用户名: 密码: 验证码:
起步工况下液力变矩器闭锁离合器滑差控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液力机械式自动变速器(Automatic Transmission,简称AT)以其成熟的技术和优良的换档平顺性而在自动变速器家族中占居主导地位,但由于液力变矩器的存在,使得传动效率低成为其主要缺点。为了提高液力变矩器的传动效率,在泵轮和涡轮间加装闭锁离合器,在一定工况下通过控制闭锁离合器,使液力变矩器由液力传动过渡到机械传动,从而有效提高传动效率。本文在系统研究起步工况特征的基础上,提出起步工况下液力变矩器闭锁离合器滑差控制,重点解决起步工况下实施闭锁离合器滑差控制的可行性、工作区域划分、控制目标优化及控制算法等四个问题。主要研究内容如下:
     1)整车动力学建模。基于Matlab/Simulink和AMEsim联合仿真平台,建立装有6档AT车型的整车动力学仿真模型,尤其是液力变矩器和闭锁离合器的耦合动力传递模型以及闭锁离合器的扭转振动模型。
     2)液力变矩器动态特性预测。基于Hrovat和Tobler提出的液力变矩器的动态特性描述方程,对起步工况液力变矩器传递转矩特性进行预测,为进行闭锁滑差控制时转矩特性预测提供依据。
     3)闭锁离合器摩擦片温度特性分析。仿真分析闭锁离合器摩擦片温度随滑差控制转速变化规律,验证进行起步闭锁离合器滑差控制摩擦片承受温度的可行性。基于仿真结果,建立基于温度预测的闭锁离合器修正模型。
     4)传动系统扭振特性分析。建立传动系统扭转振动模型,研究现有扭转减振器下车辆扭转振动特性;应用回归分析法建立传动系统固有频率的递归方程,并对扭转减震器刚度进行优化,使其满足滑差控制要求。
     5)滑差控制区域选择及滑差转速优化。针对起步时不同动力需求,对液力变矩器起步转矩特性进行分析,确定闭锁离合器起步滑差控制区域;对闭锁离合器滑差转速过零进行检测,并提出相应的滑差转速恢复策略;以发动机转矩波动水平、传动系统转矩波动水平、传动效率为控制指标,对闭锁离合器滑差控制转速进行优化。
     6)闭锁离合器滑差控制算法研究。对闭锁离合器滑差控制不同阶段进行控制油压的模糊优化;特别针对第一阶段,分析不同充油压力时闭锁离合器由空行程阶段到达滑摩阶段响应特性及振动冲击特性;实车对标及验证起步工况液力变矩器闭锁离合器滑差控制效果。
With the advantages of mature technology and smooth shifting, Automatic Transmissionoccupies a dominant position in the transmission family, but the low transmission efficiencyis its main drawback because of torque converter. In order to improve the transmissionefficiency, torque converter clutch is installed between the pump and turbine of torqueconverter, and then the transmission efficiency was improved effectively through thechanging power transmission mode. Slipping control of torque converter clutch at launchingconditions was proposed based on the characteristics of launching conditions, and problemsof feasibility, working zone division, control objectives optimization and control algorithmswere solved. The main contents are as follows:
     1) Vehicle dynamics model: The vehicle dynamics model of POLO car with AT wasestablished, especially the torque converter and lockup clutch coupling power transmissionmodels and lockup clutch torsional vibration model were built.
     2) Predictions of torque converter dynamics characteristic: Based on Hrovat andTobler's description equations of the torque converter, the dynamic characteristic of torqueconverter was predicted at launching conditions. The perdition results provided a basis fortorque prediction when the implementation of slip control.
     3) The temperature characteristic of torque converter clutch friction plate: Variation ofthe temperature characteristic of torque converter clutch friction plate was simulated withchanges of slipping speed; the feasibility of torque converter clutch slip control because offriction plate bearing temperature was verified. Based on temperature prediction model, thetorque converter clutch model was amended.
