCM were operated on at our centre between Mar2000and Mar2013. Patients' demographic profile, radiological and operative details, complications and surgical outcome were evaluated retrospectively.
     Results The mean age of the patients was14.1years and the female to male ratio was2.4:1. The dorsolumbar and lumbar regions were the most common sites for type Ⅰ SCM, while thoracic regions were the most common sites for type Ⅱ SCM. Eighty-nine patients had type Ⅰ SCM and149had type Ⅱ SCM. One or more skin stigmata were present in6cases, hypertrichosis being the most common (13.0%,31/238). Asymmetric weakness of the lower limbs and neural axis abnormalities were present in20and18.9%cases, respectively.145patients were other intraspinal abnormalities (59.7%), including syringomyelia in56(23.5%), tethered cord in52 (21.8%), low conus in20(8.4%).153patients exhibited lamina deformities(64.3%),71exhibited hemivertebra(29.8%) and128exhibited rib anomalies(53.8%).
     The incidence of rib anomalies, hemivertebra and lamino deformities was no significantly difference between the SCM Ⅰand SCMII (P<0.05). There were no significantly difference in operation time, blood loss and cellsaver in two groups (P<0.05). However, the correction rate in post-operation and follow-up period were higher in SCM Ⅰ than SCM Ⅰ group(P=0.000). The complication rate in neural axis was more higher in in SCM Ⅰ than SCM Ⅰ group(P=0.000). Comparing prophylactic surgery group to no prophylactic group, there were no significantly difference in operation time, blood loss, cellsaver, correction rate and complication rate (P>0.05).
     Conclusions SCMs are rare malformations of the spinal cord. We present the largest series so far reported in the world literature. The correction rate in post-operation and follow-up period were higher in SCM Ⅱ than SCM Ⅰ group. The complication rate in neural axis was more higher in in SCM Ⅰ than SCM Ⅱ group. For the CS patients with SCM, if neurological sign is stable, remove of bone spicule or fibre band may not be necessary before the scoliosis correction.
     Part Ⅲ Klippel-Feil syndrome in congenital scoliosis
     Summary of Background Data Klippel-Feil syndrome(KFS) is an uncommon condition, characterized as improper segmentation of one or more cervical spine segments."Scoliosis" is potentially the most common manifestation associated with KFS. However, the clinical manifestations and radiological characteristics of KFS in CS patients are less reported.
     Objective To investigate the clinical manifestations and radiological characteristics of KFS in CS patients. To identify the incidence of spinal or extraspinal abnormities in KFS.
     Methods A total of515patients with CS from Jan2009to Mar2013were identified from a single institution. The demographic distribution, clinical and radiographic data were collected. Cervical regions were also designated as high (O-C2), mid (C2-C4), and low (C4-T1). The Patients with other deformities to investigate the incidence of intra-and extra-spinal abnormalities associated with KFS.
     Results In total,28(5.42%) had been identified KFS, which included8males and20females. The mean coronal cervical alignment was20.6°and saggital alignment was29.9°. KFS type I was found in14patients (50.0%), type Ⅱ in6(21.4%), and type Ⅲ in8(28.6%). Congenitally fused cervical segment are more common in the mid and lower cervical spine region(85.7%,24/28). In the28KFS patients,11have intraspinal anomalies(32.1%) and6have extraskeletal anomalies(21.4%). Thirteen patients(46.4%) exhibited rib anomalies. The incidence of rib anomalies was no significant difference in CS patients with KFS and without KFS(P>0.05). A half of the KFS have hemivertebrae, however, the incidence of hemivertebrae was no statistically significant difference in CS patients with KFS and without KFS(.P>0.05).
     Conclusions The incidence of KFS was5.42%in CS patients. Congenitally fused cervical patterns are more common in the mid and lower cervical spine region. The incidence of and rib anomalies, intraspinal abnormities and hemivertebra was not increase in CS patients with KFS.
