用户名: 密码: 验证码:
沥青路面低温开裂力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沥青路面温缩裂缝是低温气候区存在较普遍的路面病害形式之一,一般发生在极端低温条件下,裂缝大都与道路纵向垂直且纵向间距呈现一定的规律性。目前关于沥青路面低温抗裂性的研究主要着眼于材料性能研究,路面结构的影响及裂缝间距机理方面涉及较少。本文结合甘肃地区典型路面结构及实测温度数据主要分析了沥青路面的温度应力应变响应及其与温缩理论起裂间距的关系,对日后低温地区沥青路面的材料和结构选择及设计有一定意义。
     对甘肃省依托工程的实测温度数据进行了规律分析和总结,发现四季气温日变化规律类似,路表温度变化规律与气温变化基本相同,大致符合正弦曲线的变化规律,但路表达到最高温的时刻略迟于气温达到最大值的时刻。温差最大值出现在路表。随着深度增加,不同时刻路面结构内的温度在同一深度处的温度差值逐渐缩小,直到一定深度处的土基中温度趋于一稳定值。
     依据热传导理论推导了垂直边坡均质体和斜边坡均质体在第一类边界条件下的温度场分布解析解,并与数值解进行了对比。讨论了温度场计算的一维模型、二维垂直边坡模型和二维斜边坡模型的差异性,发现二维模型边坡温度的影响范围均在距离路基边缘约1.5m的范围之内,道路中线附近路面结构温度分布仅与深度有关。
     从温度应力的吴赣昌解出发建立温缩开裂模型,推导沥青面层温缩开裂模型的温度应力解析表达式并进行参数分析,建立了温度应力与面层计算长度的关系。发现面层厚度增加和较好的层间粘结状态对低温抗裂性能的提高效果较好,提出在面层材料选择时应选择低模量和较小温缩系数的沥青混合料,从而减少沥青路面低温开裂现象发生。
     借助有限单元分析法建立沥青路面温缩裂缝的有限单元模型,考察了路表最大温度应力和路表最大温度应变与路面计算长度的关系。通过参数分析得到路基厚度取4m就可以满足温度荷载作用的计算精度要求。发现参考温度取值对路面温度应力应变影响显著,而不同的控制指标(温度应力/温度应变)对面层模量有截然不同的要求。
     基于线性粘弹性理论分析了降温过程中路面内的应力累积与松弛情况并进行参数分析,认为气温变化剧烈的季节更替时期是沥青路面低温开裂的高发时期,提出温度荷载重复作用会导致沥青路面出现疲劳现象产生温度疲劳裂缝。最后综合本文关于温度场、温度应力和理论起裂间距的分析结果,改进了现有沥青路面设计方法,引进了路表温度应力或温度应变的验算指标。
Thermal cracking is one of the common failure modes of asphalt pavement in coldregions, which generally occurs under the extreme low temperature condition. Most cracksare perpendicular to the longitudinal direction of the road with certain spacing. At present,researches of thermal cracking mainly focus on material properties, but few involve theeffects of pavement structure and the mechanism of uniform crack spacing. In this study,thermal stress/strain response of asphalt pavement and theoretical crack spacing wereanalyzed based on typical pavement structure and the measured temperature data in Gansuprovince, which will greatly help the selection and design of pavement material and structure.
     Based on the temperature data from field sections in Gansu Province, it was founded therelationship between daily temperature fluctuation and time was similar throughout the yearand pavement surface temperature fluctuation follows a sinusoidal mode. The highesttemperature on pavement surface occurred slightly after that of the air temperature. Themaximum daily temperature difference was on pavement surface. The daily temperaturefluctuation decreases as the pavement depth increases, and the pavement temperature remainsconstant beyond certain depth.
     Based on the theory of heat conduction,the analytical solution of temperature field wasderived for homogeneous model with vertical side slope and inclined side slope under the firstboundary condition, which was later compared with the numerical solution. The differencesamong one-dimensional model and two-dimensional model with vertical side slope andinclined side slope were analyzed. For the two-dimensional model, the effects of slopetemperature boundary conditions on the temperature distribution was within1.5m to subgradeedge, whereas the temperature distribution near the road centerline depended on the depthonly.
