用户名: 密码: 验证码:
光伏发电系统逆变技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在能源枯竭及环境污染问题日益严重的今天,光伏发电是未来可再生能源应用的一种重要方法。本文以光伏逆变技术为研究对象,对光伏系统最大功率点跟踪方法、光伏智能充电控制策略、光伏并网系统拓扑结构与控制方法、光伏并网与有源滤波统一控制方法等问题进行了深入研究。
     在扰动观测法的基础上,提出了一种直接电流控制最大功率点跟踪方法,通过检测变换器输出电流进行最大功率点跟踪控制,简化控制算法,同时省去了扰动观测法中的电压和电流传感器,降低系统成本。
     研究了一种实用的光伏系统蓄电池充电控制策略,将最大功率点跟踪与智能充电控制有机结合在一起,充分利用光伏电池的输出功率,缩短充电时间,提高充电效率;研究了一种全数字式逆变器,通过电压有效值外环和瞬时值内环的双闭环控制,既能保证系统输出电压的稳态精度,又能保证瞬变负载条件下的动态特性。研制了一套3kW光伏独立发电系统并进行了实验验证。
     针对住宅型光伏并网逆变器体积小、性能价格比高的要求,研究了一种基于导抗变换器的并网逆变器拓扑结构,相比于传统电流型逆变器,本拓扑省去了笨重的电抗器,同时利用高频变压器进行能量传递和电气隔离,进一步降低了系统损耗和体积,降低系统成本。
     经研究发现,由于导抗变换器的固有特性,采用传统的SPWM调制方法将导致并网逆变器输出平顶饱和的非正弦电流,造成对电网的谐波污染,提出了一种新型改进调制模式。该方法可以实现高功率因数、低谐波并网发电。根据上述理论分析,研制了一台3kW单相光伏并网逆变器,实验结果验证了理论分析的正确性。
     研究了一种三相电流型并网逆变器拓扑结构及其控制方法,采用改进调制模式对其进行控制,在谐波抑制方面取得了满意的效果。提出的三相并网逆变方案,相比于传统三相并网逆变器,具有如下显著优点:系统中任意一相都是一个独立的子系统,不受其它相影响,即使在某一相或某两相损坏的情况下,剩余相也能正常运行,增加了系统的冗余性;在三相电网不平衡情况下,本方法也能提供稳定的三相电流,增加系统抗电网波动能力。初看起来本方案使用的导抗变换器和变压器有3套,但是每相承受的功率容量只有系统总功率的三分之一,这样可以选用较小容量的器件,有利于高频电感和变压器的制作和生产。
     提出了一种基于导抗变换器的三相电流型逆变器实现方案,利用导抗变换器将输入直流电压变换为高频正弦电流,经高频变压器隔离及电流等级变换后进行裂相调制,输出为三相正弦电流。该方法不仅省去了传统电流型逆变器直流侧电抗器,而且采用高频变换进行功率传输,减小了隔离变压器及输出滤波器的体积,有利于装置的小型化和降低成本。
     针对光伏电池输出电压较低的问题,研究了一种单级式三相升压型并网逆变器,通过一级变换同时实现升压和DC/AC变换功能,并且提出了一种基于DSP芯片的控制策略,本方法仅用一个电压传感器就能替代原先的三个电压传感器;每个载波周期短路相只进行一次开关动作,同时任何时刻只有2个开关管导通,可有效降低系统的开关损耗和导通损耗;由于采用DSP控制,具有控制灵活、稳定性高、成本低、并网电能质量好,便于功率调节等优点。
     提出了一种光伏并网与有源滤波兼用的统一控制策略,在同一套装置上既实现光伏并网发电,又实现谐波补偿,克服目前的光伏发电装置白天发电、夜间停机的不足,提高系统利用率。详细分析了无功电流和谐波电流的检测方法、光伏并网发电有功指令电流的生成方法及电流环控制器和电压环控制器的设计方法,并对光伏并网发电与有源滤波统一控制模式和单一有源滤波模式进行了讨论,仿真和实验结果验证了所提出的系统结构及控制策略的正确性和可行性。
With the global environmental pollution and the increasing serious energy crisis today, photovoltaic (PV) power generation is becoming one of the most promising renewable energy technologies. The research in this paper involves Maximum Power Point Tracking (MPPT) techniques, intelligent charge control strategy, topology and control method of the PV grid-connected power generation and unification control method of PV grid-connected generation and active power filtering, etc.
     Direct current MPPT control strategy is proposed based on disturbance observer method. By directly detecting output current of PV converter, not only voltage sensors and current sensors in disturbance observer method are reduced, but also simple control algorithm and low cost are realized.
