用户名: 密码: 验证码:
高强度高导电铜—铬—锆合金的设计、制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着电子、电力等行业的迅猛发展,相关企业对铜合金的强度和导电性能提出了更高的要求,但是我国研发生产的高强度高导电铜合金的性能与国外存在巨大差距,因此如何获得高强度高导电铜合金成为当前铜合金研究与开发的首要任务。铜-铬-锆系合金是目前最具有潜力满足高强度高导电需求的铜合金材料。
     本文运用正交设计的方法对高强度高导电铜-铬-锆合金成分进行了优化设计,围绕铜-铬-锆合金的高强度高导电性能进行了系统研究,首先,研究了铜-铬-锆合金的制备技术,以及中间合金的制备方法;其次,探讨了铜-铬-锆合金力学性能、导电性能与固溶、变形、时效工艺的关系及铜-铬-锆合金的组织结构演变过程;进一步提出了低温快速变形处理合金的方法,并分析了低温快速变形对铜-铬-锆合金性能的影响;另外,针对加工过程中出现的残余应力问题,探讨了消除和控制残余应力的工艺;最后,针对所研究合金材料的具体焊接使用过程中可能存在问题和具体温度场分布情况等进行模拟研究。有关研究内容、实验结果和结论如下:
     (1)通过理论计算设计了合金的成分区间,运用正交设计的方法优化了合金的成分;研究了中间合金的制备方法、合金熔炼工艺、浇铸工艺,并研究了合金后续处理工艺包括扩散退火工艺、热轧变形量、在线固溶处理工艺、时效工艺;随后介绍了合金组织和性能的表征手段和设备;结合对熔炼获得的合金的导电性能和抗拉强度的测试结果进行了正交实验分析,提出最佳的合金成分配比方案为Cu-1.4Cr-0.12Zr。
     (2)研究了固溶、变形和时效工艺对合金抗拉强度和导电率等性能的影响,用正交实验法探讨了高强度高导电铜-铬-锆合金的固溶、变形和时效工艺的最佳参数。结果表明:固溶温度对合金的导电性能的影响最大,但固溶强化作用对合金抗拉强度的影响比较小;轧制形变量的增大对合金导电性能的影响不大;时效温度与时效时间的增加有助于合金导电性能的回复,但时效再结晶所导致的织构度减小会大大降低合金的抗拉强度;合金的最优处理工艺为920℃固溶处理+80%轧制变形+450℃时效处理1h。所得的Cu-1.4Cr-0.12Zr的导电率为87.05IACS%,抗拉强度为559.86MPa,延伸率为9.02%。
     (3)使用金相显微镜、SEM、XRD、TEM等手段,对合金不同状态的组织结构进行了表征,探讨了高强度高导电铜-铬-锆合金的组织演变的过程。结果表明:在1180±30℃熔铸温度下铜-铬-锆合金的铸态显微组织较为弥散、均匀,为后续的热处理和加工提供良好的组织准备;合金在950℃固溶1h水冷的固溶效果较好,在450℃时效时,已出现再结晶现象,时效时间过长或时效温度过高会使再结晶形核进一步扩展,这与第三章的分析结果一致;随着扩散退火、固溶、时效工艺的进行,铜-铬-锆合金析出相依此由CuZr_2H_x析出相→CuZr_2析出相→Cu5Zr析出相演变,最终形成弥散、均匀的Cu5Zr析出相,这种变化将在合金基体中产生了更多的强化相支点,有利于合金的强化。
     (4)首次提出低温快速变形处理铜-铬-锆合金的方法,分析了不同温度和不同变形量对低温快速变形处理后合金性能的影响,讨论了合金的微观结构与合金性能变化的关系,并对低温快速变形后合金的微观结构进行了讨论。结果表明:对合金进行低温快速变形可以实现孪生强化的效果;随着变形量的增加,铜-铬-锆合金晶粒位相差减小,以小角度晶界为主;低温快速变形处理后,铜-铬-锆合金织构类型由{110}<112>转变为{110}<001>型和{110}<001>型织构,金相观察和TEM观察均表明在合金基体中产生了大量的孪晶,同时合金导电率下降较少,强度获得了一定的提升,有利于获得导电性能与强度都比较好的合金。
     (5)结合铜带材处理工艺过程中合金板带产生残余应力的问题,利用XRD研究不同状态和不同退火时间下铜-铬-锆合金的应力情况,研究了铜-铬-锆合金的残余应力消除及控制技术。
     (6)采用有限元模的方法对铜-铬-锆合金材料的焊接工艺进行了探索,利用ANSYS软件对合金平板焊接过程的三维动态温度场、应力场进行了数值模拟,研究了合金温度场变化规律和熔池形状,以及焊接过程中不同时刻的应力变化规律和残余应力的分布规律,重点分析了焊缝中心线上的纵向应力。结果表明:焊接开始到5s时合金板材温差较大;焊接完毕10s后整个板材温度趋于一致,且温差控制在10℃内;80s后温差控制在1℃内,并且冷却过程中越接近室温,冷却速度越慢。焊接过程中,靠近焊缝一侧高温区受到纵向热压力作用,而在远离焊缝一侧受到纵向热拉应力的作用;焊接完毕,板料自然冷却,在近焊缝区段产生拉应力,在稍远区段产生压应力。这一研究成果对铜-铬-锆合金材料焊接工艺的优化具有重要指导意义。
Up-to-date, the production and consumption of copper and its alloys in China is the largest allaround the world. There is a significant demand of high-performance copper alloys for thedevelopment of electronics, power industry and so on. Nowadays, the overproduction of low-gradecopper alloy products results in the abnormal competition in domestic markets. Compared withGermany, the United States, Japan and other developed countries, there is still a large disparity onthe scientific research and industrial production of high-performance copper alloys. Now all theabove situations have been a serious threat to the survival of the copper industry, as well as a seriousimpediment to the development of many other related industries. Therefore, research anddevelopment of high-performance copper alloys has become the primary task for the domesticcopper industry. In order to overcome this obstacle, this thesis focused on the research ofhigh-strength and high conductivity copper-chromium-zirconium alloys.