     4) Torsional vibration of transmission system: The torsional vibration modelof transmission system was established and the torsional vibration characteristicof vehicle under the existing torsion damper was researched. Using regression toestablish natural frequency recursive equation of transmission system and make slipping control demand of torque converter clutch through the optimization of torsional vibrationdamper stiffness.
     5) Slipping control region selection and slipping speed optimization: According tothe different power requirements when starting, the slipping control region was determined.The zero slipping speed was detected and the corresponding slipping speed recovery strategywas proposed. The slipping speed was optimized taking the Torque fluctuation andtransmission efficiency as evaluation target.
     6) Research on slipping control algorithm: The control oil pressure at different stages ofslipping control was optimized based on fuzzy control. The characteristics of shock responseand vibration was analyzed at the first stage, also called oil filling stage. In order to validatethe effect of slipping control of torque converter clutch at launching conditions, realcar benchmarking was done.
引文
[1] Ishihara. T and Emori. R. Torque Converter as a Vibration Damper and Its TransientCharacteristics[C]. SAE Technical Paper,660368,1966.
    [2] Kotwicki. A. Dynamic Models for Torque Converter Equipped Vehicles[C]. SAETechnical Paper,820393,1982.
    [3] Hrovat. D and Tobler. W. E. Bond Graph Modeling and Computer Simulation ofAutomotive Torque Converters [J]. Journal of the Franklin Institute,1985,319:93-114.
    [4] Rong. W. H, Tanaka. K and Tsukamoto. H. Torque Converter with Lock-up Clutch byBond Graphs[C]. ASME, FEDSM97-3368SM97,2007.
    [5]赵红,马文星,霍炜等.液力变矩器动态特性辨识实验研究[J].青岛大学学报,2001,16(1):6-11.
    [6]陈东升,项昌乐,刘辉.液力变矩器的动态特性和动力学模型研究[J].中国机械工程,2002,13(11):913-917.
    [7]李吉元,闫清东.新型牵引-制动型液力变矩器动态特性研究[J].系统仿真学报,2005,17(10):2521-2525.
    [8]刘春宝,马文星,朱喜林.液力变矩器三维瞬态流场计算[J].机械工程学报,2010,46(14):161-166.
    [9] P. Zagrodzki. Numerical Analysis of Temperature Fields and Thermal Stresses in theFriction Discs of a Multidisc Wet Clutch [J]. Wear,1985,101(3):255-271.
    [10] P. Zagrodzki. Analysis of Thermomechaniea1Phenomena in Multidisc Clutches andBrakes [J]. Wear,1990,140(22):291-308.
    [11] P. Zagrodzki, S. A. Truneone. Generation of Hot Spots in a Wet Multidisc Clutchduring Short-term Engagement [J].Wear,2003,254:474-491.
    [12] S. Natsumeda, T. Miydshi. Numerical Simulation of Engagement of Paper based Wetclutch facing [J], Journal of Tribology,1994,116(22):232-237.
    [13] Y. Yang, R. C. Lam, Y. F. Chen, H. Yabe. Modeling of Heat Transfer and FluidHydrodynamics for a Multidisc Wet Clutch [C]. SAE Technical Paper,950898,1995.
    [14] J. Y. Yang, M. M. Khonsari. Thermal Characteristics of a Wet Clutch [J]. Journal ofTribology,1999,121(7):610-617.
    [15] Tatara. R. A, Parviz PayVar. Multiple Engagement Wet Clutch Heat Transfer Model [J].Numerical Heat Transfer, Part A: Application’s,2003,42(3):215-231.
    [16] Yiqing Yuan, Zulfikar Ali and Pradeep Attibele. Heat Transfer Enhancement throughImpingement of Flows and its Application in Lock-up Clutches[C]. SAE TechnicalPaper,2005-01-1936.
