用户名: 密码: 验证码:
建立SD大鼠痉挛型脑瘫模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:目前,国内外关于痉挛型脑瘫动物模型的建立方法的研究较多,但多缺乏模型制作的科学性,导致动物模型症状不典型或症状持续时间较短,成为制约痉挛型脑瘫模型深入研究的瓶颈,使得对痉挛型脑瘫无法进行系统而深入的研究。目前在实验研究中尚无一种理想的痉挛型脑瘫模型可寻。本实验在以往研究的基础上,通过改进和创新,利用脑立体定位仪对大鼠进行牢固的固定,并根据大鼠脑立体定位解剖图谱,对大鼠的锥体束部位进行精确的立体定位,通过微量注射器对大脑锥体束所在部位注射无水乙醇造成锥体束坏死,最大程度的模拟了痉挛型脑瘫的解剖学及病理改变,术后大鼠产生明显的屈曲痉挛症状,且屈肌肌张力增高,症状和体征持续时间较长,稳定性良好。从而建立出一种新的可复制性良好且痉挛持续时间较长的稳定的大鼠痉挛型脑瘫动物模型,为进一步深入的探究痉挛型脑瘫的基础研究和临床诊治打下基础。
     方法:选择成年雄性SD大鼠16只,按随机数字表法将大鼠分为甲、乙、丙、丁四组,每组4只,甲、乙、丙组为实验组,丁组为对照组。将大鼠用10%水合氯醛腹腔注射麻醉后固定于脑立体定位仪上,头顶部剪毛备皮,常规消毒铺单,采用颅顶后正中切口,长约2cm,逐层切开皮肤、皮下组织、深筋膜和骨膜,暴露前囟及矢状缝,对照大鼠脑立体定位图谱,选择前囟后8.72mm,矢状缝左侧0.8mm,采用小型电钻在颅顶上钻孔,直径约1mm,将微量注射器垂直向颅内插入9.7mm。甲、乙、丙实验组大鼠分别向颅内缓慢注射5μl、15μl、25μl无水乙醇,充分止血后,用少许骨蜡封住颅骨上的钻孔,生理盐水冲洗后关闭创口。对照组大鼠微量注射器插入颅内9.7mm后,不注射任何试剂,其余操作方法同实验组。术后详细观察对比三组实验组大鼠和对照组大鼠的症状及体征。待三组实验组大鼠症状稳定后(约术后72小时),取症状最典型的一组中的一只大鼠,麻醉过程同制模过程,将大鼠置于无菌操作台上,常规消毒、铺单,先将大鼠颅顶伤口缝线拆开,清除伤口周围及皮下血肿,按原切口方向分别向前延长切口至鼻尖,向后延长切口至颈部,暴露整个颅骨。用线锯自眼眉部位横行锯开,通过颞部向头后锯线在枕外隆突汇合。用峨眉凿自眼眉部横行锯口撬开颅盖骨,用小型咬骨剪在枕骨大孔将椎管剪开,分离脊髓。用显微剪将嗅脑、视神经剪断,用尖刀探入蝶鞍分离脑垂体,连同脑垂体将整个大脑取出,用生理盐水冲洗干净后,放入福尔马林溶液内浸泡3天。将完整的大脑标本做病理分析。其余大鼠均继续正常饲养,每天密切观察其性情和行为等生活情况以及痉挛状态的主要观察指标,包括精神状况、摄食及饮水情况、运动情况、肢体痉挛情况、肢体肌张力和症状持续的时间等。
     结果:甲组大鼠术后12小时内,无任何主动活动及饮食,精神萎靡,右侧肢体屈曲痉挛,屈肌肌张力较左侧相比增大;术后24小时,有少量活动及饮食,精神状态好转,右侧肢体屈曲痉挛状态持续,主动活动及被动驱赶时均呈顺时针转圈运动,转圈直径约60cm;术后48小时,大鼠饮食情况依然较正常组大鼠差,但主动活动增多,活动及饮食增多,精神状态持续好转,屈曲痉挛症状持续;术后72小时,饮水及摄食渐趋正常,精神状态接近正常,主动活动接近正常,右侧肢体屈曲痉挛症状已稳定,屈曲痉挛状态持续约6-8周。乙组大鼠术后18小时内,无任何主动活动及饮食,精神萎靡,右侧肢体明显屈曲痉挛,屈肌肌张力较左侧相比显著增大;术后36小时,大鼠开始少量主动摄食及饮水,有少量主动活动,精神状态好转,运动时右侧肢体跛行症状明显,主动活动及被动驱赶时均呈顺时针转圈运动,转圈直径约20cm,屈曲痉挛症状持续;术后48小时,大鼠饮食情况依然较正常组大鼠差,但主动活动增多,摄食及饮水增多,精神状态持续好转,屈曲痉挛症状持续;术后72小时,饮水及摄食渐趋正常,精神状态渐趋接近正常,主动活动接近正常,右侧肢体屈曲痉挛症状已稳定,屈曲痉挛状态持续约8-14周。丙组大鼠术后24小时内无任何主动活动及饮食,精神萎靡,右侧肢体严重屈曲痉挛,屈肌肌张力较对侧明显增大,头及整个身体偏向右侧;术后48小时,仍无任何主动活动及饮食,精神极度萎靡,被动驱赶仅能原地顺时针方向打转,且无法站立,头及整个身体向右侧严重倾斜,屈曲痉挛症状持续;术后72小时,精神极度萎靡,仍无任何主动活动及饮食,身体消瘦明显,屈曲痉挛症状持续;术后1周,因无法站立导致无法正常摄食及饮水,最终丙组大鼠全部死亡。