用户名: 密码: 验证码:
四开关型有源电力滤波器的控制理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
四开关型有源电力滤波器(Four-switch-type Active Power Filter, F-APF)可以作为传统的六开关型有源电力滤波器在故障重构后的容错电路拓扑,具有在六开关逆变器故障时迅速恢复系统部分性能的潜力,同时由于减少了一对开关器件,F-APF具有装置成本低、损耗少、体积小、驱动电路简单及可靠性高等优势,因此具有重要的研究价值。本论文得到了国家“863”计划项目“大型工业企业电气节能新技术新装备及其工程应用”和国家自然科学基金重点项目“微网多逆变器并联及电能质量控制方法研究”的资助,围绕F-APF的控制方法与工程应用展开,分别对三相四开关有源电力滤波器(Three-phase Four-switch Shunt Active Power Filter, TFSSAPF)的工作原理与空间矢量电压调制算法、空间矢量离散电流控制方法以及直流侧电容电压控制方法进行了研究,在此基础上,结合微源逆变器的结构特点和某110kV变电站的电能质量情况,分别研究了TFSSAPF在低压微网和高压配电网中的相关应用问题,主要研究内容和创新如下:
     (1)分析了TFSSAPF的工作原理,提出了一种空间矢量调制算法(SVPWM),大幅度优化了触发脉冲生成方法的总体计算量和计算精度。
     通过详细分析TFSSAPF的拓扑结构,本文揭示了TFSSAPF输出三相平衡正序(负序)电压的条件,为TFSSAPF对谐波、无功及负序电流的补偿奠定了基础。提出了一种改进的坐标变换式,使基本输出电压空间矢量位于αβ坐标系的坐标轴上,只需进行简单的符号判断和四则运算即可得到参考电压矢量的扇区和基本电压矢量的作用时间,在总体计算量和计算精度上得到了大幅度的优化。通过控制幅值相同、方向相反的一对基本电压矢量在单位开关周期内的作用相同时间的方法合成零矢量,提出了一种五段式SVPWM算法,通过搭建仿真模型和样机实验平台验证了TFSSAPF原理分析的正确性以及所提SVPWM算法的有效性。
     (2)揭示了空间矢量电流控制方法中等效误差电压矢量的约束条件,提出了一种TFSSAPF双滞环离散电流控制方法,提高了指令电流的跟踪速度,降低了开关管的工作频率。
     本文分析了TFSSAPF采用空间矢量方法进行电流控制时,等效误差电压矢量的约束条件,既保证误差电流幅值减小,又不超出TFSSAPF的输出能力;指出了等效误差电压矢量的最优方向,以使单位幅值的等效误差电压矢量能产生最大的误差电流矢量幅值衰减;采用离散方法描述了实现指令电流精确实时跟踪的输出电压表达式,并提出了一种TFSSAPF双滞环离散电流控制方法,在误差电流较大时进行矢量合成,在误差电流较小时选择最优矢量输出,既满足电流畸变率要求,又降低开关管的工作频率。仿真和实验说明了所提方法在参考电流跟踪速度提高和功率器件开关频率降低上的优越性。
     (3)建立了TFSSAPF的基本数学模型,对TFSSAPF的直流侧电容电压控制目标进行了描述,提出了一种基于相电流调制的TFSSAPF直流侧电容电压控制方法,保证了直流侧电容电压的稳定。
     本文分析了TFSSAPF的能量交换原理,采用控制TFSSAPF输出电流有功分量的方法来实现直流侧电容总电压均值的恒定;建立了直流侧电容平均电压差值和TFSSAPF的C相输出电压的关系,提出在C相指令电流中叠加均压控制量的方法来实现直流侧两电容均压。提出以相电流作为指令电流的SPWM电流调制算法,弥补了传统的线电流调制方法应用于TFSSAPF时的弊端。综合相电流SPWM电流调制算法、直流侧电容总电压均值稳定方法和直流侧两电容电压平衡方法,提出一种TFSSAPF直流侧电容电压控制方法,并对关键参数设计方法进行了分析。通过搭建样机实验平台验证了所提方法的有效性。
     (4)分析了在虚拟阻抗存在时,负载谐波电流对微网逆变器性能的影响,提出一种TFSSAPF的复合控制方法,用于控制TFSSAPF以调节微网母线电压角频率并抑制负载谐波,消除负载谐波对微源逆变器的影响,并充分利用其无功容量。
     本文通过建立微网逆变器系统的等效模型,对负载谐波引起的逆变器功率检测偏差进行了详细分析,引入虚拟谐波功率的概念对误差进行量化,采用小信号分析方法说明了负载谐波电流对微网逆变器性能的影响并进行了仿真验证。为了减小负载谐波对微网逆变器的影响,并利用TFSSAPF的无功容量,提出了一种TFSSAPF的复合控制算法,在TFSSAPF参考电流中加入了用于调节母线电压角频率的无功分量来对母线电压频率波动进行补偿,仿真分析说明,该算法能降低母线角频率误差值,并补偿负载谐波电流,提高了微网逆变器的稳定性。
     (5)分析了某110kV变电站的电能质量情况,针对其电能质量问题提出种FSI-HAPF结构,并对软硬件系统进行了设计,实现了在35kV侧进行大容量无功补偿和动态谐波治理的目的。
     本文分析了某110kV变电站的基本电能质量情况,参照电能质量国家标准说明35kV母线Ⅰ段存在的谐波污染及无功不足问题。提出了一套高压配网混合补偿装置FSI-HAPF,由TFSSAPF和谐振注入支路组组成,与传统注入式混合有源滤波器相比,造价更低,可靠性更高。阐述了FSI-HAPF的结构及滤波原理,从无源和有源部分说明了FSI-HAPF的主电路参数设计方法,介绍了FSI-HAPF控制系统软硬件部分设计思路与实现方法。工程应用效果显示,该装置能够满足工业现场的需求,使35kV母线Ⅰ段的主要电能质量指标降低至国标限值以下,以较低的成本达到了高压系统谐波动态治理和大容量无功补偿的目的。