    [17] Aliihsan Karamavruc, Zhiru Shi and Dave Gunther. Determination of Empirical HeatTransfer Coefficients via CFD to Predict the Interface Temperature of ContinuouslySlipping Clutches [C]. SAE Technical Paper,2011-01-0313.
    [18] M. Velardocchia, E. Amisano, R. Flora. A Linear Thermal Model for an AutomotiveClutch [J]. SAE Technical Paper,2000-01-0834.
    [19]胡宏伟,周晓军,李雄兵,宁克焱.基于最小二乘支持向量机的AMT离合器片表面温度预测[J].汽车工程,2008,30(4):335-339.
    [20]牛铭奎.干式DCT离合器温度模型及其灰色预测控制研究[D].吉林大学,2008.
    [21]丁建林.湿式多片离合器热场分析及温度预估模型研究[D].重庆大学,2011.
    [22] D. A. KLOKKENGA. Torsional Vibration Analysis of a Hydrodynamic Split TorqueTransmission [J]. Journal of Engineering for Industry,1967,11:605-610.
    [23] Marc McGrath, Jeff Hemphill, George Bailey, et al. Torque Converters–Comfort andFuel Economy in Tight Corners [M]. Luk SYMPOSIUM2006.
    [24] Hideki Ogawa, Eiji Hayashi, Osamu Yoshida, et al. Mechanism of Shudder Phenomenain Torque Converter and System Simulation Model[C]. SAE Paper,2007-01-0243.
    [25] Taejun Park, Jaehoon Song, Jaeduk Jang and Insik Joo. Dynamic Analysis of DamperSystem in Torque Converter[C]. SAE Paper,2007-01-3749.
    [26] Paul Otanez, Farzad Samie, Chunhao Joseph Lee, et al. Aggressive Torque ConverterClutch Slip Control and Driveline Torsional Velocity Measurements[C]. SAE Paper,2008-01-1584
    [27] Takahiro Ryu, Kenichiro Matsuzaki, Takashi Nakae, et al. A Study on Shudder inAutomatic Transmission Lock-up Clutch Systems and Its Countermeasures[C]. SAEPaper,2011-01-1509
    [28] Ryan J. Monroe, Steven W. Shaw. Nonlinear Transient Dynamics of PendulumTorsional Vibration Absorbers [C]. Proceedings of the ASME2011InternationalDesign Engineering Technical Conferences&Computers and Information inEngineering Conference, DETC2011-48353.
    [29]冉振亚,赵树恩,李玉玲.基于遗传算法的汽车离合器膜片弹簧优化设计[J].重庆大学学报(自然科学版),2003,26(9):77-81.
    [30]张卫波.汽车膜片弹簧离合器智能优化设计技术研究[J].中国工程机械学报,2007,(1):67-72.
    [31]丁原.汽车摩擦离合器扭转减震器特性研究与参数分析[D].长春理工大学,2009.
    [32]杨尧金.汽车摩擦离合器扭转振动特性分析与优化设计[D].长春理工大学,2009.
    [33]蒋小华.液力变矩器闭锁离合器滑摩控制研究[D].重庆大学,2004.
    [34]霍晓强,申岳国,刘琦,王勇.液力变矩器闭锁时机对传动系统动态特性影响的仿真研究[J].工程机械,2007,38:53-58.
    [35]孙文涛,陈慧岩等.液力变矩器闭锁过程控制技术研究[J].汽车工程,2009,31(8):761-765.
    [36]李春沛,陈慧岩等.重型车辆液力变矩器闭解锁控制技术的试验研究[J].汽车工程,2010,32(2):123-127.
    [37]徐安,乔向明,刘圣田.汽车自动变速器锁止离合器控制策略[J].汽车工程,2004,26(3):283-286.