     From the thermal stress solution of Wu Ganchang, the analytical solution was derived tostudy the effects of wearing course calculated length on thermal stresses within the pavement.It was found that thick surface layer and good pavement layer bonding conditions canimprove pavement thermal cracking resistance. It was also found that asphalt pavement wasmore resistant to thermal cracking with low resilient modulus and small temperature shrinkage coefficient for surface layer.
     Finite element model was created to study the effects of pavement calculated length onmaximum thermal stresses and strains on pavement surface. Through parameter sensitivityanalysis, it was found that pavement model with4meters thick subgrade can meet accuracyrequirement. It was also found that the reference temperature has a critical effect on thedistribution of pavement thermal stresses and strains, and different control indexes (thermalstress and thermal strain) had entirely different requirements of layer modulus.
     According to linear visco-elastic theory, stress accumulation and relaxation calculationand parameter sensitivity analysis during the cooling process were performed. Thermal crackswere more prominent during severe temperature fluctuation period between seasons. Arepeated thermal loading will also lead to fatigue thermal cracking. Based on the results ofthis study, the existing asphalt pavement design method was improved with the introductionof pavement surface thermal stress/strain checking index.
引文
[1]同济大学道路与交通工程研究所等.半刚性基层沥青路面.北京:人民交通出版社,1991:80-106
    [2] JTJ014-97,公路沥青路面设计规范[S].北京:人民交通出版社,1997
    [3] JTJ D50-2006,公路沥青路面设计规范[S].北京:人民交通出版社,2006
    [4] Al‐Abdul Wahhab, H.,Balghunaim,F.Asphalt Pavement Temperature Related to AridSaudi Environment[J].Journal of Materials in Civil Engineering,1994,6(1):1-14
    [5] Erik Simonsen,Vincent C.Janoo,Ulf Isacsson.Prediction of Temperature and MoistureChanges in Pavement Structures[J].Journal of Cold Regions Engineering,1997,11(4):291-307
    [6] Donald J.Janssen and Mark B. Snyder.Temperature-Moment Concept for EvaluatingPavement Temperature Data[J].Journal of Infrastructure Systems,2000,6(2):81-83
    [7] C.Yavuzturk,K. Ksaibati,A.D.Chiasson.Assessment of Temperature Fluctuationsin Asphalt Pavements Due to Thermal Environmental Conditions Using aTwo-Dimensional, Transient Finite-Difference Approach[J]. Journal of Materials inCivil Engineering,2005,17(4):465-475
    [8] Brian K.Diefenderfer,Imad L.Al-Qadi,Stacey D.Diefenderfer. Model to PredictPavement Temperature Profile Development and Validation[J].Journal of TransportationEngineering,2006,132(2):162-167
    [9] Jooseng(Gavin)Gui,Patrick E.Phelan,Kamil E.Kaloush et al.Impact of PavementThermophysical Properties on Surface Temperatures[J].Journal of Materials in CivilEngineering,2007,19(8):683–690
    [10] Chi-Chou Liao,Bo-Ruei Chen,Shun-Hsing Chen et al.Temperature Prediction Modelfor Flexible Pavements in Taiwan[A]. Performance Modeling and Evaluation ofPavement Systems and Materials[C],American Society of Civil Engineers,2009:82-89