Four-switch-type Active Power Filters (F-APF) could be used as fault tolerant circuit topology of traditional Six-switch-type Active Power Filters (S-APF). It has the potential to restore part of the system performance rapidly when the S-APF goes wrong. In addition, as two switching devices have been reduced, F-APF has the advantages of lower cost, lower loss, smaller size, simpler driving circuit and higher reliability. Therefore, F-APF has significant research value. Based on the financial support of The National High Technology Research and Development of China (863Program) and The National Natural Science Foundation of China, this paper emphasizes on the control method and engineering application of F-APF. The working principle, space vector pulse width modulation (SVPWM) algorithm, space vector discrete current control method and dc side capacitor voltage control method of Three-phase Four-switch Shunt Active Power Filter (TFSSAPF) are firstly discussed, then according to the characteristics of micro-grid inverters and the power quality of a110kV substation, the problems related to the application of TFSSAPFs in low voltage micro-grid and high voltage distribution network are studied in detail. The emphasis and achievement of the paper mainly manifests in the following aspects:
     (1) The working principle of TFSSAPF is analyzed and a SVPWM algorithm is proposed, which is able to greatly optimize the total computational amount and accuracy of the trigger pulse production method.
     After analyzing the topology of TFSSAPF in detail, the conditions to control TFSSAPF to output three-phase balanced positive sequence(or negative sequence) voltage are revealed, which lays the foundation to eliminate harmonic currents, compensate reactive power and suppress negative sequence currents. An improved coordinate transformation is proposed which can make the basic output voltage space vector locate right on the axes of the αβ coordinate system. The sectors of reference voltage vectors and action time of fundamental voltage vectors can be acquired by simple sign judgment and arithmetic operation, thus the calculation amount and accuracy are optimized significantly. The pair of basic voltage vectors which are of the same amplitude and opposite direction are controlled to act the same time in a switching cycle to obtain zero vectors. Furthermore, a five-segment SVPWM algorithm is proposed and the realization process is also presented. Simulations and experimental results have validated the correctness of theory analysis and the effectiveness of the proposed algorithm.