    [38] Friedemann Jauch. Model-Based Application of a Slip-Controlled Converter Lock-UpClutch in Automatic Car Transmissions[C]. SAE Paper,1999-01-1057
    [39] R. Hibino, M. Osawa, M. Yamada, et al. H∞Control Design for Torque ConverterClutch Slip System[C]. Proceedings of the35thConference on Decision and Control,1996,1797-1802.
    [40] Hussein Dourra, Gurunath Kedar Dongarkar, Shady Elashhab, et al. Torque ConverterClutch Control using H∞Loop Shaping[C]. SAE Paper,2009-01-0954.
    [41] Kazutaka Adachi, Yoshimasa Ochi, Satoshi Segawa. Slip Control for a Lock-up Clutchwith a Robust Control Method[C]. SICE Annual Conference in Sapporo,2004,744-750.
    [42] Jo ko Deur, Jahan Asgari, Davor Hrovat, et al. Modeling and Analysis of AutomaticTransmission Engagement Dynamics-Linear Case [J]. Journal of Dynamic Systems,Measurement, and Control,2006,128:263-277.
    [43] Paul Otanez, Farzad Samie, Chunhao Joseph Lee, et al. Aggressive Torque ConverterClutch Slip Control and Driveline Torsional Velocity Measurements[C]. SAE Paper,2008-01-1584.
    [44] R. Hibino, M. Osawa, K. Kono, et al. Robust and Simplified Design of Slip ControlSystem for Torque Converter Lock-Up Clutch[J]. Journal of Dynamic Systems,Measurement, and Control,2009,131:011008-1-011008-10.
    [45] Yuji Katsumata, Satoshi Segawa, Kazutaka Adachi, et al. Development of a Slip SpeedControl System for a Lock-Up Clutch[C]. SAE Paper,2008-01-0001
    [46] D. Y. Lee, H. H. Ju, J. S. Rhee. Adaptive Anti-Shock Coasting Lock-Up Control of theTorque Converter Clutch[C]. Proceedings of World Academy of Science, Engineeringand Technology.2006,15:97-102.
    [47] Toru Ochi, Hiroaki Takeuchi, Hiromichi Kimura, et al. Development of a Super-FlatTorque Converter for the New Toyota FWD6-Speed Automatic Transaxle[C]. SAEPaper,2006-01-0149
    [48] Isamu Shinbori, Akio Muto, Hiroyuki Takeo, et al. High Efficiency6-speed AutomaticTransmission[C]. SAE Paper,2010-01-0858
    [49] Tejinder Singh, Richard Olenzek. General Motors Small Front Wheel Drive Six speedAutomatic Transmission Family[C]. SAE Paper,2010-01-0857.
    [50] Kumaraswamy Hebbale, Chunhao Lee, Farzad Samie et al. Model Based TorqueConverter Clutch Slip Control[C]. SAE Paper,2011-01-0396
    [51] Philip Severyn, Jeff Hemphill, Philip George, et al. Launch Devices for Turbo-ChargedEngines[C]. SAE Paper,2012-01-0811.
    [52]张泰,葛安林等.越野汽车机械自动变速闭锁与滑差液压控制系统动态特性研究[J].汽车技术,2007,(1):20-24.
    [53]谢硕,吴光强,周凡华,丁玉兰.液力变矩器滑摩离合器控制压力计算方法[J].汽车技术,2002,(4):1-4.
    [54]陈清洪,秦大同,叶心.闭锁离合器滑摩压力优化控制与仿真[J].系统仿真学报,2010,22(3):699-673.
    [55] Yunfeng Hu, Qifang Liu, Bingzhao Gao, et al. ADRC Based Clutch Slip Control forAutomatic Transmission[C].2011Chinese Control and Decision Conference (CCDC),2725-2730.
    [56] Bingzhao Gao, Hong Chen and Kazushi Sanada. Clutch Slip Control of AutomaticTransmission Using Backstepping Technique[C]. ICROS-SICE International JointConference2009,3015-3019.