丁组(对照组)大鼠术后24小时内,活动及饮食减少,精神状态差,右侧肢体无任何屈曲痉挛症状,两侧肢体屈肌肌张力相同,活动均正常;术后48小时,精神状态恢复可,渐趋正常活动及饮食;术后72小时,完全恢复正常活动及饮食,精神状态亦完全恢复。经综合对比各项观察指标,确定乙组大鼠症状和体征最典型。乙组大鼠大脑组织病理结果显示:实验侧大脑锥体束呈空洞样坏死,且坏死部位及范围准确,仅破坏实验侧锥体束,无伤及大脑其他任何组织。
     结论:应用本方法制作的大鼠痉挛性脑瘫模型组术后肢体痉挛体征明显,症状典型,持续时间较长,手术操作过程简单规范,定位准确,并具有非常好的可重复性,病理结果更在形态学上进一步证明了是大脑锥体束的坏死导致痉挛状态的发生,由此可以进一步对痉挛型脑瘫进行进一步的深入研究。但该实验仍需要进一步的完善和探究,模型制作过程中使用的化学消融剂(无水乙醇)的较佳剂量为15μl,但是否是最佳剂量。关于该模型制作过程中的化学消融剂最佳剂量以及剂量—效应关系与时间—效应关系等均有待进一步研究。
Objective: At present, there are lots of studies about the methods to setup the animal models of the spastic cerebral palsy (SPC) home andabroad.However, due to the lack of scientificalness, the models' symptoms areatypical and can only last for a short time, which are becoming the mainobstacles for the further and systematic study in this field. So far, not one idealmodel has been found. Through the improvement and innovation which basedon the past research, we fixed the rats on the stereotaxic instrument solidly andgive the accurate orientation of the rats' pyramidal tract according to the brainof rats radiostereostatics anatomy atlas. Inject the absolute ethyl alcohol intothe rats' pyramidal tract to make the pyramidal tract necrosis.This experimentsimulated the anatomy and the pathological changes of the spastic cerebralpalsy. Postoperative rats emerge buckling spasms symptoms, and flexorincreased tension. Besides, the signs and symptoms lasted for a long time, andthey have good stability. In this way, we successfully establish a kind of newstable animal model of the spastic cerebral palsy, which can be well replicatedand the symptoms can last for a long time. This experiment lay a goodfoundation for the further study of the basic research of the SPC’s clinicaldiagnosis and treatment.