     A practical lead-acid battery charge control strategy combined with MPPT technique for PV system is studied. The novel method can promote PV cell efficiency, shorten battery charge time and improve charge efficiency. A digital control technique for the inverter is described, which is based on available value voltage and instantaneous voltage dual-loop control. Steady-state accuracy and dynamic performance are ensured at the same time by this control method. A 3kW prototype is designed and tested in the lab, and the experimental results verified the proposed control strategy.
     Considering small volume and low cost of resident PV grid-connected inverter, the topologies of grid-connected based on immittance converter are studied. Compared with the traditional current source inverter, high-frequency inductor and transformer in the proposed inverter replace the power frequency inductor and transformer. Low power loss, small volume and low cost are realized in the new inverter.
     As to inherent characteristic of immittance converter, this paper shows that the output current of grid-connected inverter is non-sinusoidal under the conventional SPWM method, which leads to harmonic pollution in public supply networks. An improved modulation method is proposed. A high power factor and low harmonic grid-connect power generation are realized by this way. A 3kW single-phase PV grid-connected inverter prototype is designed based on above theory analysis. The feasibility and validity are proved by experimental results.
     The topologies and control strategy of three-phase current source grid-connected inverter are studied. An improved modulation strategy is adapted and a satisfied solution is achieved on harmonic suppression. Compared with conventional three-phase grid-connected inverter, the novel inverter has the obvious characteristics as following: any phase of the inverter can work normally even if the other one or both phases are destroyed, which enhances the system redundancy. Under unbalanced grid, the inverter also can provide a stable three-phase current, which strong anti-electricity fluctuation capability. Though three sets of immttance converter and transformer are used, power capacity of every phase is only one third of the inverter total power capacity. Consequently, smaller capacities high-frequency inductor and transformer can be selected.
     A three-phase current source inverter is presented based on immittance inverter. To utilize of characteristics of immittance converter, DC voltage is converted into sine-wave high frequency current and is isolated by high-frequency transformer, then three-phase sine-wave current source is achieved through cycle-converter modulation. Not only the DC input inductor is reduced but also power is transmitted by high frequency converter. Consequently, the volume of output filter inductor and isolated transformer is declined; small volume and low cost are realized.
     Due to the low output voltage of PV cell arrays, a novel single-stage three-phase boost-type grid-connected inverter is studied. The simulation and experiment results show that current-source grid connection with a high power factor can be realized by single-stage boost DC/AC conversion. Moreover, the power frequency inductors in traditional current-source inverter are removed and only two switches are communicated at any time. Therefore, the proposed inverter has advantages of flexible control, high stability, low cost and high quality grid current based on the DSP control.
     The unification control method of PV grid-connected power generation and active power filtering are proposed. PV grid-connected generation and harmonic compensation are realized on the same prototype, which overcomes that PV grid-connected power generation equipment is inoperative at night and improves the system efficiency. Reactive current and harmonic current detection method, active current of PV power generation calculation method, current loop controller and voltage loop controller deign method are analyzed in detail. Furthermore, the unification control method and single active power filtering control method are discussed individually. The feasibility of control strategy and system topology is verified by the simulation and experimental results.
引文
[1]连璞,刘建敏,唐相东.中国能源中的煤炭工业[J].中国能源,2003,28(5):15-17
    [2]郭育光.矿区环境监测与治理[M].徐州:中国矿业大学出版社,1998