    [57] Bingzhao Gao, Hong Chen. Clutch Slip Control of Automatic Transmission UsingNonlinear Method[C]. Joint48th IEEE Conference on Decision and Control and28thChinese Control Conference,2009,7651-7656.
    [58] Bingzhao Gao, Hong Chen. Clutch Slip Control of Automatic Transmissions: ANonlinear Feedforward-Feedback Design[C].2010IEEE International Conference onControl Applications Part of2010IEEE Multi-Conference on Systems and Control,884-889.
    [59] Paul. G. Otanez, Chunhao. J. Lee and Xu Chen. Torque Converter Clutch Low SlipSpeed Detection and Control[C]. Proceedings of the ASME2010Dynamic Systemsand Control Conference, DSCC2010-4184.
    [60]雷雨龙,葛安林,李永军.离合器起步过程的控制策略[J].汽车工程,2000,22(4):266-270.
    [61]孙冬野,秦大同.汽车离合器局部恒转速起步自动控制研究[J].机械工程学报,2003,39(11):108-112.
    [62]胡建军,李光辉,伍国强,秦大同.汽车起步过程离合器传递转矩精确计算分析[J].汽车工程,2008,30(12):1083-1086.
    [63]胡建军,秦大同,蒋小华.液力变矩器锁止离合器性能及滑差控制[J].重庆大学学报,2004,27(2):1-5.
    [64]王旭东,谢先平,吴晓刚,余腾伟.自动离合器起步模糊控制[J].农业机械学报,2008,39(12):18-22.
    [65]孙冬野,张学锋,张磊.基于目标油门开度预估的AMT汽车起步控制[J].内燃机,2012,(4):19-22.
    [66]夏晶晶,何仁等.基于分段控制的CVT湿式离合器起步控制策略[J].公路交通科技,2008,25(12):180-183.
    [67]何仁,刘文光,黄大星.不同道路负荷的AMT车辆起步过程离合器控制策略[J].江苏大学学报(自然科学版),2009,30(5):459-463.
    [68]刘洪波.基于人-车-环境识别的自适应档位决策方法研究[D].吉林大学,2012.
    [69]尚明利.TC+AMT滑差控制算法与硬件在环技术的研究[D].吉林大学,2008.
    [70] Kenji Maruo, Hideki Matsumoto and Tamotsu Fujii. High Energy Slipping FrictionMaterial for Torque Converter Clutch[C]. SAE Paper,2006-01-0152
    [71] Josef Girstmair, Philippe Albertini and Klaus Meitz. Improved Comfort Analysis andDrivability Assessment by the Use of an Extended Power Train Model for AutomaticTransmissions[C]. SAE Paper,2012-01-1529
    [72] Darrell Robinette, Michael Grimmer and Randall Beikmann. Dynamic TorqueCharacteristics of the Hydrodynamic Torque Converter[C]. SAE Paper,2011-01-1540
    [73] Hadi Adibi Asl, Nasser Lashgarian Azad and John McPhee. Math-Based Modeling andParametric Sensitivity Analysis of Torque Converter Performance Characteristics[C].SAE Paper,2011-01-0732
    [74] Joydeep Banerjee, Hadi Adibi asl, Nasser Lashgarian Azad, et al. ParametricImportance Analysis and Design Optimization of a Torque Converter Model UsingSensitivity Information[C]. SAE Paper,2012-01-0808
    [75] Norihiko Watanabe, Shinya Miyamoto, Masayuki Kuba, et al. The CFD Application forEfficient Designing in the Automotive Engineering[C]. SAE Paper,2003-01-1335
    [76] Chinwon Lee, Wookjin Jang and Jang Moo Lee. Three Dimensional Flow FieldSimulations to Estimate Performance of a Torque Converter[C]. SAE Paper,2000-01-1146
    [77] Chengwu Duan, Rajendra Singh. Stick-Slip Behavior of Torque Converter Clutch[C].SAE Paper,2005-01-2456
    [78]陈东升,项昌乐,刘辉.液力变矩器的动态特性和动力学模型研究[J].中国机械工程,2002,13(11):913-917.