     Methods:Select16adult SD rats, male. Divide the rats into4groups(A, B, C, D) with random number table method and each group contains4rats.A, B and C group are the experimental groups and the D group is the matchedgroup. First, Intraperitoneal injection of anesthesia with10%hydrationchlorine aldehyde, then fixed the rats on the stereotaxic instrument solidly,cropping the hair and disinfection. Second, select the after the cranial roofmidline incision about2cm long, cut the skin step by step, expose the anteriorfontanelle and sagittal seam, according to the brain of rats radiostereostaticsanatomy atlas, at the position of the anterior fontanelle back10mm, the sagittal seam left0.8mm, drill the cranial top with dental drill about1mm indiameter, Insert the microinjector into the cranium for9.7mm vertically. Third,A, B and C group inject respectively5μ l,15μ l,25μ l absolute ethyl alcoholinto the cranium slowly, After fully stopping the bleeding, hold the drillinghole on the cranium with a little bone wax, Last, rinse off the cut withphysiological saline and sew up the incision. For the D group rats, Insert themicroinjector into the cranium for9.7mm vertically, without any reagent, andthe rest of the operation is the same with the experimental group. After theoperation, comparing the experimental group with the contrast group carefully,observe the rat’s symptoms and signs. After the Three experimental group rats’symptoms become stable (about72hours after), take the most typical one rat,after anesthesia, Put the rats on the sterile work station, regularly makedisinfection, and spread sheet. Firstly, disconnect the the cranial wound suture,clean the wound area and subcutaneous haematomas, according to the originalincision direction, respectively extend the incision forward to the nasal tip,backward to the neck and expose the whole skull. With the fret saw, sawacross the brows, and join at the inions through the tempus to the blackheadsawlines. pry the cranial cover bone across the brows with the emei chisel, cutthe spinal canal at the foramen magnum with small bone scissors, thenseparate the spinal cord, cut off the smell brain and the optic nerve with themicroscopic scissors, put the sharp knives into sella turcica to separate thepituitary. take out the whole brain along with the pituitary,rinse it with salinewater and immerse it in formalin solution for three days. Then take the wholebrain specimen for pathological analysis. The rest of the rats are bred normallyand keep a close eye on their temperament, behavior, their living conditionsand the main spasticity index which including the spirit state, feeding anddrinking condition, body spasms, body muscle tension and the duration of thesymptoms every day.
     Results: Group A postoperative rats, in12hours,revealed no activemovements or diet, with the right limbs buckling spasticity. Compared withthe left side, the flexor muscle tension increased; in24hours, revealed a small amount of activities and diet, the mental state got better, and the right bodybuckling spasticity continued. When moving actively or driven by, the ratsalways made clockwise circular motion, and the circle diameter was60cm; in48hours, the rats’ diet was a bit poor compared with the normal ones’, but theinitiative activities and the diet increased, with mental state improving andbuckling spasticity continuing; in72hours, the rats’ drinking water andfeeding gradually became normal, so did the mental state and initiativeactivities. The right limbs buckling spasms symptoms became stable and thebuckling spasticity lasted about six to eight weeks. Group B postoperative rats,in18hours, revealed no active movements or diet, with the right limbsbuckling spasticity obviously. Compared with the left side, the flexor muscletension increased; in36hours, the rats started a few active feeding/drinkingwater and a little active activities, with the mental state better. When movingactively or driven by, the rats always made clockwise circular motion, and thecircle diameter was20cm; In48hours, the rats’ diet was still a bit poorcompared with the normal ones’, but initiative activities and the diet increased,with mental state improving and buckling spasticity continuing; in72hours,the rats’ drinking water and feeding gradually became normal, so did themental state and active activities. The right limbs buckling spasms symptomsbecame stable and the buckling spasticity lasted about8to14weeks. Group Cpostoperative rats within24hours revealed no active movements or diet, withright limbs body buckling convulsion extremely. Compared with the left side,the flexor muscle tension increased extremely. Meanwhile, the head and thewhole body turned to the right side. In48hours, the rats still revealed noinitiative activities or diet, with the spirit weak. When moving actively ordriven by, the rats always went round In circles. They couldn’t stand up, withthe head and the whole body leaning to the right side seriously. Bucklingspasms symptoms continued; in72hours, the spirit was extremely weak, stillwith no initiative activity or diet, and the body was angular obviously,buckling spasms symptoms went on. Because they couldn’t stand up to drinkor eat normally, finally all the rats died in one week. Group D postoperative rats (the matched group) within24hours, the rats’ diet was a bit poorcompared with the normal ones’, and so did the mental state. The paralysissymptoms on the right limbs couldn’t be found any more. There were nodifferences between both limbs nether on the physical activities, nor on theflexor muscle tension; In48hours, the mental state recovered almost normal,the activities and diet became gradually normal, too; in72hours, activities andthe diet became completely normal.The mental state also fully recovered.After carefully comparasion, the group B postoperative rats’ buckling spasmssymptoms are the most typical one. The group B postoperative rats’ braintissue pathology results show that: the experimental side of pyramidal tract haspresented empty sample necrosis, and both necrosis parts and necrosis rangewere accurately, the opposite and other brain organizations without anydamage.