     In this thesis, orthogonal design method was adopted for the composition design of high-strengthand high-conductivity copper-chromium-zirconium alloys. The mechanical performance andelectrical conductivity of the high-strength and high-conductivity copper-chromium-zirconiumalloys were firstly systematically studied. Several preparation techniques were explored for thepreparation process of copper-chromium-zirconium alloys and master alloys. Relationships betweenmechanical properties, electrical properties and processing parameters were investigated. The phasetransition process was also characterized. Fast deformation treatment with ultra-low temperature wasdeveloped during the experiments, which proved to influence significantly on the mechanical andelectrical properties of the as-prepared copper alloys. Finite element simulation was finallyintroduced for the residual stress reduction and control technology during the production process andwelding process of copper-chromium-zirconium alloys. The main results are as follows.
     (1) With theoretical calculation, the composition range of copper-chromium-zirconium alloys wasdeveloped through orthogonal design method. And we selected9kinds of composition ratio for thefollowing experiments. Master alloys were introduced in our experiment and then melt together withthe copper matrix in the vacuum induction melting furnace. The final state performance of theas-designed9kinds of alloys were characterized and orthogonally analyzed. The best of the alloycomposition components should be Cu-1.4Cr-0.12Zr.
     (2) Solid solution treatment, deformation and aging process were carried out for the as-preparedcopper alloys. And the best parameters of solid solution, deformation and aging process wereobtained. The solution temperature had a serious influence on the conductivity of copper alloys. Butthe strengthening effect of solid solution on the tensile strength of the alloys was relatively small.The rolling deformation presented a slight influence on the conductive properties of the copperalloys. The increase of aging temperature and aging time was benefit for the alloy conductivity,which would simultaneously reduce the tensile strength of the alloys. The optimal treatment processwas done with solution treatment at920℃, rolling deformation percent80%and aging time onehour at450℃. After the best-choice treatment, the electrical conductivity87.05IACS%。 Thetensile strength and elongation ratio were559.86MPa and9.02%, separately.
     (3) The phase evolution process of high-strength an high-conductivity was characterized bymetallurgical microscopy, SEM, XRD and TEM. The microstructures and properties of alloys withdifferent state were also characterized for the investigation of phase transition during thedeformation and annealing process. The results indicated that the microstructure of Cu-Cr-Zr alloyswas dispersed distributed uniformly smelt at1180±30℃, which was beneficial to the following heat treatment and process. In addition, better properties of alloys were achieved after solid solutiontreatment at950℃and then quench in water for1h. When aging at450℃, recrystallizationappeared and the nuclei further expanded with long aging time or high aging temperature, which wasin accordance with the results in Chapter3. After successive diffusion annealing treatment,solidsolution treatment and aging treatment, phase evolution of precipitates was obtained in turn CuZr_2H_x→CuZr_2→Cu5Zr in the aforementioned treatment. And finally, dispersively and uniformlydistributed precipitate Cu5Zr was achieved, this provided more reinforced phase in the copper matrix,which was in favor of getting alloy with high strength.