     (2)The constraint condition of the equivalent voltage error vector of the space vector current control method is explained and a dual-hysteresis space-vector discrete current control method for TFSSAPF is proposed, which has the advantage of increasing the tracing speed of instruction currents and decreasing the operation frequency of the power switches.
     The constraint condition of the equivalent voltage error vector is analyzed when the space vector current control method is used for TFSSAPF. This condition ensures that the magnitude of the current error is reduced and the equivalent voltage error vector is within the output capacity of TFSSAPF. The optimal direction of the equivalent voltage error vector is pointed out. In this direction, the equivalent error voltage vector with unit amplitude can produce the greatest attenuation of the current error. Then, the discretization method is used to describe the output voltage expression to realize real-time tracking of the instruction currents. A dual-hysteresis space-vector discrete current control method is proposed, which uses the vector synthesis method when the current error is large and the optimal vector selection method when the current error is small, thus to reduce the switching frequency and meet the requirements of the output current total harmonic distortion. The performance of the proposed method, the optimal voltage vector hysteresis control method and the precise output of output voltage vector method is compared and analyzed in simulation and experiment. The simulation and experimental results have verified the superiority of the proposed method on improving the reference current tracking speed and reducing the switching frequency.
     (3)The basic mathematical model of TFSSAPF is constructed. The control objectives of dc capacitor-voltage are described, and a dc capacitor-voltage balance control method for TFSSAPF is presented, which ensures the stability of dc-side capacitor voltages.
     In order to balance the energy storage of dc capacitors and equalize their voltages, energy exchange principle of TFSSAPF is analyzed and a method of controlling the active component of output current is used. The relevance between the output voltage of phase C and the differential value of dc capacitor average voltages is established, and a method to balance the dc capacitor voltages by adding voltage balance component to the reference current of phase C is proposed. A SPWM current modulation algorithm which treats the phase currents as command currents is proposed, which has diminished many drawbacks of the traditional line current modulation method. Combining the SPWM current modulation algorithm based on phase current, the mean value stable method of total voltage of DC capacitor and the balance method of DC side two-capacitor voltage, a method of the DC side capacitor voltage control of TFSSAPF is proposed and the design method of the key parameter are analyzed. The experimental results have verified the effectiveness of the proposed method.
     (4)The influence of load harmonic currents to inverters in micro grids under the existence of virtual impedance is analyzed. A coordination control method for the TFSSAPF is proposed to regulate the angle frequency of the bus voltage and suppress the load harmonics, which not only eliminates the influence of harmonics, but also sufficiently uses the reactive power capacity of the TFSSAPF.
     The equivalent model of the micro grid inverter system is established and the deviation of the detected power and the actual power brought by load harmonics is analyzed. By introducing the virtual harmonic power, the deviation is quantified. The influence of load harmonics to the performance of DG inverters is described using the small signal method. In order to reduce the influence mentioned above and increase the capacity utilization ratio of TFSSAPF, a coordination control method is proposed. A reactive current component is added into the reference current to regulate the angle frequency of the bus voltage. The simulation results show that the proposed method could decrease the angle frequency of the bus voltage and suppress the load harmonics, thus the stability of DG inverters is increased.
     (5) The power quality problems of an110kV substation are analyzed and a power quality compensator FSI-HAPF is presented. The hardware and software of FSI-HAPF is designed in detail, which realizes large capacity reactive power compensation and dynamic harmonic suppression on35kV bus.