     Part IV The effect of pedicle screw on vertebra and spinal canal growth in children before the age of7years
     Summary of Background Data Pedicle screws are widely used in spinal surgery. There is a trend to use pedicle screws in pediatric patients with spi nal disorders. However, there have been few reports regarding the effect of pedicle screws on pedicle, vertebra and spinal canal of pediatric patients with spinal deformities.
     Objective To determine the reliability of pedicle screws placed in children younger than7years of age, and to evaluate the effect of pedicle screw insertion on further growth of the vertebra and spinal canal.
     Methods A retrospective study of35consecutive patients through Jan2003to Dec2010for congenital scoliosis in less than7years children was performed at one spine center. Patients undergoing pedicle screw instrumentation of at least2levels, which had been followed up for at least24months were included. Measurements were performed in instrumented and adjacent non-instrumented levels. The effect of pedicle screw insertion on further growth was evaluated.
     Results The average age at surgery was4.4year (53mo, range,23to84mo).190 segments in35patients met the inclusion criteria.77segments had no screws and113had at least1screw. There was a significant difference between the preoperative and final follow-up values of the measurement of spinal canal and vertebral body parameters (P<0.001). No significant difference existed between growth rates of vertebral bodies and the sagittal diameters of spinal canal with or without screws. The growth rates of vertebral bodies in lumbar spine were higher than in thoracic spine in both instrumented and adjacent groups.
     Conclusion Pedicle screw instrumentation does not cause a retardation effect on the development of vertebral bodies and the spinal canal in children at an early age. It is a safe and reliable procedure to achieve a stable fixation.
引文
1. Johnston CE, Richards BS, Sucato DJ, et al. Correlation of preoperative deformity magnitude and pulmonary function tests in adolescent idiopathic scoliosis. Spine 2011,15;36(14):1096-102
    2. Tsou PM, Yau A, Hodgson AR. Embryogenesis and prenatal development of congenital vertebral anomalies and their classification. Clin Orthop Relat Res 1980,152:211-31.
    3. Tsirikos AI, McMaster MJ. Congenital anomalies of the ribs and chest wall associated with congenital deformities of the spine. J Bone Joint Surg Am 2005, 87:2523-36.
    4. Bradford DS, Heithoff KB, Cohen M. Intraspinal abnormalities and congenital spine deformities:a radiographic and MRI study.J Pediatr Orthop,1991,11:36-41.
    5. Basu PS, Elsebaie H, Noordeen MH. Congenital spinal deformity:a comprehensive assessment at presentation. Spine 2002,27:2255-9.
    6. Rajasekaran S, Kamath V, Kiran R.et al. Intraspinal anomalies in scoliosis:An MRI analysis of 177 consecutive scoliosis patients. Indian J Orthop 2010, 44:57-63.
    7. Prahinski JR, Polly DW Jr, McHale KA.et al. Occult intraspinal anomalies in congenital scoliosis. J Pediatr Orthop 2000,20:59-63.
    8. Shen J, Wang Z, Liu J. et al. Abnormalities Associated With Congenital Scoliosis: A Retrospective study of 226 Chinese surgical cases. Spine 2013,38:814-8.
    9. Belmont PJ Jr, Kuklo TR, Taylor KF.et al. Intraspinal anomalies associated with isolated congenital hemivertebra:the role of routine magnetic resonance imaging. J Bone Joint Surg Am 2004,86-A(8):1704-10.
    10. Suh SW, Sarwark JF, Vora A, et al. Evaluating congenital spine deformities for intraspinal anomalies with magnetic resonance imaging. J Pediatr Orthop 2001, 21:525-31.
    11. Schumacher R, Mai A, Gutjahr P. Association of rib anomalies and malignancy in childhood. Eur J Pediatr 1992,151:432-4.
    12. Loder RT, Huffman G, Toney E. et al. Abnormal rib number in childhood malignancy:implications for the scoliosis surgeon. Spine 2007,32:904-10
    13. Erkula G, Sponseller PD, Kiter AE. Rib deformity in scoliosis. Eur Spine J 2003, 12:281-287.
    14. Huang R, Zhi Q, Schmidt C. et al. Sclerotomal origin of the ribs. Development 2000,127:527-32.
    15. Evans DJ. Contribution of somitic cells to the avian ribs. Dev Biol 2003, 256:114-26.
    16. Campbell RM Jr, Smith MD, Mayes TC, et al. The characteristics of thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis. J Bone Joint Surg Am 2003,85-A:399-408.