     (4) Low temperature and fast deformation processing was employed to investigate treatment andproperties of Cu-Cr-Zr alloys. Relationship between microstructure and properties of alloys wasstudied and the microstructure change after low temperature and fast deformation was also discussed.The results presented that twin strengthening was an effective approach to enhance the strength ofalloys,meanwhile, it was not harmful to the conductivity of alloys. With the increase of deformationamount,phase difference of grain in the Cu-Cr-Zr alloy decreased dominated by small-angle grainboundaries. The textures transformed from {110}<112> to {110}<001> and {110}<011> after lowtemperature fast deformation. Metallurgical microscopy and TEM observation suggested that therewere a great amount of twins in the alloy matrix, although the conductivity of the alloy decreasedslightly, the strength of the alloy improved a lot.This was beneficial to get alloys with goodconductivity and strength.
     (5) We described the reduction of residual stress and control technology of the copper strips basedon the problems encountered in the production process in Tongling Nonferrous Metals JinweiCopper Co., Ltd. Through the strict control of the quality of the manufacturing process, includingequipment cleaning, liquid reagent concentration and process parameters of the trial, surface qualitycould be achieved with no scratches, oxidation, stains and other defects. The surface roughnessvalues were0.1μm-0.2μm, which could meet surface requirements of the high-precision frame stripalloys.
     (6) Finite element simulation was conducted for the welding process ofcopper-chromium-zirconium alloys. The thermal parameters of welding process were taken intoaccount as non-linear relationships. The three-dimensional dynamic temperature field and stress fieldof welding process were simulated using ANSYS software. The temperature field and melting poolshape were studied with different stress variation and residual stress distribution during the weldingprocess. The longitudinal stress along the center of the weld line was stressed during our experiment.The results showed that there was obvious temperature difference on the welding plate for thestarting5seconds. When the welding was completed, the plate temperature became the same onlyafter10seconds.80seconds later, the temperature variation was only1℃. The closer to roomtemperature, the slower cooling process was. During the welding process, there was longitudinalthermal pressure for the high-temperature region close to the weld side; and there was thermaltensile stress for the other side away from the weld line. After welding treatment with self cooling,there was always tensile stress near the weld zone and compressive stress a little far from the weldzone.
引文
[1]国际铜业协会.铜应用的技术路线图[M].美国纽约:国际铜业协会,2007.
    [2]邓鉴棋.大塑性变形制备Cu-Cr-Zr原位形变复合材料及其性能研究[D].华东理工大学,2010.
    [3]陈小波.高强高导电Cu-Cr-Zr合金的组织与性能研究[D].中南大学,2008.
    [4]杨春秀,郭富安,慕思国,曹兴民,朱雯,向朝建.引线框架用Cu-Cr-Zr合金的研究现状[J].金属功能材料,2006,03:24-28.
    [5]傅声华.引线框架用Cu-Cr-Zr-Mg合金的加工工艺与性能研究[D].江西理工大学,2009.
    [6]陈九磅.高强高导铜合金材料的研究与应用[A].安徽省科学技术协会.2008年安徽省科协年会机械工程分年会论文集[C].安徽省科学技术协会:,2008:8.
    [7]赵冬梅.高强高导Cu-Ni-Si合金时效相变规律及强化机制研究[D].西安:西安交通大学,2003.
    [8]陆峰.不同双级时效制度下Cu-Cr-Zr-Mg合金性能的研究[D].江西理工大学,2009.
    [9]董琦祎.低浓度Cu-Ni-Si合金的组织及性能研究[D].中南大学,2010.
    [10]刘凯.C194合金带材加工性能研究[D].江西理工大学,2007.
    [11]苏娟华.大规模集成电路用高强度高导电引线框架铜合金研究[D].西北工业大学,2006.
    [12]汪黎,孙扬善,薛烽.我国引线框架铜基材料的市场需求与国产化策略[J].世界有色金属,2004,08:16-18.
    [13]李忠良.年产10万吨高精度铜板带生产线可行性研究[D].中南大学,2005.
    [14]丰振军,杜忠泽,王庆娟.高强高导Cu-Cr-Zr系合金的研究进展[J].热加工工艺,2008,08:86-89.
    [15]刘凯,柳瑞清,谢春晓.C194铜合金的强化机制概述[J].热处理,2007,01:24-28.
    [16]赵谢群.引线框架铜合金材料研究及开发进展[J].稀有金属,2003,06:777-781.