     According to the GB standard of power quality, the power quality problems of110kV HURUN Substation of Guangxi Power Grid is analyzed, which illustrate serious harmonic pollution and inadequate capacity of reactive power existed in segment I of35kV bus. A high-voltage hybrid compensation system FSI-HAPF based on TFSSAPF is proposed, which consists of TFSSAPF and resonance injection branch group. FSI-HAPF has lower cost and higher reliability than the traditional IHAPF. The structure and filtering principle of the FSI-HAPF is analyzed and the parameter design method of both the passive and active part of FSI-HAPF is provided as well as the design and realization method for the hardware and software of FSI-HAPF. The application results show that FSI-HAPF is able to meet the needs of the industrial requirement. After the application of FSI-HAPF, the main indexs of power quality at segment I of35kV bus is restrained within the national standard (GB) limited values, which indicates that FSI-HAPF has achieved harmonic dynamic management in high-voltage system and large capacity reactive power compensation with low cost.
引文
[1]王兆安,杨君,刘进军.谐波抑制和无功功率补偿.第2版.北京:机械工业出版社,2005
    [2]安群涛,孙醒涛,赵克,等.容错三相四开关逆变器控制策略.中国电机工程学报,2010,30(3):14-20
    [3]Read J C. The Calculation of Rectifier and Converter Performance Characteristics. Journal IEE,1945,92(2):495-590
    [4]Arrilage J Bradly DA Bodger. Power System Harmonics. John Wildy.1983
    [5]肖湘宁,徐永海.电力系统谐波及其综合治理.中国电力,1998,31(4):59-61.
    [6]吴竞昌,孙树勤,宋文南.电力系统谐波.北京:水利电力出版社,1988
    [7]中国国家标准GB/T14549-93:电能质量公用电网谐波.北京:中国标准出版社,1994
    [8]肖湘宁.电能质量分析与控制.北京:中国电力出版社,2004
    [9]C I Budeanu. The Different Options and Conceptions Regarding Active Power in Non-sinusoidal Systems, Instytut Romain de 1'Energie, Bucharest,1927.
    [10]S.Fryze, Wirk-, Blind-und Scheinleistung in elektrischen Stromkreisen mit nicht-si-nusformigem Verlauf von Strom und Spannung, ETZ-Arch. Elektrotech,1932,53:596-599
    [11]H.Akagi, Y Kanazawa, A Nabae. Generalized Theory of the Instantaneous Reactive Power in Three-Phase Circuits. IPEC'83-International Power Electronics Conference, Tokyo, Japan,1983,1375-1386
    [12]F Harashima, H Inaba, K Tsuboi. A Closed-loop Control System for the Reduction of Reactive Power Required by Electronic Converters. IEEE Trans. on IECI,1976,23(2):162-166
    [13]Bird B M, Marsh J F, Mclellan P R. Harmonic reduction in multiple converters by triple-frequency current injection. Proc IEE,1969,116(10):1730-1734
    [14]Bhim Singh, Kamal Al-Haddad, Ambrish Chandra. A review of active filters for power quality improvement. IEEE Trans, on IE,1999,46(5):1-12
    [15]Gyugyi L, Strycula E C. Active ac power filter. Proc of IEEE/IAS Annual Meeting,1976:529-535
    [16]Mekri F, Mazari B, Machmoum M. Control and optimization of shunt active power filter parameters by fuzzy logic. Electrical and Computer Engineering, 2006,31(3):127-134
    [17]Jin T, Smedley K M. Operation of one-Cycle controlled three-phase active power filter with unbalanced source and load. IEEE Trans. on PE,2006,21(5) :1403-1412