    [79]才委,马文星,刘春宝等.基于三维流场计算的液力变矩器特性预测方法[J].哈尔滨工程大学学报,2007,28(3):316-319.
    [80]刘春宝,马文星,朱喜林.液力变矩器三维瞬态流场计算[J].机械工程学报,2010(14):161-166.
    [81] Jin-Hyuk Lee, Hoon Lee. Dynamic Simulation of Nonlinear Model-Based Observer forHydrodynamic Torque Converter System[C]. SAE Paper,2004-01-1228
    [82] Kyongsu Yi, Byung-Kwan Shin, Kyo-II Lee. Estimation of Turbine Torque ofAutomatic Transmissions Using Nonlinear Observers [J]. Journal of Dynamic Systems,Measurement, and Control,2000,122:276-283.
    [83]王颖颖.DCT汽车起步过程离合器热负荷仿真研究[D].重庆大学,2008.
    [84] M. L. Havilland, J. J. Rogers, E. D. Davison. Steady Temperatures and FractioningLubricated Clutches [C], SAE Paper, No.642B, Society of Automotive Engineers,1963.
    [85] M. W. Dundore, R. C. Sehnieder. Clutch Energy-A Criteria of Thermal Failure [C].SAE Paper No.680582, Society of Automotive Engineers,1968.
    [86] A. E. Anderson, R. A. Knapp, Hot Spotting in Automotive Friction System [J], Wear,1990,135:319-337.
    [87] D. A. Pacey. Modeling Heat Transfer in a Wet Clutch [D]. Ph. D. Dissertation,Engineering, Kansas State University,1989.
    [88] D. A. Pacey, R. O. Turnquist. Modeling Heat Transfer in a Wet Clutch [C].SAE901655.
    [89] S. Natsumeda, T. Miyoshi. Numerical Simulation of Engagement of Paper Based WetClutch Facing [J], Journal of tribology,1994,116(22):232-237.
    [90] Parviz Payvar. Laminar Heat Transfer in the Oil Groove of a Wet Clutch [J]. Heat MassTransfer,1991,34(7):1791-1798.
    [91] M. Volardocchia, E. Amisano, R. Flora. A Linear Thermal Model for an AutomotiveClutch [C]. SAE Paper,2000-01-0834.
    [92]常颖,崔岸,张军等.离合器摩擦过程中的温度研究[J].机械科学与技术,1998,17(5):835-837.
    [93]周建钊,高亚明.主离合器摩擦片温度场的数值解法[J].解放军理工大学学报(自然科学版),2003,4(l):58-62.
    [94]林腾蛟,李润方,杨成云等.湿式摩擦离合器瞬态热传导过程数值仿真[J].机械科学与技术,2003,22(l):39-41.
    [95]霍晓强,刘安.湿式换档离合器摩擦副瞬态温度场的仿真研究[J].工程机械,2006(3):23-27.
    [96]蔡丹,魏宸官,宋文悦.离合器片表面温度的测量与表面应力的计算[J].车辆与动力技术,2004(4)7-11.
    [97]蔡丹.传动装置摩擦元件热容量设计研究[D].北京:北京理工大学,2001.
    [98]庄光山,王成国,王海庆等.盘形制动摩擦表面温升研究[J].机械工程学报,2003,39(2):150-154.
    [99]冯永忠.大众车系09G自动变速器维修图册[M].北京:机械工业出版社,2009.