    [17]龚冰,王延辉,李冰.基于连续挤压的黄铜合金热变形行为研究[J].热加工工艺,2008,06:25-26.
    [18]陈建伟. N18锆合金板材加工过程中微观组织及织构演变的定量研究[D].重庆大学,2012.
    [19]石凤健,汪建敏,许晓静. ECAP法制备超细晶铜的再结晶行为研究[J].热加工工艺,2005,12:24-26.
    [20]周海涛,钟建伟,周啸,赵仲恺,李庆波.多级形变时效对Cu-Cr-Zr合金组织和性能的影响[J].材料热处理学报,2009,03:141-145.
    [21]白素琴.金属学及其热处理[M].冶金工业出版社.2009.
    [22]廖素三,尹志民,蒋牵,姜锋,宋练鹏,汪明朴.热处理对Cu-Cr(-Zr)合金力学性能和导电性能的影响[J].中国有色金属学报,2000,05:684-687.
    [23]向文永,陈小祝,匡同春,成晓玲,钟秋生,刘国洪.集成电路用引线框架材料的研究现状与趋势[J].材料导报,2006,03:122-125.
    [24]李晓峰.高速电气化列车高强高导接触线用Cu-Cr-Zr合金组织和性能[D].浙江大学,2011.
    [25]杨如增.金属材料及工艺学[M].同济大学出版社.2006.
    [26] Su JH., Dong QM., Liu P. Research on aging precipitation in a Cu-Cr-Zr-Mg alloy[J].MATERIALS SCIENCE AND ENGINEERING.2005,2(392):422-426.
    [27]陈晓芳,许彪,张萌.稀土元素对铜合金显微组织的影响[J].南昌大学学报(理科版),2003,01:33-36.
    [28]吴燕华. Cu-Ni-Cr合金组织与性能研究[D].中南大学.2007.
    [29]郑雁军,姚家鑫,等.高强高导电铜合金的研究现状及展望[J].材料导报,1997,11(6):52-55.
    [30] Kin Chang Joo. Effect of element Cr on the conductivity of Cu-Cr alloy[J]. Mater. Por. Manu.Sci.1994,2(3):325.
    [31]许崇龙. Cu-Zn-Cr合金性能机理研究[D].合肥工业大学,2007.
    [32]陈一胜,韩宝军.高强高导铜合金的研究进展[J].南方冶金学院学报,2004,25(2):17-21.
    [33]苏亚军,刘新华,吴永福,黄海友,谢建新,王连忠,董晓文.水平连铸直接复合成形铜包铝复合材料的组织与性能[J].特种铸造及有色合金,2011,09:785-790.
    [34] Ellis DL, Michal GM. Precipitation strengthened high strength, high conductivity Cu-Cr-Nballoys produced by chill block melt spinning [R]. NASA Contractor report185144,1989.
    [35] Humphreys FJ, Ramaswamy V. Stability of orowan loops in a two-phase nickel alloy [C].Proceeding International Conference on High Voltage Electron Microscopy3rd Meeting,1974:268-272.
    [36] Harkness SD, Hren JJ. Aninvestigation of strengthening by spherical coherent G.P. Zones [J].Metall Trans,1970,1:43-49.
    [37] Hartmann K, Gerold V. Work-hardening of fcc Single crystals containing coherent Particles [J].Mater Sci Eng,1972,10(1):63-66.
    [38] Kovacs I, Lendvai J, Ungar T, et al. The properties of an aluminum-zincmagnesium alloydefomation strengthened by Guinier-Preston zones [J]. Acta Metall,1977,25:673-680.
    [39] Glazer J, Morris JW. Strengthening contributions of strong ordered precipitates [J]. Philos Mag,1987,56(4):507-515.
    [40] Noble B, Harris SJ, Dinsdale K. Yield characteristics of aluminum-lithium alloys [J]. MetalsScience,1982,16:425-430.
    [41] Gerold V, Haberkorn H. Critical resolved shear stress of solid solutions containing coherentprecipitates [J]. Phys Status Solidi,1966,16(2):675-684.
    [42] Ashby MF. Oxide dispersion strengthening [C].New York: AIME Conference Proceeding,1966:143.
    [43]夏承东.引线框架用Cu-Cr-Zr系合金的制备及其相和相变规律研究[D].中南大学,2012.
    [44]李佩琏,郭雅生.关于电子论对金属导电的解释[J].河北大学学报(自然科学版),1982,01:81-86.
    [45]师阿维.稀土Y对C194合金组织及性能影响的研究[D].江西理工大学,2008.