    17. Campbell RM Jr, Smith MD. Thoracic insufficiency syndrome and exotic scoliosis. J Bone Joint Surg Am 2007,89 Suppl 1:108-22.
    18. Klessinger S, Christ B. Diastematomyelia and spina bifida can be caused by the intraspinal grafting of somites in early avian embryos. Neurosurgery 1996, 39(6):1215-23.
    19. Erhin Y, Mutluer S, Kocaman S, et al. Split spinal cord malformations in children. J Neurosurg 1998,88(1):57-65.
    20. McMaster MJ. Occult intraspinal anomalies and congenital scoliosis. J Bone Joint Surg Am 1984,66(4):588-601.
    21. Xue X, Shen J, Zhang J, et al. Rib deformities in congenital scoliosis. Spine 2013, 15;38 (26):E1656-61
    22. Shen J, Wang Z, Liu J, et al. Abnormalities associated with congenital scoliosis:a retrospective study of 226 Chinese surgical cases. Spine 2013, 1;38(10):814-8
    23. Cheng B, Li FT, Lin L. Diastematomyelia:a retrospective review of 138 patients. J Bone Joint Surg Br.2012,94(3):365-72
    24. Hood RW, Riseborough EJ, Nehme AM, et al. Diastematomyelia and structural spinal deformities. J Bone Joint Surg Am 1980,62(4):520-8.
    25. Pang D. Split cord malformation:Part II:Clinical syndrome. Neurosurgery 1992, 31(3):481-500.
    26. Gupta DK, Ahmed S, Garg K, et al. Regrowth of septal spur in split cord malformation. Pediatr Neurosurg 2010,46(3):242-4
    27. Winter, R.B., J.H. Moe, J.F. Wang, Congenital kyphosis. Its natural history and treatment as observed in a study of one hundred and thirty patients. J Bone Joint Surg Am 1973,55(2):223-56.
    28. Pang D, Dias MS, Ahab-Barmada M. Split cord malformation:Part I:A unified theory of embryogenesis for double spinal cord malformations. Neurosurgery 1992,31(3):451-80.
    29. Miller A, Guille JT, Bowen JR. Evaluation and treatment of diastematomyelia. J Bone Joint Surg Am 1993,75(9):1308-17.
    30. Huang SL, He XJ, Wang KZ, et al. Diastematomyelia:a 35-year experience. Spine 2013 15,38(6):E344-9.
    31. Cardoso, M. and R.F. Keating, Neurosurgical management of spinal dysraphism and neurogenic scoliosis. Spine 2009,34(17):1775-82
    32. Mahapatra AK1, Gupta DK. Split cord malformations:a clinical study of 254 patients and a proposal for a new clinical-imaging classification. J Neurosurg 2005,103(6 Suppl):531-6.
    33. Guthkelch, A.N., Diastematomyelia with median septum. Brain 1974,97(4): 729-42.
    34. Ayvaz, M., Akalan N, Yazici M, et al., Is it necessary to operate all split cord malformations beforecorrective surgery for patients with congenital spinal deformities? Spine 2009,34(22):2413-8.
    35. Zuccaro, G., Split spinal cord malformation. ChildsNerv Syst 2003,19(2):104-5.
    36. Ayvaz, M., Alanay A, Yazici M, et al., Safety and efficacy of posterior instrumentation for patients with congenital scoliosis and spinal dysraphism. J Pediatr Orthop 2007,27(4):380-6.
    37. Sinha, S.D. Agarwal, A.K.Mahapatra, Split cord malformations:an experience of 203 cases. Childs Nerv Syst 2006,22(1):3-7.
    38. Hensinger RN, Lang JE, MacEwen GD. Klippel-Feil syndrome. A constellation of associated anamolies. J Bone Joint Surg Am 1974,56(6):1246-53.