    [100] B. Vandenplas, K. Gotoh, S. Dutre. Predictive Analysis for Engine/DrivelineTorsional Vibration in Vehicle Conditions Using Large Scale Multi Body Model[C].SAE Paper,2003-01-1726
    [101] Darrell Robinette, Michael Grimmer, Jeremy Horgan, et al. Torque Converter ClutchOptimization: Improving Fuel Economy and Reducing Noise and Vibration[C]. SAEPaper,2011-01-0146
    [102] Kwang-Joong Kim, Cheol Kim. Vibration Characteristics and Topology Optimizationof a Double Damper Lock-Up Clutch in a Torque Converter System[C]. KSME,2010,1129-1136.
    [103]顾福勇.离合器接合过程中的汽车传动系扭转振动研究[D].合肥工业大学,2006.
    [104]李道永.6Sigma在混凝土质量改善中的应用研究[D].江苏科技大学,2009.
    [105]张建国.双离合器式自动变速器控制品质评价与优化[D].吉林大学,2011.
    [106]雷雨龙,葛安林,李永军.离合器起步工程的控制策略[J].汽车工程,2000,22(4):266-270.
    [107]孙东野,秦大同.汽车离合器局部恒转速起步自动控制研究[J].机械工程学报,2003,39(11):108-111.
    [108]陈清洪,秦大同,叶心.闭锁离合器滑摩压力优化控制与仿真[J].系统仿真学报,2010,22(3):699-703
    [109] Masaaki Yamaguchi, Mitsurou Ootaki, Keisuke Ito, et al. Torque Converter-type HighFuel Economy CVT for Small Passenger Vehicles[C]. SAE Paper,2009-01-1541
    [110] Hirofumi Ota, Kazutoshi Nozaki, Atsushi Honda, et al. Toyota's World First8-SpeedAutomatic Transmission for Passenger Cars[C]. SAE Paper,2007-01-1101
    [111] Jinwu Gao, Zhiyuan Liu. Integrated Powertrain Control of Gearshift for AutomaticTransmission [C].2010First International Conference on Pervasive Computing,Signal Processing and Applications,2010,239-242.
    [112] Bin Yang, Li Keqiang and Feng Nenglian. Feedback Linearization Tracking Controlof Vehicle Longitudinal Acceleration Under Low-Speed Conditions [J]. Journal ofDynamic Systems, Measurement, and Control,2008,130(051007).
    [113] Jyunichi Doi, Toshihisa Marusue, Tokimori Saka, et al. New MAZDASKYACTIV-Drive Automatic Transmission [M]. Mazda Motor Corporation
    [114] Chunhao J. Lee, Kumar Hebbale and Shushan Bai. Control of a Friction LaunchAutomatic Transmission Using a range Clutch [C]. Proceedings of IMECE20062006ASME International Mechanical Engineering Congress and Exposition,IMECE2006-16274.
    [115]苟武侯.基于统计假设检验的管道泄漏检测与定位方法研究[D].北京化工大学,2010.
    [116]胡安平.基于AMESim-Simulink联合仿真的再生制动系统研究[D].吉林大学,2008.
    [117]张海涛,郭百巍,黎海清等.基于遗传算法的小型旋转弹控制器参数优化[J].系统仿真学报,2009,22(2):75-78.
    [118] Firoz Ali Jafri, Amit Shukla and David F. Thompson. A numerical bifurcation studyof friction effects in a slip-controlled torque converter clutch [J]. Nonlinear Dynamics,2007,50(3):627-638.
    [119] Muddassar Piracha, Umer Sohail. System Simulation of Mechatronic Clutch inAutomatic Transmission Drivelines [D]. G teborg Sweden, Chalmers University ofTechnology,2011.
    [120] Takeshi Yamaguchi, Shogo Ikeda, Sho Yamakawa, et al. Flow Field Analysis arounda Lockup Clutch inside a Torque Converter[C]. Proceedings of theASME-JSME-KSME2011Joint Fluids Engineering Conference, AJK2011-22058.
    [121] Takeshi Yamaguchi, Kazuhiro Tanaka. Transient Flow Field Analysis around aLockup Clutch inside a Torque Converter[C]. SAE Paper,2012-01-2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700