    [46] Sedstrhm E, Peltier Effect. Thermal and electrical conductivities of some solid metallicsolutions [J]. Ann Phys,1919,59:4-144.
    [47] Matthiessen A, Vogt G. The electrical resistivity of alloys [J]. Ann Phys Chern,1864,122:19-31.
    [48]刘平,田保红,赵冬梅.铜合金功能材料[M].北京:科学出版社,2004:1-10.
    [49] Pawlek F, Reichel K. The influence of additives on the electrical conductivity of copper (inGerman.)[J]. Z Metall,1956,47:347-356.
    [50]夏承东,汪明朴,徐根应,等.形变热处理对低浓度CuCr合金性能的影响[J].功能材料,2011,42(5):872-876.
    [51]向文永.引线框架用Cu-Fe-P合金轧制与热处理工艺的研究[D].广东工业大学,2006.
    [52]黄金亮,叶权华,刘平,刘勇,田保红.用导电率研究Cu-Cr-Zr-Y合金的相变动力学[J].材料热处理学报,2006,02:132-136.
    [53]王碧文.大规模集成电路引线框架材料发展动向及对策[J].有色金属,1997,03:96-100.
    [54]龙乐. IC封装用铜合金引线框架及材料[J].电子与封装,2003,05:33-37.
    [55]谢水生,吴予才,黄国杰.浅谈高速列车接触导线的研究开发[J].有色金属加工,2011,01:11-13.
    [56]张生龙. Cu-Cr-Zr和Cu-Zn-Cr-Zr合金时效特性研究[D].中南大学,2002.
    [57]付会敏,赵文辉,黄英彪,汪王宣.高强高导CrZrCu合金结晶器的研制[J].铸造技术,2002,04:230-232.
    [58]曹钧力.高强高导Cu-Cr-Zr-RE合金成分组织性能研究[D].合肥工业大学,2012.
    [59]刘森.简明焊工技术手册[M].金盾出版社,2006.
    [60]张兴元. Al_2O_3/Cu表面复合层制备工艺及性能研究[D].辽宁工程技术大学,2005.
    [61]吴彦卿,蔡敬音. DH_2-1型铬锆铜电极合金[J].焊接学报,1985,03:43-48.
    [62]郝士明.材料设计的热力学解析[M].化工工业出版社,2010.
    [63] Gao N, Tiainen T, Ji Y. Influence of thennomechanical processing on the Microstructure andProperties of a Cu-Cr-P Alloy [J]. J Mater Eng Perform,2002,11:376-383.
    [64] Mu SG, Guo FA, Tang YQ, et al. Study on microstructure and properties of agedCu-Cr-Zr-Mg-RE alloy [J]. Mater Sci Eng A,2008,475:235-240.
    [65]小林正男,岩村卓郎,泉田益弘.高強度.高伝導性リ-ドフレ-ム用銅合金OMCL-1[J].日本伸銅協会伸銅技術研究会誌,1988,27:45-51.
    [66]掘茂德,藤谷涉,董志力. Cu-Zr系合金の加工熱処理[J].日本伸銅協会伸銅技術研究会誌,1990,29:160-168.
    [67] Singh RP, Lawley A, Friedman S, et al. Microstructure and properties of spray cast Cu-Zr alloys[J]. Mater Sci Eng A,1991,145:243-255.
    [68] Suzuki H, Kanno M, Kitano H. High-temperature embrittleness of Cu-Cr alloy [J]. J JpnInstMet,1970,34(5):497-501.
    [69] Batawi E, Morris DG, Morris MA. Effect of small alloying additions on behaviour of rapidlysolidified Cu-Cr alloys [J].Mater Sci Technol,1990,6(9):892-899.
    [70] Tang NY, Taplin DMR, Dunlop GL. Precipitation and aging in high conductivity Cu-Cr alloyswith additions of zirconium and magnesium [J]. Mater Sci Technol,1985,1:270-275.
    [71] Misra RDK, Prasad VS, Rao PR. Dynamic embrittlement in an agehardenablecopper-chromium alloy [J]. Scr Mater,1996,35(1):129-133.
    [72] Suzuki H, Kanno M, Kawakatsu I. Strength of Cu-Zr-Cr alloy relating to the aged structures [J].J Jpn Inst Met,1969,33(5):628-633.
    [73] Su JH, Dong QM, Liu P, et al. Research on aging precipitation in a Cu-Cr-ZrMg alloy [J].Mater Sci Eng A,2005,392:422-426.