    39. Samartzis D, Kalluri P, Herman J, et al. Cervical scoliosis in the Klippel-Feil patient. Spine 2011,36(23):E1501-8
    40. Winter RB, Moe JH, Lonstein JE. The incidence of Klippel-Feil syndrome in patients with congenital scoliosis and kyphosis. Spine 1984,9(4):363-6.
    41. Thomsen MN, Schneider U, Weber M, et al. Scoliosis and congenital anomalies associated with Klippel-Feil syndrome types Ⅰ-Ⅲ. Spine 1997,22:396-401.
    42. Samartzis D, Herman J, Lubicky JP, et al. Sprengel's deformity in Klippel-Feil syndrome. Spine 2007,32(18):E512-6.
    43. Samartzis DD, Herman J, Lubicky JP, et al. Classification of congenitally fused cervical patterns in Klippel-Feil patients:epidemiology and role in the development of cervical spine-related symptoms. Spine 2006,31(21):E798-804.
    44. Klippel M, Feil A. Anomalie de la colonne vertebrale par absence des vertebres cervicales. Cage thoracique remontant jusqua la base du crane. Bull Mem Soc Anat Paris 1912,87:185.
    45. Kaplan KM, Spivak JM, Bendo JA. Embryology of the spine and associated congenital abnormalities. Spine J 2005,5(5):564-76.
    46. Whittle IR, Besser M:Congenital neural abnormalities presenting with mirror movements in a patient with Klippel-Feil syndrome. J Neurosurg 1983,59: 891-894.
    47. Vaidyanathan S, Hughes PL, Soni BM, et al. Klippel-Feil syndrome-the risk of cervical spinal cord injury:a case report. BMC Fam Pract 2002,11;3:6.
    48. Thomsen M, Krober M, Schneider U, et al. Congenital limb deficiences associated with Klippel-Feil syndrome:a survey of 57 subjects. Acta Orthop Scand 2000,71(5):461-4.
    49. Colin Y. L. Woon, Kian-Chun Chong, Hui-Seong Teh, et al. Cervical spine trauma in Klippel-Feil syndrome:Two cases with contrasting outcomes and a review of the literature. Injury Extra 2007,38(11):392-396.
    50. Naikmasur VG, Sattur AP, Kirty RN, et al. Type Ⅲ Klippel-Feil syndrome:case report and review of associated craniofacial anomalies. Odontology 2011, 99(2):197-202
    51. Klimo P Jr, Rao G, Brockmeyer D. Congenital anomalies of the cervical spine. Neurosurg Clin N Am 2007,18(3):463-78.
    52. Daum REO, Jones D J:Fiberoptic intubation in Klippel-Feil syndrome. Anaesthesia 1988,43:18-21.
    53. Samartzis D, Lubicky JP, Herman J, et al. Faces of Spine Care:From the Clinic and Imaging Suite. Klippel-Feil syndrome and associated abnormalities:the necessity for a multidisciplinary approach in patient management. Spine J 2007, 7(1):135-7.
    54. O'Donnel DP, Seupaul RA. Klippel-Feil syndrome. Am J Emerg Med 2008, 26(2):252.e1-2
    55. Matsumoto K, Wakahara K, et al. Central cord syndrome in patients with Klippel-Feil syndrome resulting from winter sports:report of 3 cases. Am J Sports Med 2006,34(10):1685-9.