    [11] William Flower,Steven J.Burian,Christine A.Pomeroy et al.Surface Temperature andHeat Exchange Differences between Pervious Concrete and Traditional Concrete andAsphalt Pavements[A]. International Low Impact Development Conference[C],American Society of Civil Engineers,2010:1417-1430
    [12] Adriana Vargas-Nordcbeck,David H.Timm.Evaluation of Pavement Temperatures ofVarious Pavement Sections[A].Transportation and Development Institute Congress[C],American Society of Civil Engineers,2011:782-791
    [13] Rongbin Han,Xin Jin,Charles J.Glove.Modeling Pavement Temperature for Use inBinder Oxidation Models and Pavement Performance Prediction[J].Journal of Materialin Civil Engineering,2011,23(4):351~359
    [14] Dong Wang.Analytical Approach to Predict Temperature Profile in a MultilayeredPavement System Based on Measured Surface Temperature Data[J]. Journal ofTransportation Engineering,2012.138(5):674-679
    [15] Dong Wang and Jeffery R.Roesler.One Dimensional Rigid Pavement TemperaturePrediction Using Laplace Transformation[J].Journal of Transportation Engineering,2012,138(9):1171-1177
    [16] Dong Wang. Analytical Solutions for Temperature Profile Prediction in Multi-layeredPavement Systems [D].Illinois:University of Illinois at Urbana-Champaign,2010
    [17]严作人.层状路面体系的温度场分析[J].同济大学学报,1984,3:76-85
    [18]谈至明,孙立军.路面结构低温状况分析[J].同济大学学报,1999,27(5):520-525
    [19]吴赣昌.层状路面体系温度场分析[J].中国公路学报,1992,5(4):17-25
    [20]吴赣昌,张淦生.非线性路面温度场的计算理论[J].佛山大学学报,1993,11(6):10-18
    [21]吴赣昌,陈赟.四层路面结构温度场的计算方法[J].长沙交通学院学报,1992,6(3):48-59
    [22]吴赣昌.半刚性基层沥青路面温度场的解析理论[J].应用数学和力学,1997,18(2):169-176
    [23]吴赣昌,黄国顺.自然条件下沥青路面结构的温度分布[J].佛山科学技术学院学报(自然科学版),1998,16(1):47-53
    [24]吴赣昌,张淦生.有效辐射计算对沥青路面温度场的影响[J].佛山大学学报,1995,13(2):19-25
    [25]王丽.道路结构温度场实测研究[J].公路,2003,8(下):30-35
    [26]康海贵,郑元勋,蔡迎春等.实测沥青路面温度场分布规律的回归分析[J].中国公路学报,2007,20(6):13-18
    [27]路畅,黄晓明,张志祥.沥青路面温度场的现场观测与分析.公路工程,2009,34(6):34-38
    [28] Lu JIA,Lijun SUN,Yonghua YU.Asphalt Pavement Statistical Temperature PredictionModels Developed from Measured Data in China[A].Seventh International Conferenceof Chinese Transportation Professionals Congress[C], American Society of CivilEngineers,2007:723-732
    [29]倪富健,徐皓,刘清泉等.排水性沥青表面层半刚性基层路面温度场分析[J].公路交通科技,2006,23(10):15-19
    [30]宋宪发.排水性沥青路面降温性能及衰变规律研究[D].上海:同济大学,2008
    [31]宋存牛.沙漠地区路基路面温度场暨路面工作环境温度指标研究[D].西安:长安大学,2006
    [32] J. F. Hill. Predieting the Fracture of Asphalt Mixes by ThermalStresses[J].Inst. Petroleum,1974,74(14):32-36
    [33] Monismith C.L.,Secor G.A.,Secor K.E..Temperature Induced Stresses andDeformations in Asphalt Concrete [J].Association of Asphalt Paving Technologists,1965,34(6):248-285
    [34] R.Haas.A Method for Designing Asphalt Pavements to Minimize Low-TemperatureShrinkage Cracking[J].Asphalt Institute,1973,73(1):65-68