    [74] Huang F, Ning H, Cao Y, et al. Precipitation in Cu-Ni-Si-Zn alloy for lead frame [J]. Mater Lett,2003,57:2135-2139.
    [75] Zeng KJ, Hamalainen M. A theoretical study of the phase equilibria in the Cu-Cr-Zr system [J].J Alloys Compd,1995,220:53-61.
    [76] Zeng KJ, Hamalainen M, Lilius K. Phase relationships in Cu-rich comer of the Cu-Cr-Zr phasediagram [J]. Scr Metall Mater,1995,(95):2009-2014.
    [77] Holzwarth U, Stamm H. The precipitation behaviour of ITER-grade Cu-Cr-Zr alloy aftersimulating the thermal cycle of hot isostatic pressing [J]. J Nucl Mater,2000,279:31-45.
    [78] Correia JB, Davies HA, Sellars CM. Strengthening hardened in rapidly solidified Cu-Cr andCu-Cr-Zr alloys [J]. Acta Mater,1997,45(1):177-190.
    [79] KnightsRW, Wilkes P. Precipitation of chromium in copper and copper-nickel base alloys [J].Metall Trans,1973,4:2389-2393.
    [80] Stobrawa J, Ciura L, Rdzawski Z. Rapidly solidified strips of Cu-Cr alloys [J]. Acta Mater,1996,34(96):1759-1763.
    [81] Rdzawski Z, Stobrawa J. Structure of coherent chromium precipitates aged copper alloys [J].Scr Metall,1986,20(3):341-344.
    [82] Komem Y, Zek JRE, Technion T. Precipitation at coherency loss in Cu-0.35wt pct Cr [J].Metall Trans,1974,6:1974-1976.
    [83] Fujii T, Nakazawa H, Kato M, et al. Crystallography and morphology of nanosized Cr Particlesin Cu-O.2%Cr alloy [J]. Acta Mater,2000,48:1033-1045.
    [84] Luo CP, Dahmen U, Westmacott KH. Morphology and crystallography of Cr precipitation in aCu-0.33%Cr alloy[J]. Acta Metall Mater,1994,42(6):1923-1932.
    [85] Dahmen U. Orientation relationship in precipitation systems [J].Acta Mater,1982,30:63-73.
    [86] Luo CP, Dahmen U. Interface structure of faceted lath-shaped Cr precipitation in aCu-0.3wt%Cr alloy [J]. Acta Metall,1998,46(6):2063-2081.
    [87] Hall MG, Aaronson HI, Kinsma, KR, et al. The structure of nearly coherent fcc:bcc boundariesin a Cu-Cr alloy[J]. Surf Sci,1972,31:257-274.
    [88] Hall MG, Aaronson HI, Lorimer GW. Considerations on a martensietic mechanism for the fcc→bcc transformation in a Cu-0.33Cr alloy [J]. Scr Metall,1975,9:533-542.
    [89] Batra IS, Dey GK, Kulkarni UD, et al. Precipitation in a Cu-Cr-Zr alloy [J]. Mater Sci Eng A,2002,356:32-36.
    [90] Batra IS, Dey GK, Kulkarni UD, et al. Microstructure and properties of a Cu-Cr-Zr alloy [J]. JNucl Mater,2001,299:91-100.
    [91] Zhou HT, Zhong JW, Zhou X, et al. Microstructure and properties of Cu-1.0Cr一0.2Zr-0.03Fealloy [J]. Mater Sci Eng A,2008,498:225-230.
    [92]齐卫笑.低溶质Cu-Cr-Zr合金的微结构和性能[D].浙江大学,2002.
    [93]刘勇.接触线用稀土微合金化高强高导Cu-Cr-Zr合金时效析出特性研究[D].西安理工大学,2007.
    [94]刘平,康布熙,曹兴国,等.快速凝固Cu-Cr合金时效析出的共格强化效应[J].金属学报,1999,35(6):561-564
    [95]杨浩,陈江华,胡特. CuCrZr合金时效析出相的研究[J].电子显微学报,2010,29(4):317-321.
    [96]尹忠民,姜锋,蒋牵,徐国富,张生龙,宋练鹏,汪明朴.时效处理对高强高导铜合金组织性能的影响[C].2000年中国材料研讨会论文集,2000:4.
    [97]李周,汪明朴,谭望,郭明星.机械合金化和粉末冶金法制备纳米弥散强化铜基形状记忆合金[C].第五届海峡两岸粉末冶金技术研讨会论文集[C],2004:4.
    [98] Szablewski J, Haimann R. Influence of thermo-mechanical treatment on electrical properties ofa Cu-Cr alloy [J]. Materials Science and Technology,1985,1(12):1053.