    56. Liljenqvist U, Hackenberg L, Link T, et al. Pullout strength of pedicle screws versus pedicle and laminar hooks in the thoracic spine. Acta Orthop Belg 2001, 67:157-63
    57. Lehman RA Jr, Polly DW Jr, Kuklo TR, et al. Straight-forward versus anatomic trajectory technique of thoracic pedicle screw fixation:a biomechanical analysis. Spine 2003,28:2058-65
    58. Kim YJ, Lenke LG, Bridwell KH, et al. Free hand pedicle screw placement in the thoracic spine:is it safe? Spine 2004,29:333-42
    59. Liljenqvist U, Lepsien U, Hackenberg L, et al Comparative analysis of pedicle screw and hook instrumentation in posterior correction and fusion of idiopathic thoracic scoliosis. Eur Spine J 2002,11:336-43
    60. Kim YJ, Lenke LG, Kim J, et al. Comparative analysis of pedicle screw versus hybrid instrumentation in posterior spinal fusion of adolescent idiopathic scoliosis. Spine 2006,31:291-8
    61. Dobbs MB, Lenke LG, Kim YJ, et al. Selective posterior thoracic fusions for adolescent idiopathic scoliosis:comparison of hooks versus pedicle screws. Spine 2006,31:2400-4
    62. Baghdadi YM, Larson AN, McIntosh AL, et al. Complications of pedicle screws in children 10 years or younger:a case control study. Spine 2013,38:E386-93
    63. Vital JM, Beguiristain JL, Algara C, et al. The neurocentral vertebral cartilage: anatomy, physiology and physiopathology. Surg Radiol Anat 1989,11:323-8
    64. Maat GJ, Matricali B, van Persijn van Meerten EL. Postnatal development and structure of the neurocentral junction. Its relevance for spinal surgery. Spine 1996, 21:661-6
    65. Yamazaki A, Mason DE, Caro PA. Age of closure of the neurocentral cartilage in the thoracic spine. J Pediatr Orthop 1998,18:168-72
    66. Rajwani T, Bhargava R, Moreau M, et al. MRI characteristics of the neurocentral synchondrosis. Pediatr Radio 2002,32:811-6
    67. Rajwani T, Hilang EM, Secretan C, et al. The components of the magnetic resonance image of the neurocentral junction. Stud Health Technol Inform 2002, 91:235-40
    68. Cil A, Yazici M, Daglioglu K, et al. The effect of pedicle screw placement with or without application of compression across the neurocentral cartilage on the morphology of the spinal canal and pedicle in immature pigs. Spine 2005, 30(11):1287-93.
    69. Fekete TF, Kleinstuck FS, Mannion AF, et al. Prospective study of the effect of pedicle screw placement on development of the immature vertebra in an in vivo porcine model. Eur Spine J 2011,20(11):1892-8
    70. Yilmaz G, Demirkiran G, Ozkan C, et al. The effect of dilation of immature pedicles on pullout strength of the screws:Part 2:In vivo study. Spine 2009, 34(22):2378-83
    71. Porter RW, Pavitt D. The vertebral canal:I. Nutrition and development, an archaeological study. Spine 1987,12:901-6
    72. Dimeglio A. Growth in pediatric orthopaedics. J Pediatr Orthop 2001,21:549-55
    73. Zhang H, Sucato DJ, Nurenberg P, et al. Morphometric analysis of neurocentral synchondrosis using magnetic resonance imaging in the normal skeletally immature spine. Spine 2010,35:76-82
    74. Ginsburg G, Schwend R. Neurocentral synchondrosis behavior in cadaveric vertebrae in skeletally immature spines. Paper presented at 2010:Fourth International Congress on Early Onset Scoliosis and Growing Spine; Toronto, Canada.
    75. Zindrick MR, Knight GW, Sartori MJ, et al. Pedicle morphology of the immature thoracolumbar spine. Spine 2000,25:2726-35
    76. Ruf M, Harms J. Pedicle screws in 1-and 2-year-old children:technique, complications, and effect on further growth. Spine 2002,27:E460-6
    77. Olgun ZD, Demirkiran G, Ayvaz M, et al. The effect of pedicle screw insertion at a young age on pedicle and canal development. Spine 2012,37:1778-84.
    1. Giampietro PF, Blank RD, Raggio CL, et al. Congenital and idiopathic scoliosis: clinical and genetic aspects. Clin Med Res 2003,1 (2):125-36.
    2. Huppert, S.S., Le A, Schroeter EH, et al., Embryonic lethality in mice homozygous for a processing-deficient allele of Notchl. Nature 2000,405(6789): 966-70.