    [35] J.T.Christison.The Response of Asphalt Concrete Pavements to Low TemperatureClimatic Environments[A].Proceeding of Structural Design of Asphalt Pavements. theThird International Conference on the Structural Design of Asphalt Pavements [C],Transport Research International Documentation,1972,4(1):41-52
    [36] Andrew D.Chiasson, Cenk Yavuzturk, Khaled Ksaibati.Linearized Approach forPredicting Thermal Stresses in Asphalt Pavements due to EnvironmentalConditions.Journal of Materials in Civil Engineering,2008,20(2):118-127
    [37] Raul A. Velasquez, Joseph F.Labuz, Mihai O.Marasteanu et al.Revising ThermalStresses in the TSRST for Low-Temperature Cracking Prediction [J]. Journal ofMaterials in Civil Engineering,2009,21(11):680-687
    [38] K.H.Moon,M.O.Marasteanu,M.Turos.Comparison of Thermal Stresses Calculatedfrom Asphalt Binder and Asphalt Mixture Creep Tests [J].Journal of Materials in CivilEngineering,2012,8:1-32
    [39]王端宜,张肖宁,王哲人.沥青路面一维温度应力场的理论计算[J].哈尔滨建筑工程学院学报,1990,23(4):124-130
    [40]吴赣昌.层状路面结构温度应力分析[J].中国公路学报,1993,6(4):1-8
    [41]苗雨,万云冬,董玉凯.沥青路面反射裂纹温度应力的数值模拟[J].岩土力学,2007,28(增):343-347
    [42]艾长发,邱延峻,毛成等.不同沥青混凝土路面结构的大温差温度行为分析[J].公路,2008,4:14-19
    [43] AI Changfa,XIAO Xingqiang,QIU Yanjun.Thermal Analysis of Asphalt Pavement withDifferent Bases by Large Temperature Changes[A].The Eighth International Conferenceof Chinese Logistics and Transportation Professionals[C].American Society of CivilEngineers,2008:2325-2331
    [44]郑金阳,陈云鹤,陈志勇等.热沥青混合料摊铺后基层温度应力瞬态分析[J].力学季刊,2008,29(2):
    [45]耿立涛,钟阳,乔娜.考虑材料特性随温度变化时沥青路面的温度应力[J].公路交通科技,2009,26(11):16-20
    [46] Wing-Gun Wong,Yang Zhong.Flexible Pavement Thermal Stresses with VariableTemperature[J].Journal of Transportation Engineering,2000,126(1):46-49
    [47] Xu Wensheng,Tian Wei,Luo Hui.Analysis of Thermal Stress Response in AsphaltOverlay [A].Critical Issue in Transportation Systems Planning, Development, andManagement [C],American Society of Civil Engineers,2009:2114-2121
    [48]胡浩.多年冻土地区沥青路面温度应力研究[D].西安:长安大学,2010
    [49]王磊,胡浩,马骉.青藏公路沥青路面结构温度应力影响因素分析[J].长安大学学报(自然科学版)2010,30(4):28-33
    [50] Mihai O.Marasteanu, Xue Li,Timothy R.Clyne et al.Low Temperature Crackingof Asphalt Concrete Pavements[R].Minnesota:Department of Civil Engineering,University of Minnesota,2004
    [51] Aleksander Zborowski.Development of A Modified Superpave Thermal Cracking Modelfor Asphalt Concrete Mixtures Based on the Fracture Energy Approach[D].Arizona:Arizona State University,2007
    [52] Xue Li.Investigation of the Fracture Resistance of Asphalt Mixture at Low Temperaturewith a Semi Circular Bend(SCB) Test [D].Minnesota:University of Minnesota.2005
    [53] David Harold Timm.A Phenomenological Model to Predict Thermal Crack Spacing ofAsphalt Pavements[D].Minnesota:University of Minnesota,2001
    [54] Ann Ping Hong,Yuan Neng Li,Zdenek P.Bazant.Theory of Crack Spacing in ConcretePavements[J].Journal of Engineering Mechanics,1997,123(3):267-275
    [55] Sang-soo Kim.Direct Measurement of Asphalt Binder Thermal Cracking[J].Journal ofMaterials in Civil Engineering,2005,17(6):632-639