    [18]Ribeiro R L A, Profumo F, Jacobina C B, et al. Two fault tolerant control strategies for shunt active power filter systems. Electrical and Computer Engineering,2002,1(2):792-797
    [19]Taotao Jin, Xiaofan Chen, Smedley K M. A new one-cycle controlled FACTS element with the function of STATCOM and active power filter. IEEE Trans. on PD,2003,3(3):2634-2638
    [20]Chang G W, Chen W C. A new reference compensation voltage strategy for series active power filter control. IEEE Trans. on PD,2006,21(3):1754-1756
    [21]Komurcugil H, Kukrer O. A new control strategy for single-phase shunt active power filters using a Lyapunov function. IEEE Trans. on IE,2005,53(1): 305-312
    [22]Hurng-Liahng Jou, Jinn-Chang Wu, Yao-Jen Chang, et al. A novel active power filter for harmonic suppression. Electrical and Computer Engineering, 2005,20(2):1507-1513
    [23]Bhende C N, Mishra S, Jain, et al. TS-fuzzy-controlled active power filter for load compensation. IEEE Trans. on PD,2006,21(3):1459-1465
    [24]李琼林,刘会金,孙建军,等.大容量有源滤波器的拓扑结构分析.高电压技术,2006,32(2):70-74
    [25]Dayi Li, Qiaofu Chen, Zhengchun Jia. A novel active power filter with fundamental magnetic flux compensation. IEEE Trans. on PD,2004,19(2): 799-805
    [26]Jou H L, Wu J C, Wu K D. Parallel operation of passive power filter and hybrid power filter for harmonic suppression. IEE Proceedings,2001,148(1): 8-14
    [27]Maoh-Chin Jiang. Analysis and design of a novel three-phase active power filter. Aerospace and Electronic Systems,2001,37(3):824-831
    [28]Jou H L, Wu J C. New active power filter and control method. Electric Power Applications,2005,152(2):175-181
    [29]Kuang Li, Guochun Xiao, Jinjun Liu, Zhaoan Wang. Comparison of four control methods to active power filters applied in accelerator power supplies.2004 IEEE 35th Annual,2004,1(1):794-799
    [30]刘宏超,彭建春.三相四开关并联型有源电力滤波器的指令电流确定方法.中国电机工程学报,2009,(16):108-113
    [31]王碧芳,刘溟,袁拓来等.中压有源电力滤波器主电路拓扑结构研究.电力自动化设备,2006,26(6):23-27
    [32]H. Fujita, H. Akagi, The Unified Power Quality Conditioner:The Integration of Series-and Shunt-Active Filters, IEEE Trans, on Power Electronics,1998, 13(2):315-322
    [33]赵伟.高压配电网谐波与无功综合动态治理理论与应用研究:[湖南大学博士学位论文],湖南大学,2010,13-15
    [34]薛蕙,杨仁刚.改进的瞬时无功和谐波电流检测理论.电力系统及其自动化学报,2002,14(2):8-11
    [35]张伏生,程学报,耿中行,等.电力系统谐波分析的高精度FFT算法.中国电机工程学报,1999,19(3):63-66
    [36]周林,夏雪,万蕴杰,等.基于小波变换的谐波测量方法综述.电工技术学报,2006,21(9):67-74
    [37]Byung-Moon Han, Byong-Yeul Bae, Seppo J. Ovaska. Reference signal generator for active power filters using improved adaptive predictive filter. IEEE Transactions on Industrial Electronics,2005,52(2):576-584
    [38]SimoneBuso, LuigiMalesani, PaoloMattavelli. Comparison of current control techniques for active filter applications. IEEE Transactions on Industrial Electronics,1998,45(5):722-729
    [39]曾江,焦连伟,倪以信,等.有源滤波器定频滞环电流控制新方法.电网技术,2000,24(6):1-8