    3. Erol, B., Tracy MR, Dormans JP, et al., Congenital scoliosis and vertebral malformations:characterization of segmental defects for genetic analysis. J Pediatr Orthop 2004,24(6):674-82.
    4. De Wals, P., Tairou F, Van Allen MI, et al. Reduction in neural-tube defects after folic acid fortification in Canada. N Engl J Med,2007.357(2):135-42.
    5. Bessho, Y., et al., Hes7:a bHLH-type repressor gene regulated by Notch and expressed in the presomitic mesoderm. Genes Cells 2001,6(2):175-85.
    6. Sparrow, D.B., Guillen-Navarro E, Fatkin D, et al. Mutation of Hairy-and-Enhancer-of-Split-7 in humans causes spondylocostal dysostosis. Hum Mol Genet 2008,17(23):3761-6.
    7. Giampietro, PR, Raggio CL, Reynolds C, et al. DLL3 as a candidate gene for vertebral malformations. Am J Med Genet A 2006,140(22):2447-53.
    8. Maisenbacher MK, Han JS, O'brien ML, et al. Molecular analysis of congenital scoliosis:a candidate gene approach. Hum Genet 2005,116(5):416-9.
    9. Day, G., Szvetko A, Griffiths L, et al. SHOX gene is expressed in vertebral body growth plates in idiopathic and congenital scoliosis:implications for the etiology of scoliosis in Turner syndrome. J Orthop Res 2009,27(6):807-13.
    10. Shinkai, Y., Tsuji T, Kawamoto Y, et al. New mutant mouse with skeletal deformities caused by mutation in delta like 3 (D113) gene. Exp Anim 2004,53(2): 129-36.
    11. Giampietro, P.F., Raggio CL, Reynolds CE, et al., An analysis of PAX1 in the development of vertebral malformations. Clin Genet 2005,68(5):448-53.24.
    12. McGaughran, J.M., Oates A, Donnai D, et al., Mutations in PAX1 may be associated with Klippel-Feil syndrome. Eur J Hum Genet 2003,11(6):468-74.
    13. Giampietro, P.F., C.L. Raggio, R.D. Blank. Synteny-defined candidate genes for congenital and idiopathic scoliosis. Am J Med Genet 1999,83(3):164-77
    14. Wynne-Davies R. Congenital vertebral anomalies:aetiology and relationship to spina bifida cystica. J Med Genet 1975,12(3):280-8.
    15. Hattaway IM, Della-Porta AJ, Snowdon WA. Congenital abnormalities in newborn lambs after infection of pregnant sheep with Akabane virus. Infect Immun 1997,15(1):254-62.
    16. Hensinger RN. Congenital scoliosis:etiology and associations. Spine 2009, 34(17):1745-50.
    17. Rivard FA, Loder RT, Nolan BT, et al. Mouse model for thoracic congenital scoliosis. J Pediatr Orthop 2001,21(4):537-40.
    18. Loder A, Wezeman FH. Developmental toxicity of valproic acid during embryonic chick vertebral chondrogenesis. Spine 2000,25(17):2158-64.
    19. Bantz JW, Chernoff N. Periods of vertebral column sensitivity to boric acid treatment in CD-I mice in utero.Reprod Toxicol 2002,16(3):237-43.
    20. Giros A, Grgur K, Gossler A.α5β1 integrin-mediated adhesion to fibronectin is required for axis elongation and somitogenesis in mice. PLoS One 2011, 6(7):e22002.
    21. McMaster, M.J., H. Singh. Natural history of congenital kyphosis and kyphoscoliosis. A study of one hundred and twelve patients. J Bone Joint Surg Am 1999,81(10):1367-83.
    22. Winter RB, Lonstein JE. Ultra-long-term follow-up of pediatric spinal deformity problems:23 patients with a mean follow-up of 51 years. J Orthop Sci 2009, 14(2):132-7.
    23. Grieser T, Baldauf AQ, Ludwig K. Radiation dose reduction in scoliosis patients: low-dose full-spine radiography with digital flat panel detector and image stitching system. Rofo 2011,183(7):645-9.