    [56] Eshan V.Dave,Sofie Leon,Kyoungsoo Park.Thermal Cracking Prediction Model andSoftware for Asphalt Pavements[A].Transportation and Development Institute Congress2011[C],American Society of Civil Engineers:667-676
    [57]吴赣昌,凌天清.半刚性基层温缩裂缝的扩展机理分析[J].中国公路学报,1998,11(1):21-28
    [58]吴赣昌,张淦生.沥青路面温缩裂缝的应力强度分析[J].中国公路学报,1996,9(1):37-44
    [59]罗辉.沥青路面粘弹性响应分析及裂纹扩展研究[D].华中科技大学,2007
    [60]范植昱.荷载和温度对路面Top-Down开裂影响的有限元分析[D].长沙:长沙理工大学,2011
    [61]林春梅.大温差地区沥青路面横向裂缝调查与灌缝工艺研究[D].哈尔滨:哈尔滨工业大学,2011
    [62]应荣华,田小革.沥青混凝土温度应力试验研究[J].公路,2001,4:66-70
    [63]张宏.沥青混合料低温抗裂性能评价方法[J].长安大学学报(自然科学版),2002,22(4):5-8
    [64]孙雅珍,张敏江.基于松弛特性的沥青路面低温缩裂分析[J].沈阳建筑大学学报(自然科学版),2010,6(4):670-674
    [65] Sun Woo Park,Y.Richard Kim,Richard A. Schapery.A Viscoelastic ContinuumDamage Model and Its Application to Uniaxial Behavior of Asphalt Concrete[J].Mechanics of Materials,1996,24(4):241-255
    [66] Hyun-Jong Lee,Y.Richard Kim.Viscoelastic Continuum Damage Model of AsphaltConcrete with Healing[J].Journal of Engineering Mechanics.1998,124(11):1224-1232
    [67] Hyun-Jong Lee,Jo Sias Daniel,Y.Richard Kim.Continuum Damage Mechanics-BasedFatigue Model of Asphalt Concrete[J].Journal of Materials in Civil Engineering,2000,12(2):105-112
    [68] Hyun Jong Lee,Y.Richard Kim,Seung Woo Lee.Fatigue Life Prediction of AsphaltMixes Using Viscoelastic Material Properties[A]. TRB2003AnnualMeeting[C].Transportation Research Record.2002:1-21
    [69] Y.Richard Kim,Cheolmin Baek,B.Shane Underwood et al.Application of ViscoelasticContinuum Damage Model Based Finite Element Analysis to Predict the FatiguePerformance of Asphalt Pavements [J].Journal of Civil Engineering,2008,12(2):109-120
    [70] B.Richard Nilsson,Ghassan R.Chehab,Y.Richard Kim.Application of aViscoelastoplastic Continuum Damage Model to Asphalt Mixes in Sweden[J].International Journal of Road Materials and Pavement Design,2004,5(1):133-161
    [71] Shane B.Underwood,Richard Y.Kim.Viscoelastoplastic Continuum Damage Modelfor Asphalt Concrete in Tension [J].Journal of Engineering Mechanics,2011,137(11):732-739
    [72] Ghassan R.Chehab,Y.Richard Kim.Viscoelastoplastic Continuum Damage ModelApplication to Thermal Cracking of Asphalt Concrete [J].Journal of Materials in CivilEngineering,2005,17(4):384-392
    [73] Ghassan R.Chehab,Youngguk Seo,Y.Richard Kim.Viscoelastoplastic DamageCharacterization of Asphalt–Aggregate Mixtures Using Digital ImageCorrelation.International Journal of Geomechanics,2007,7(2):111-118
    [74] S.W.Park,Y.R.Kim.Fitting Prony-Series Viscoelastic Models with Power-LawPresmoothing [J].Journal of Materials in Civil Engineering,2001,13(1):26-32
    [75] S.W.Park, Y.R.Kim, H.J.Lee.Fracture Toughness for Microcracking in aViscoelastic Particulate Composite[J].Journal of Engineering Mechanics.1999,125(6):722-725
    [76] Y.R.Kim,Y.C.Lee,H.J.Lee.Correspondence Principle for Characterizationof Asphalt Concrete[J].Journal of Materials in Civil Engineering,1995,7(1):59-68
    [77] Sun Woo Park,Y.Richard Kim.Analysis of Layered Viscoelastic System with TransientTemperature[J].Journal of Engineering Mechanics,1998,124(2):223-231