    [99]赵冬梅,董企铭,刘平,等.高强高导铜合金合金化机理[J].中国有色金属学报.2011,11(S2):21-24.
    [100]陆德平.高强高导电铜合金研究[D].上海交通大学,2007.
    [101]张十庆,聂尊誉,王宏,李方,刘庆宾,丁渝红,洛文波.Cu-7Ni-0.75Al-1.5Cr成分设计及热处理组织分析[J].功能材料,2011,(07):1189-1192.
    [102]操振华,王文芳,吴玉程,许少凡,王成福.石墨和铜的含量对银基复合材料组织和性能的影响[J].宇航材料工艺,2006,(06):36-38.
    [103]王文芳,吴玉程,郑玉春,王学伦,王德宝.铜-纳米金属氧化物复合镀层的制备及组织性能研究[J].稀有金属,2004,(02):301-303.
    [104]李华清.高强高导Cu-Cr-Zr的制备与加工研究[D].北京有色金属研究院,2006.
    [105]黄伯云,李成功,等.有色金属材料手册[M].北京:化学工业出版社,2009.
    [106]山根寿己.高强度高传导性铜合金设计の基础[J].伸銅技術研究会誌,1990,29:13-17.
    [107]唐仁政,田荣璋.二元合金相图及中间相晶体结构[M].长沙:中南大学出版社,2008.
    [108]黄福祥,李春天,王振林,黄晓,Cu-Cr-Zr合金的铸态组织分析[J],铸造,2008,57(2):56-62.
    [109] Raabe D, MiyakeK, Takahara H. Processing, microstructure, and ProPerties of ternaryhigh-strength Cu-Cr-Ag in situ composites [J]. Materials Scienee and Engineering A.2000,291:186-197.
    [110] Raabe D, GeJ. Experimental study on the thermal stability of Cr filaments in a Cu-Cr-Agin situ composites [J]. Scripta Materialia.2004,51:915-920.
    [111] Song J S, Hong S J. Strength and electrical conductivity of Cu-9Cr-l.2Co filamentarymicrocomposite wires [J]. Joumal of Materials Proeessing Teehnology.2000,311:265-269.
    [112] Jacob K T, Fitzner K. The estimation of the thermodynamic properties of ternary alloysfrom binary data using the shortest distance composition path [J]. Thermochimica Acta.1977,18:197-206.
    [113] Zeng K J, Hamalainen M, Lilius K. Phase relationships in Cu-rich corner of the Cu-Cr-Zrphase diagram [J]. Scripta Metallurgica et Materialia.1995,32:2009-2014.
    [114] Zeng K J, Hamalainen M, Lilius K. A new thermodynamic description of the Cu-Zr system[J]. Journal of Phase Equilibria.1994,15:577-586.
    [115]王东锋,汪定江,潘庆军,康布熙,刘平. Cu-3.2Ni-0.75Si-0.30Zn合金强化相的析出行为分析[J].金属热处理,2006,01:43-45.
    [116]刘平,康布熙,曹兴国,黄金亮,顾海澄. Zr和Mg对快速凝固Cu-Cr合金时效析出过程的影响[J].金属热处理学报,1999,02:48-52.
    [117]胥锴,邱正来.稀土对铜及铜合金的影响[J].南方金属,2008,04:15-18.
    [118]徐高磊,林木法,邓江文.稀土在铜及其合金中的作用和应用[J].上海有色金属,2008,02:59-62.
    [119]刘勇,刘平,康布熙,田保红,李伟.微量Ce对Cu-Cr-Zr合金性能的影响[J].稀土,2006,03:16-19.
    [120]郑子樵.材料科学基础[M].长沙:中南大学出版社,2005.
    [121]董志力,唐祥云,堀茂德,藤谷涉. Cu-Zr和Cu-Zr-Si的时效析出特性及冷变形对时效析出的影响[J].金属学报,1989,06:78-81.
    [122]廖乐杰,何福忠.稀土在铜及铜合金中的作用及其应用效果[J].特种铸造及有色金属.1997(2):52-53.
    [123] Kawakatsu I, Suzuki H, Kitano H. Properties of high zirconium Cu-Zr-Cr alloys and theirisothermal diagram of the copper comer [J]. J Japan Inst Metals,967,31(11):1253-1257.
    [124]姜伟. Cu-Cr-Zr合金固溶时效后性能与组织研究[D].合肥工业大学,2009.
    [125]刘芳.深冷处理对铜合金、锌合金组织与性能的影响[D].导师:陈振华.湖南大学,2009.