    [40]K. Nishida, Y. Konishi, M. Nakaoka. Current control implementation with deadbeat algorithm for three-phase current-source active power filter. IEE Proceedings-Electric Power Applications,2002,149(4):275-282
    [41]杨贵杰,孙力,崔乃政,等.空间矢量脉宽调制方法的研究.中国电机工程学报,2001,21(5):79-83
    [42]Van Der Broeck, Heinz W, Van Wyk, et al. A comparative investigation of a three-phase induction machine drive with a component minimized voltage-fed inverter under different control options. IEEE Transactions on Industry Application,1984,20(2):309-320
    [43]刘宏超,吕胜民,张春晖.三相四开关并联型有源电力滤波器的SVPWM调制算法.电工技术学报,2011,26(4):128-134
    [44]Beltrao de Rossiter Correa, Jacobina C B, da Silva E R C, et al. A general PWM strategy for four-switch three-phase inverters. IEEE Transactions on Power Electronics,2006,21(6):1618-1627
    [45]Blaabjerg F, Neacsu D O, Pedersen J K. Adaptive SVM to compensate DC-link voltage ripple for four-switch three-phase voltage-source inverters. IEEE Transactions on Power Electronics,1999,14(4):743-752
    [46]Jacobina C B, Da Silva E R C, Lima AMN, et al. Vector and scalar control of a four switch three phase inverter. Thirtieth IAS Annual Meeting on Industry Applications. Orlando, FL:IEEE,1995:2422-2429
    [47]周卫平,吴正国,唐劲松,等.SVPWM的等效算法及SVPWM与SPWM的本质联系.中国电机工程学报,2006,26(2):134-137
    [48]姜俊峰,刘会金,陈允平,等.有源滤波器的电压空间矢量双滞环电流控制新方法.中国电机工程学报,2004,24(10):82-86
    [49]Zeng J, Ni Y, Diao Q, et al. Current controller for active power filter based on optimal voltage space vector. IEE Proceedings of Generation, Transmission and Distribution,2001,148(2):111-116
    [50]曾江,刁勤华,倪以信,等.基于最优电压矢量的有源滤波器电流控制新方法.电力系统自动化,2000,24(6):25-31
    [51]乐江源,谢运祥,张志,等.三相有源电力滤波器精确反馈线性化空间矢量PWM复合控制.中国电机工程学报,2010,30(15):32-39
    [52]Kwon Bong-Hwan, Min Byung-Duk, Youm Jang-Hyoun, et al. An improved space-vector-based hysteresis current controller. IEEE Transactions on Industrial Electronics,1998,45(5):752-760
    [53]Mohseni M, Islam S M. A new vector-based hysteresis current control scheme for three-phase Pwm voltage-source inverters. IEEE Transactions on Power Electronics,25(9):2299-2309
    [54]Tekwani P N, Kanchan R S, Gopakumar K, et al. Current-error space-vector-based hysteresis PWM controller for three-level voltage source inverter fed drives. IEE Proceedings of Electric Power Applications,2005, 152(5):1283-1295
    [55]Zeng Qingrong, Chang Liuchen. An advanced SVPWM-based predictive current controller for three-phase inverters in distributed generation systems. IEEE Transactions on Industrial Electronics,2008,55(3):1235-1246
    [56]张立伟,刘钧,温旭辉,等.基于基波电压幅值线性输出控制的SVPWM过调制新算法.中国电机工程学报,2005,19(1):13-18
    [57]王永,沈颂华,吕宏丽,等.基于简单电压空间矢量三相逆变器的研究.电工技术学报,2005,20(10):25-29
    [58]郭自勇,周有庆,刘宏超,等.一种基于电压空间矢量的有源滤波器滞环电流控制新方法.中国电机工程学报,2007,27(1):112-117
    [59]申张亮,郑建勇,梅军,等.基于改进电压空间矢量调制的有源滤波器双滞环电流跟踪控制策略.中国电机工程学报,2011,31(15):8-14
    [60]罗安.电网谐波治理和无功补偿技术及装备.北京:中国电力出版社,2006
    [61]Marei M I, El-Saadany E F, Salama M M A. A new contribution into performance of active power filter utilizing SVM based HCC technique. Power Engineering Society Summer Meeting. Chicago:IEEE,2002:1022-1026