    [78] Youngguk Seo,Omar EI-Haggan,Mark King,et al.Air Void Models for the DynamicModulus,Fatigue Cracking,and Rutting of Asphalt Concrete [J].Journal of Materialsin Civil Engineering,2007,19(10):874-883
    [79] S.W.Park,Y.R.Kim.Interconversion between Relaxation Modulus and CreepCompliance for Viscoelastic Solids [J].Journal of Materials in Civil Engineering,1999,11(1):76-82
    [80]郑健龙,钱国平,应荣华.沥青混合料热粘弹性本构关系试验测定及其力学应用[J].工程力学,2008,25(1):34-41
    [81]钱国平,郭忠印,郑建龙等.环境条件下沥青路面热粘弹性温度应力计算[J].同济大学学报,2003,31(2):150-155
    [82] Guoping Qian, Jianlong Zheng,Qing’e Wang.Calculating Thermal Stresses of AsphaltPavement in Environmental Conditions[A].Symposium on Pavement Mechanics andMaterials [C],American Society of Civil Engineerings,2007:78-87
    [83]闫超.沥青混合料间接拉伸试验的弹粘性分析[D].西安:长安大学,2010
    [84]田小革,于志新,荆滨.基于应力松弛试验下的沥青混合料非线性粘弹性模型研究[J].公路交通科技,2010,27(8):7-12
    [85]迟凤霞,张肖宁,邹桂莲.基于动态模量主曲线的沥青混合料连续松弛时间谱[J].华南理工大学学报(自然科学版),2008,36(10):76-81
    [86] Aubrey I.Brown,Salvatore M.Marco.Heat Transfer[M].Third Edition.New York:Mcgraw-Hill Book Company,1958:1-7
    [87]王保国、刘淑艳、王新泉等.传热学[M].北京:机械工业出版社.2009:14-41
    [88]杨世铭、陶文铨.传热学[M].第四版.北京:高等教育出版社.2007:33-108页
    [89]同济大学教研室主编.高等数学(下册).第四版.北京:高等教育出版社.2000:326-333
    [90]王志岗.甘肃省沥青路面低温温度应力综合分析[D].西安:长安大学,2012
    [91]周东,孙义刚,乐观永等.环境因素对膨胀土边坡温度场影响的模型试验[J].广西大学学报(自然科学版).2011,36(4):653-658
    [92]冯文杰,马巍,盛煜.路基边坡遮阳措施对多年冻土区路基温度场的影响分析[J].工程地质学报,2007,15(Suppl.):46-49
    [93] Pabitra Rajbongshi, Animesh Das. Estimation of Temperature Stress andLow-Temperature Crack Spacing in Asphalt Pavements [J].Journal of TransportationEngineering,2009,V135(10):745-752
    [94]吴赣昌,半刚性路面温度应力分析[M].北京:科学出版社,1995:93-103
    [95] S.P.Timoshenko,J.N.Goodier.Theory of Elasticity.Third Edition.北京:清华大学出版社,2004:46-48
    [96]徐芝纶,弹性理论[M].北京:人民教育出版社,1960:39-45
    [97]孙红燕.长寿命沥青路面结构计算及分析[D].西安:长安大学,2007
    [98]罗作芬,郑传超.沥青混合料劈裂回弹模量的研究[J].河北工业大学学报,2010,39(3):107-111
    [99]邹玲.沥青混合料热物性参数研究[D].西安:长安大学,2011
    [100]乔英娟,陈静云,王哲人等.考虑沥青混合料泊松比影响的路面结构应力分析[J].吉林大学学报(工学版),2009,39(1):50-56
    [101]邵显智,邵敏华,毕玉峰等.沥青混合料泊松比的测试方法[J].同济大学学报(自然科学版),2006,34(11):1470-1474
    [102]乔英娟,王哲人,郭忠印.沥青混合料泊松比测定方法的探讨[J].同济大学学报(自然科学版),2009,37(6):786-790
    [103] David N.Richardson,StevenM.Lusher.Determination of Creep Compliance andTensile Strength of Hot-Mix Asphalt for Wearing Courses in Missouri[DB/OL],http://library.modot.mo.gov/RDT/reports/Ri05052/or08018.pdf,2012-6-5
    [104]赵均海.高等有限元[M].武汉:武汉理工大学出版社,2004:11-39
    [105]李海远.草原牧区小油路路面结构分析[D].西安:长安大学,2004年
    [106]谢水友.轮胎接触压力对沥青路面结构的影响研究[D].西安:长安大学,2003
    [107]王桂茵.低温状态下沥青路面结构应力应变特性研究[D].西安:长安大学,2011
    [108]张肖宁.沥青与沥青混合料的粘弹力学原理及应用[M].北京:人民交通出版社,2006:6-9
    [109]郑传超,王秉纲.道路结构力学(上册)[M].北京:人民交通出版社,2003:104-112
    [110]延西利,扈惠敏,张登良.沥青混合料线性流变模型的数值模拟[J].西安公路交通大学学报,1999,19(1):7-12
    [111]张登良.沥青与沥青混合料[M].北京:人民交通出版社,1993,6:131-135
    [112] Chun-Hsing Ho. Control of Thermal-Induced Failures in AsphaltPavements[D].Utah:The University of Utah,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700