    [3]李俊峰,时丽,马玲娟.国内外可再生能源发展综述[J].国际石油经济,2006(2):35-37
    [4]李俊峰,时璟丽,王仲颖.欧盟可再生能源发展的新政策及对我国的启示[J].可再生能源,2007,25(3):1-3
    [5]宋昭峥,丁宏霞,孙贵利等.国外可再生能源发展现状与展望[J].现在化工,2007,27(5):61-64
    [6]<资源与人居环境>编辑部.国外可再生能源的发展目标[J].资源与人居环境,2007(2):34-35
    [7]昌金铭.国内外光伏发电的新进展[J].中国建设动态(阳光能源),2007(1):29-31
    [8]邵强.我国能源现状及可再生能源开发问题[J].西部探矿工程,2005(4):208-209
    [9]赵争鸣,孟朔.太阳能发电综合应用系统[J].电力电子,2003(2):7-10
    [10]蔡宣三.太阳能光伏发电发展现状与趋势[J].电力电子,2007(2):3-6
    [11]欧阳名三.独立光伏系统中蓄电池管理的研究[D].合肥工业大学博士学位论文,2004
    [12]赵为.太阳能光伏并网发电系统的研究[D].合肥工业大学博士学位论文,2003
    [13]Kjaer S B,Pedersen J K,Blaabjerg F.A review of single-phase grid-connected inverters for photovoltaic modules[J].IEEE Transactions on Industry Applications,2005,41(5):1129-1306
    [14]吴理博,赵争鸣,刘建政等.单级式光伏并网逆变系统中的最大功率点跟踪算法稳定性研究[J].中国电机工程学报,2006,26(6):73-77
    [15]张超,何湘宁.短路电流结合扰动观察法在光伏发电最大功率点跟踪控制中的应用[J].中国电机工程学报,2006,26(20):98-102
    [16]刘树,刘建政,赵争鸣等.基于改进MPPT算法的单级式光伏并网系统[J].清华大学学报(自然科学版),2005,45(7):873-876
    [17]傅诚,陈鸣,沈玉梁等.基于输出参数的光伏电池最大功率点控制[J].电工技术学报,2007,22(2):148-152
    [18]崔岩,蔡炳煌,李大勇.太阳能光伏系统MPPT控制算法的对比研究[J].太阳能学报,2006,27(6):535-539
    [19]赵庚申,王庆章,许盛之.最大功率点跟踪原理及实现方法的研究[J].太阳能学报,2006,27(10):997-1001
    [20]Koutroulis E,Kalaitzakis K,Voulgaris N C.Development of a microcontroller-based,photovoltaic maximum power point tracking control system[J].IEEE Transactions on Power Electronics,2001,16(21):46-54
    [21]D'Souza,Lopes L A C,Liu X J.An Intelligent maximum power point tracker using peak current control[C].IEEE 36~(th) power electronics specialists conference,Recife,2005:172-177
    [22]Jain S,Agarwal V.A new algorithm for rapid tracking of approximate maximum power point in photovoltaic systems[J].IEEE Power Electronics Letters,2001,16(21):46-54
    [23]Tafticht T,Agbossou K.Development of a MPPT method for photovoltaic systems[C].Canadian Conference on Electrical and Computer Engineering,2004:1123-1126
    [24]Femia N,Petrone G,Spagnuolo G,et al.Optimization of perturb and observe maximum power point tracking method[J].IEEE Transactions on Power Electronics,2005,20(4):963-973
    [25]Irisawa K,Saito T,Takano I,et al.Maximum power point tracking control of photovoltaic generation system under non-uniform insolation by means of monitoring cells[C].Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference,Anchorage,2000,1707-1710
    [26]Kuo Y C,Liang T J,Chen J F.Novel maximum-power-point-tracking controller for photovoltaic energy conversion system[J].IEEE Transactions on Industrial Electronics,2001,48(3):594-601
    [27]Yu G J,Jung Y S,Choi J Y,et al.A novel two-Mode MPPT control algorithm based on comparative study of existing algorithms[C].Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference,2002:1531-1534
    [28]Wu W,Pongratananukul N,Qiu W,et al.DSP-based multiple peak power tracking for expandable power system[C]. Eighteenth Annual of Applied Power Electronics Conference and Exposition, 2003: 525-530
    [29] Masoum M A S, Dehbonei H, Fuchs E F. Theoretical and experimental analyses of photovoltaic systems with voltage and current-based maximum power-point tracking[J]. IEEE Transactions on Energy Conversion, 2002,17(4): 514-522
    [30] Noh H J, Lee D Y, Hyun D S. An improved MPPT converter with current compensation method for small scaled PV-applications[C]. The 28~(th) Annual Conference of the IEEE Industrial Electronics Society, 2002: 1113-1118
    [31] Kobayashi K, Matsuo H, Sekine Y. A novel optimum operating point tracker of the solar cell power supply system[C]. The 35~(rd) annual conference of IEEE power electronics specialists, 2004:2147-2151
    [32] Bekker B, Beukes H J. Finding an optimal PV panel maximum power point tracking method[C]. 7~(th) AFRICON Conference in Africa, 2004: 1125-1129
    [33] Noguchi T, Togashi S, Nakamoto R. Short-current pulse based adaptive maximum-power-point tracking for photovoltaic power generation systems[C]. Proceedings of the 2000 IEEE International Symposium on Industrial Electronics, 2000: 157-162
    [34] Mutoh N, Matuo T, Okada K, et al. Prediction-data-based maximum-power-point-tracking method for photovoltaic power generation systems[C]. The 33rd Annual conference of IEEE Power Electronics Specialists Conference, 2002: 1489-1494
    [35] Yuvarajan S, Xu S. photovoltaic power converter with a simple maximum power point tracker[J]. Proceedings of the 2003 International Symposium on Circuits and Systems, 2003: III-399 - III-402