    [62]Mohseni M, Islam S M. A new vector-based hysteresis current control scheme for three-phase pwm voltage-source inverters. IEEE Trans, on PE,2010, 25(9):2299-2309
    [63]Vodyakho O, Kim T, Kwak S, et al. Comparison of the space vector current controls for shunt active power filters. IET Power Electronics,2008,2(6): 653-664
    [64]Buso S, Malesani L, Mattavelli P. Comparison of current control techniques for active filter applications. IEEE Transactions on Industry Electronics, 1998,45(5):722-729
    [65]Kazmierkowski M P, Malesani L. Current control techniques for three-phase voltage-source PWM converters:a survey. IEEE Transactions on Industry Electronics,1998,45(5):691-703
    [66]戎袁杰,徐长波,王荣蓉,等.基于SVPWM的变参数三相并联APF的控制策略.清华大学学报:自然科学版,2009,49(10):1605-1613
    [67]杨旭,王兆安.一种新的准固定频率滞环PWM电流控制方法.电工技术学报,2003,18(3):24-28
    [68]洪峰,单任仲,王慧贞,等.一种变环宽准恒频电流滞环控制方法.电工技术学报,2009,24(1):115-119
    [69]曾江,刁勤华,倪以信,等.基于最优电压矢量的有源电力滤波器电流控制新方法.电力系统自动化,2000,24(6):25-31
    [70]Zeng Jiang, Diao Qinhua, Ni Yixin, et al. A novel current controller for active power filter based on optimal voltage space vector//The Third International Power Electronics and Motion Control Conference Proceedings. Beijing: IPEMC,2000:686-691
    [71]Ramchand R, Sivakumar K, Das A, et al. Improved switching frequency variation control of hysteresis controlled voltage source inverter-fed IM drives using current error space vector. IET Power Electronics,2010,3(2):219-231
    [72]Gopakumar K, Ramchand R, Patel C, et al. Online computation of hysteresis boundary for constant switching frequency current error space vector based hysteresis controller for VSI fed IM drives. IEEE Transactions on Power Electronics,2012,27(3):1521-1529
    [73]郭卫农,段善旭,康勇,等.电压型逆变器的无差拍控制技术研究.华中理工大学学报,2000,28(6):30-33
    [74]何英杰,刘进军,王兆安,等.基于重复预测原理的三电平APF无差拍控制方法.电工技术学报,2010,25(2):126-133
    [75]唐健,王翔,何英杰,等.三相四线制有源滤波器的新型无差拍控制.电力系统自动化,2007,31(19):59-63
    [76]林干,何志华,李正国,等.智能型电网谐波监视分析及保护一体化装置.电力系统自动化,2000,24(1):64-66
    [77]Blaabjerg F, Neacsu D. O., Pedersen J. K. Adaptive SVM to compensate DC-link voltage ripple for four-switch three-phase voltage-source inverters, IEEE Trans. On PE,1999,14(4):743-752
    [78]Haoran Zhang, Annette von Jouanne and Shaoan Dai. A reduced-switch dual-bridge inverter topology for the mitigation of bearing currents, EMI, and DC-link voltage variations. IEEE Trans. on IA,2001,37(5):1365-1372
    [79]Changliang Xia, Zhiqiang Li and Tingna Si. A control strategy for four-switch three-phase brushless DC motor using single current sensor. IEEE Trans, on IE,2009,56(6):2058-2066
    [80]J. Klima. Analytical investigation of an induction motor fed from four-switch VSI with a new spase vector modulation strategy. IEEE Trans, on EC,2006, 21(4):832-838
    [81]M. Monfared, H. Rastegar and H. M. Kojabadi. Overview of modulation techniques for the four-switch converter topology.2nd IEEE International Conference on Power and Energy(PECon 08), December 1-3,2008, Johor Baharu, Malaysia:803-807