    24. Tsou PM, Yau A, Hodgson AR. Embryogenesis and prenatal development of congenital vertebral anomalies and their classification. Clin Orthop Relat Res 1980,152:211-31.
    25. Prahinski JR, Polly DW Jr, McHale KA, et al. Occult intraspinal anomalies in congenital scoliosis. J Pediatr Orthop 2000,20:59-63.
    26. Arlet, V, T. Odent, M. Aebi, Congenital scoliosis. Eur Spine J 2003,12(5): 456-63.
    27. Newton, P.O., White KK, Faro F, et al., The success of thoracoscopic anterior fusion in a consecutive series of 112 pediatric spinal deformity cases. Spine 2005,30(4):392-8.
    28. Ruf M, Harms J. Posterior hemivertebra resection with transpedicular instrumentation:early correction in children aged 1 to 6 years. Spine 2003, 28(18):2132-8.
    29. Thompson GH, Akbamia BA, Campbell RM. Growing rod techniques in early-onset scoliosis. J Pediatr Orthop 2007,27(3):354-361.
    30. Akbarnia BA, Marks DS, Boachie-Adjei O, et al. Dual growing rod technique for the treatnlent of progressive early-onset scoliosis. Spine 2005,30(17 Suppl): S46-57.
    31. Pratt RK, Webb JK, Burwell RG, et al. Luque trolley and convex epiphysiodesis in the management of infantile and juvenile idiopathic scoliosis. Spine 1999, 24(15):1538-47.
    32. Ouellet J. Surgical technique:modern Luque trolley, a self-growing rod technique. Clin Orthop Relat Res 2011,469(5):1356-67.
    33. McCarthy RE, Sucato D, Turner JL, et al. Shilla growing rods in a caprine animal model:a pilot study. Clin Orthop Relat Res 2010,468(3):705-10.
    34. McCarthy RE, Luhmann S, Lenke L, et al. The Shilla growth guidance technique for early-onset spinal deformities at 2-year follow-up:a preliminary report. J Pediatr Orthop 2014,34(1):1-7.
    35. Takaso M, Moriya H, Kitahara H, et al. New remote-controlled growing-rod spinal instrumentation possibly applicable for scoliosis in young children. J Orthop Sci 1998,3(6):336-40.
    36. Cheung KM, Cheung JP, Samartzis D, et al. Magnetically controlled growing rods for severe spinal curvature in young children:a prospective case series. Lancet 2012,379(9830):1967-74.
    37. Dannawi Z, Altaf F, Harshavardhana NS, et al. Early results of a remotely-operated magnetic growth rod in early-onset scoliosis. Bone Joint J 2013, 95-B(1):75-80.
    38. Campbell, R.M., Jr., M.D. Smith, A.K. Hell-Vocke. Expansion thoracoplasty:the surgical technique of opening-wedge thoracostomy. Surgical technique. J Bone Joint Surg Am 2004,86-A Suppl 1:51-64.
    39. Emans, J.B., Caubet JF, Ordonez CL, et al. The treatment of spine and chest wall deformities with fused ribs by expansion thoracostomy and insertion of vertical expandable prosthetic titanium rib:growth of thoracic spine and improvement of lung volumes. Spine 2005,30(17 Suppl):S58-68.
    40. Dede O, Demirkiran G, Yazici M.2014 Update on the'growing spine surgery'for young children with scoliosis. Curr Opin Pediatr 2014,26(l):57-63
    41. Bollini G, Docquier PL, Viehweger E, et al. Thoracolumbar hemivertebrae resection by double approach in a single procedure:long-term follow-up. Spine 2006,31(15):1745-57.
    42. Helenius I, Serlo J, Pajulo O. The incidence and outcomes of vertebral column resection in paediatric patients:a population-based, multicentre, follow-up study. J Bone Joint Surg Br 2012,94(7):950-5.
    43. Lenke LG, Newton PO, Sucato DJ, et al. Complications after 147 consecutive vertebral column resections for severe pediatric spinal deformity:a multicenter analysis. Spine 2013,38(2):119-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700