     Conclusions: With this method, the postoperative rats’ signs andsymptoms not only typical but also lasted for a long time. More major is theycan be well replicated and have good stability. The operation process is simpleand specification, the orientation is accurate. The Pathological results furtherproved that the signs and symptoms are caused by the empty sample necrosisof pyramidal tract. A better dose of the chemical ablation agent (absolute ethylalcohol) in the process of model production is15μ l, but it is not the best.Then we can carry on further research about what the best dose is, how aboutthe dose-effect relation and time-effect relation and so on,all needs furtherimprovement and exploration.
引文
1胥少汀,葛宝丰,徐印坎,等.实用骨科学[M].北京:人民军医出版社,2005
    2Wright J,Rang M. The spastic mouse,and the research for an animalmodle of spasticity in human beings. Clin Orthop,1990,253:12
    3王少锦,孙彦辉,赵志国,杨天祝.大鼠脑立体定向手术校正的三种方法[J].河北医科大学学报,2001,22(2):75-77
    4诸葛启钏主译,大鼠脑立体定位图谱(第三版)[M].北京:人民卫生出版社,2005
    5王增涛,郝丽文,李桂石,李常辉.WISTAR大鼠解剖图谱[M].济南:山东科学技术出版社,2009,5-78
    6李江,陈刚.脑瘫动物模型的研究现状[J].中国康复医学杂志.2007,22(12):1134-1136
    7王平宇,张风真.大鼠脑读片提要及图谱.西安:西北大学出版社,1995,5
    8顾志强,李楠.脑损害后锥体束Wallerian变性的磁共振诊断析[J].中国实用神经疾病杂志2010,13(3):66-67
    9陈海,贾建平,王默力.脑梗死后锥体束影像学研究进展[J].中国脑血管病杂志,2007,4(6):280
    10Dixon CE,Lveth BG,Povlishock JK,A fluid percussion model ofexperimental brain injury in the rat[J].J Neurosurg,1987,67:110-119
    11吴珊鹏,罗永湘,熊革.大鼠痉挛性脑瘫模型建立的改进[J].中国康复,1998,13(3):103-104
    12俞雅珍,邓亚仙,高宝勤,等.电损毁致大鼠痉挛性脑性瘫痪动物模型制备及其鉴定[J].实用儿科临床杂志,2007.22.(12):928-929
    13熊革,罗永湘.大鼠中枢神经毁损方法的研究与比较[J].同济医科大学学报,1999,28(2):149-155
    14Lennart H, Martine JR. Nearoanatomical tract-tracing methods.NewYork:Plenum Press,1981.55-90
    15张敬东,张新,俞兴.构建大鼠痉挛型脑性瘫痪模型[J].中国临床康复.2006,10(38):150-151
    16杜卓民编译.神经解剖学传导通路追踪法.北京:科学出版社,1987.24-28
    17李登宇,李洪涛,潘志华,张丽丽,于雪峰脑瘫动物模型研究进展[J].中国康复,2010,25(3):227-229
    1李登宇,李洪涛,潘志华,张丽丽,于雪峰脑瘫动物模型研究进展[J].中国康复,2010,25(3):227-229
    2卜笑松,唐久来.脑性瘫痪动物模型研究进展[J].中国康复理论与实践,2007,13(12):1106-1107
    3Vannucci RC.Experimental model of perinatal hypoxic-ischemicbr-aindamage[J].APMIS,Suppl,1993,40:89-95
    4李晓捷,高晶,孙忠人.宫内感染致早产鼠脑瘫动物模型制备及其鉴定的实验研究[J].中国康复医学杂志,2004,19(12):885-889
    5孙叶强,李晓捷,吴军,等.胆红素致新生兔脑瘫动物模型的实验研究[J].中国康复,1999,14(2):65-67
    6Poggi SH,Jane Park,Laura Toso,et al.No phenotype associated withestablished lipopolysaccharide model for cerebral palsy[J]. AmericanJournal of Obstetrics and Gynecology,2005,192:727-733
    7Saadani-Makki F,Kannan S,Lu X,et al. Intrauterine administra-tion ofendotoxin leads to motor deficit s in a rabbit model:a link betweenprenatal infection and cerebral palsy[J].Am J Obstet Gyne-col,2008,199(6):651-657
    8Evelin Vicente,Matheus Boer,Marina Leite, et al. Cerebrospinal fluidS100B increases reversibly in neonates of methyl mercury-intoxicatedpregnant rats[J].Neuro Toxicology,2004,25:771-777