    [82]Jaehong Kim, Jinseok Hong and Kwanghee Nam. A Current Distortion Compensation Scheme for Four-Switch Inverters. IEEE Trans, on PE,2009, 24(4):1032-1040
    [83]Rui Wang, Jin Zhao, and Yang Liu. A Comprehensive Investigation of Four-Switch Three-Phase Voltage Source Inverter Based on Double Fourier Integral Analysis. IEEE Trans. on PE,2011,26(10):2774-2787
    [84]Beltrao de Rossiter Correa, Jacobina, da Silva, Lima, A General PWM Strategy for Four-Switch Three-Phase Inverters, IEEE Trans. on PE,2006,21(6): 1618-1627
    [85]安群涛,孙力,赵克,等.四开关SVPWM算法及其与SPWM的关系.电力电子技术,2010,44(8):44-46
    [86]王瑞,赵金.四开关逆变器直流母线电容电压均衡控制,电力电子技术,2011,45(9):15-17
    [87]陈东华,谢少军.电流型控制半桥逆变器研究(Ⅰ):直流分压电容不均压问题.电工技术学报,2004,19(4):85-88
    [88]陈东华,谢少军.电流型控制半桥逆变器研究(Ⅱ):直流电容分压偏差前馈控制技术.电工技术学报,2004,19(6):69-73
    [89]杨水涛,张帆,刘金云,等.一种新型半桥逆变器电容均压控制策略.电工技术学报,2006,21(7):31-36
    [90]谭甜源,罗安,唐欣.大功率并联混合型有源电力滤波器的研制.中国电机工程学报,2004,24(3):41-45
    [91]王萍,孙雨耕,许会军,等.逆变器直流侧谐波分析与有源补偿.中国电机工程学报,2005,25(14):52-56
    [92]查晓明,石峰,宫金武,等.有源电力滤波器的频域能量变换模型及其应用.中国电机工程学报,2009,29(4):84-90
    [93]林干,何志华,李正国,等.智能型电网谐波监视分析及保护一体化装置.电力系统自动化,2000,24(1):64-66
    [94]Pogaku N, Prodanovic M, Green T C. Modeling, Analysis and Testing of Autonomous Operation:of an Inverter-Based Microgrid, IEEE Trans, on PE, 2007,22(2):613-625
    [95]J M Guerrero, de Vicuna L G, J Matas et al. Output Impedance Design of Parallel-Connected UPS Inverters With Wireless Load-Sharing Control, IEEE Trans. on IE,2005,52(4):1126-1135
    [96]J M Guerrero, J Matas, de Vicuna L G et al. Wireless-Control Strategy for Parallel Operation of Distributed-Generation Inverters, IEEE Trans, on IE, 2006,53(5):1461-1470
    [97]J M Guerrero, J Matas, Luis Garcia de Vicuna, et al. Decentralized Control for Parallel Operation of Distributed Generation Inverters Using Resistive Output Impedance, IEEE Trans, on IE,2007,54(2):994-1004
    [98]Wei Yao, Min Chen, J Matas, et al. Design and Analysis of the Droop Control Method for Parallel Inverters Considering the Impact of the Complex Impedance on the Power Sharing, IEEE Trans, on IE,2011,58(2):576-588
    [99]Qing-Chang Zhong, Yu Zeng. Can the output impedance of an inverter be designed capacitive?, IECON 37th Annual Conference on IEEE Industrial Electronics Society,2011,1220-1225
    [100]Hirofumi A, Edson H W, Mauricio A.瞬时功率理论及其在电力调节中的应用.北京:机械工业出版社,2009:63-67.
    [101]Tzung-Lin Lee, Po-Tai Cheng. Design of a New Cooperative Harmonic Filtering Strategy for Distributed Generation Interface Converters in an Islanding Network, IEEE Trans, on PD,2007,22(5):1919-1927
    [102]肖朝霞,王成山.含多分布式电源的微网小信号稳定性分析.电力系统自动化,2009,33(6):81-85
    [103]Qing-Chang Zhong. Robust Droop Controller for Accurate Proportional Load Sharing Among Inverters Operated in Parallel, IEEE Trans, on IE,2013, 60(4):1281-1290
    [104]T Vandoorn, B Meersman, J De Kooning, et al. Controllable Harmonic Current Sharing in Islanded Microgrids:DG Units With Programmable Resistive Behavior Toward Harmonics, IEEE Trans, on PD,2012,27(2):831-841

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700