    [126]李旭.深冷处理对铬锆铜点焊电极性能的影响[D].导师:张忠典.哈尔滨工业大学,2006.
    [127]段文燕.深冷处理对铜基多元合金电导率的影响[J].热加工工艺,2012,(20):173-174.
    [128]赵洪彩,胡寒光.深冷电极在汽车上的应用研究[J].汽车科技,1995,(01):17-21.
    [129]马国芝,陈鼎,陈振华,李玮.深冷处理对Cu_(46)Zr_(46)Al_8非晶复合材料组织与性能的影响[J].材料热处理学报,2010,(11):1-6.
    [130]李钢.大变形方法对纯铜性能影响的研究[D].导师:朱心昆.昆明理工大学,2006.
    [131]周蕾,史庆南,刘润,王军丽.大变形异步累积叠轧纯铜再结晶退火后的超细孪晶[J].金属热处理,2012,(12):29-32.
    [132]王军丽.超细晶铜材的大变形异步叠轧制备技术、组织演变过程与性能研究[D].昆明理工大学,2007.
    [133]张继东,李才巨,朱心昆,李刚.大塑性变形对纯铜力学性能的影响[J].云南冶金,2007,(01):56-58.
    [134]米辉.大变形异步叠轧辅以热处理制备超细孪晶铜及其形成机制研究[D].昆明理工大学,2011.
    [135]秦鹤勇,裴丙红,董建,张麦仓.高强度GH2132合金棒材冷拔工艺的研究[J].钢铁研究学报,2010,09:48-52.
    [136]毛卫民,张新明.晶体材料织构定量分析[M].冶金工业出版社,1993.
    [137]杨平.电子背散射衍射技术及其应用[M].冶金工业出版社,2007.
    [138] U. Holzwarth, M. Pisoni, R. Scholz. On the recovery of the physical and mechanicalproperties of a CuCrZr alloy subjected to heat treatments simulating the thermal cycle of hotisostatic pressing[J]. J Nucl Mater,2000,279:19-23
    [139] U. Holzwarth, H. Stamm. The precipitation behavior of ITER-grade Cu-Cr-Zr alloy aftersimulating the thermal cycle of hot isostatic pressing[J]. J Nucl Mater,2003,279:31-35.
    [140]毛卫民,朱景川,郦剑.金属材料结构与性能[M].清华大学出版社,2008.
    [141] Y. S. GO, W. A. SPITZIG. Strengthening in deformation-processed Cu-20%Fe composites[J]. Journal of materials science,1991,26:163-171.
    [142]吕孝良,程万林,秦光文,张娟. IC用引线框架材料QFe2.5合金工艺研究[J].有色金属加工,2013,01:4-9.
    [143]王耀宁.轧件头部翘曲的实验研究与数值模拟[D].西安建筑科技大学,2004.
    [144]慕思国,朱永兵,郭富安,唐谟堂,向朝建,曹兴民. Cu-0.35Cr-0.15Zr合金板带的织构和性能研究[J].稀有金属材料与工程,2009,S1:588-593.
    [145]赵江涛,陈文革,陈景爱. QBe1.9和Cu-0.5Cr-0.2Zr合金显微组织及焊接性能分析[J].金属热处理,2012,12:20-24.
    [146]黄敏纯,姜海,李与同.电极合金显微组织结构变化对焊接性能的影响[J].江南大学学报,2004,02:173-175.
    [147]王知.高强高导铜合金的焊接性能研究[D].合肥工业大学,2010.
    [148]朱彬.基于Ansys的铝合金TIG焊温度场应力场数值模拟及二次开发[D].江苏大学,2007.
    [149] D拉达伊著.熊第京,郑朝云译.焊接热效应——温度场、残余应力、变形[M].北京:机械工业出版社,1997.
    [150]李亨.提高大型数控折弯成形精度的关键技术研究[D].合肥工业大学博士学位论文,2012.
    [151]宋占勋.焊接结构疲劳强度研究及其应用[D].北京交通大学,2012.
    [152]刘智.基于分形理论的粗糙表面三维瞬态温度/压力/应力场数值模拟[D].福州大学,2005.
    [153]牛山廷.淬火冷却过程三维有限元模拟及工艺参数优化的研究[D].山东大学,2007.
    [154]严红丹.平板对接焊接变形的数值模拟[D].合肥工业大学学位论文,2009.
    [155]董克权,刘超英,陈英俊.双椭球热源模型加载算法研究[J].机械设计与制造,2008,11:60-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700