    9Hennebert O, Marret S, Carmeliet P, et al. Role of tissue derivedplasminogen activator (t2PA) in an excitotoxic mouse model of neon-atalwhite matter lesions[J].J Neuropathol Exp Neurol,2004,63(1):53-63
    10Wang T, Zhang L, Jiang L, et al. Neurotoxicological effects of3-nitropropionic acid on the neonatal rat[J]. Neurotoxicology,2008,29(6):1023-1029
    11Audrey BC Coumans, Johannes Middelanis, Yves Garnier,et al.Intracisternal application of endotoxin enhances the suscepti-bility tosubsequent hypoxic-ischemic brain damage in neonatal Rats[J].PediatricResearch,2003,53:770-775
    12Hisakazu Uehara, Hiroshi Yoshioka, Shoji Kawase, et al. A new model ofwhite matter injury in neonatal rats with bilateral carotid arteryocclusion[J].Brain Research,1999,837:213-220
    13Weiss J, Takizawa B, McGee A, et al. Neonatal hypoxia suppessesoligodendrocyte Nogo-A and increases axonal sprouting in a rodent modelfor human prematurity[J].Exp Neurol,2004,189(1):141-149
    14Robert Fern,Thomas Moller. Rapid Ischemic cell death in immatureoligodendrocytes:A fatal glutamate release feedback loop[J].The Journalof Neuroscience,2000,20:34-42
    15Robert Fern. Intracellular Calcium and cell death during isch-emia inneonatal rat white matter astrocytes in situ[J].The Journal ofNeuroscience,1998,18:7232-7243
    16Shenandoah Robinson, Kasia Petelenz, Qing Li, et al. Developmen-talchanges induced by graded prenatal systemic hypoxicischemic insults inrats[J].Neurobiology of Disease,2005,18:568-581
    17Feeney DM,Boyeson M G, Linn RT,et al. Responses to cortical injury:Methodo-logy and local effects of contusions in the rat [J].BrainRes,1981,211:67-77
    18Dixon CE, L veth BG, Povlishock J K,A fluid percussion model ofexperimental brain injury in the rat[J].J Neurosurg,1987,67:110-119
    19张敬东,张新,俞兴.构建大鼠痉挛型脑性瘫痪模型[J].中国临床康复.2006,10(38):150-151
    20吴珊鹏,罗永湘,熊革.大鼠痉挛性脑瘫模型建立的改进[J].中国康复,1998,13(3):103-104
    21俞雅珍,邓亚仙,高宝勤,等.电损毁致大鼠痉挛性脑性瘫痪动物模型制备及其鉴定[J].实用儿科临床杂志,2007.22.(12):928-929
    22杜卓民编译.神经解剖学传导通路追踪法.北京:科学出版社,1987.24-28
    23Taniguchi H, Andreasson K. The hypoxic-ischemic encephalopathymodel of perinatal ischemia[J].J Vis Exp,2008,19(21):955-956
    24Girard S, Kadhim H, Beaudet N,et al. Developmental motor defic-itsinduced by combined fetal exposure to lipopolysaccharide and earlyneonatal hypoxia/ischemia:a novel animal model for cerebral palsy invery premature infants[J].Neuroscience,2009,158(2):673-682
    25Audrey BC Coumans,Johannes Middelanis,Yves Garnier,et al.Int-racisternal application of endotoxin enhances thesusceptibility tosubsequent hypoxic-ischemic brain damage in neonatal Rats[J].Ped-iatricReserch,2003,53:770-775
    26Koman LA. Cerebral palsy [J].Lancet,2004,363(9421):1619-1631

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700