    [36] Mahmoud A M A, Mashaly H M, Kandil S A, et al. Fuzzy logic implementation for photovoltaic maximum power tracking[C]. 26th Annual Conference of the IEEE Industrial Electronics Society, 2000: 735-740
    [37] Patcharaprakiti N, Premrudeepreechacharn S. Maximum power point tracking using adaptive fuzzy logic control for grid-connected photovoltaic system[C]. IEEE Power Engineering Society Winter Meeting, 2002: 372-377
    [38]Wilamowski B M,Li X.Fuzzy system based maximum power point tracking for PV system[C].28th Annual Conference of the Industrial Electronics Society,2002:3280-3284
    [39]Khaehintung N,Pramotung K,Tucirat B,et al.RISC-microcontroller built-in fuzzy logic controller of maximum power point tracking for solar-powered light-flasher applications[C].30th Annual Conference of IEEE Industrial Electronics Society,2004:2673-2678
    [40]Ro K,Rahman S.Two-loop controller for maximizing performance of a grid-connected photovoltaic-fuel cell hybrid power plant[J].IEEE Transactions on Energy Conversion,1998,13(3):276-281
    [41]Hussein A,Hirasawa K,Hu J,et al.The dynamic performance of photovoltaic supplied dc motor fed from DC-DC converter and controller by neural networks[C].Proceedings of the 2002 International Joint Conference on Neural Networks,2002:607-612
    [42]Sun X,Wu W,Li X,et al.A research on photovoltaic energy controlling system with maximum power point tracking[C].Proceedings of the Power Conversion Conference,2002:822-826
    [43]Zhang L,Bai Y,Al-Amoudi A.GA-RBF neural network based maximum power point tracking for grid-connected photovoltaic systems[C].International Conference on Power Electronics,Machines and Drives,2002:18-23
    [44]Bodur M,Ermis M.Maximum power point tracking for low power photovoltaic solar panels[C].Proceedings of 7th Mediterranean Electrotechnical Conference,1994:758-761
    [45]Matsui M,Kitano T,Xu D H,et al.A new maximum photovoltaic power tracking control scheme based on power equilibrium at DC-link[C].Conference Record of IEEE Industry Applications Conference,1999:804-809
    [46]Kitano T,Matsui M,Xu D H,et al.Power sensor-less MPPT control scheme utilizing power balance at DC link-system design to ensure stability and response[C].The 27th Annual Conference of the IEEE Industrial Electronics Society,2001:1309-1314
    [47]Arias J,Linera F F,Martin-Ramos J,et al.A modular PV regulator based on microcontroller with maximum power point tracking[C].Conference Record of the IEEE Industry Applications Conference,2004:1178-1184
    [48]Shmilovitz D.On the control of photovoltaic maximum power point tracker via output parameters[J].IEEE Transactions on Electric Power Applications,2005,152(2):239-248
    [49]Bleijs J A M,Gow A.Fast maximum power point control of current-fed DC-DC converter for photovoltaic arrays[J].Electronics Letters,2001,37(1):5-6
    [50]Hou C L,Wu J,Zhang M,et al.Application of adaptive algorithm of solar cell battery charger[C].Proceedings of the 2004 IEEE International Conference on Electric Utility Deregulation,Restructuring and Power Technologies,2004:810-813
    [51]Zhang M,Wu J,Zhao H.The application of slide technology in PV maximum power point tracking system[C].Fifth World Congress on Intelligent Control and Automation,2004:5591-5594
    [52]Solodovnik E V,Liu S,Dougal R A.Power controller design for maximum power tracking in solar installations[J].IEEE Transactions on Power Electronics,2004,19(5):1295-1304
    [53]王飞.单相光伏并网系统的分析与研究[D].合肥工业大学博士学位论文,2005
    [54]张强,刘建政,李国杰.单相光伏并网逆变器瞬时电流检测与补偿控制[J].电力系统自动化,2007,31(10):50-54
    [55]张国荣,张铁良,丁明.光伏并网发电与有源电力滤波器的统一控制[J].电力系统自动化,2007,31(8):61-66
    [56]董密,罗安.光伏并网发电系统中逆变器的设计与控制方法[J].电力系统自动化,2006,30(20):97-102
    [57]张小平,庸华平,朱建林等.并网矩阵变换器网侧谐波及稳定性分析[J].太阳能学报,2007,28(1):62-67
    [58]姚志垒,王赞,肖岚等.一种新的逆变器并网控制策略的研究[J].中国电机工程学报,2006,26(18):61-64
    [59]Kjaer S B,Pedersen J K,Blaabjerg F.A review of single-phase grid-connected inverters for photovoltaic modules[J].IEEE Transactions on Industrial Applications,2005,41(5):1292-1306
    [60]Xue Y,Chang L,Kjaer S B,et al.Topologies of single-phase inverters for small distributed power generators:an overview[J].IEEE Transactions on Power Electronics,2004,19(5): 1305-1314
    [61]Calais M,Myrzik J,Spooner T,et al.Inverters for single-phase grid connected photovoltaic systems:an overview[C].IEEE 33rd Annual of Power Electronics Specialists Conference,2002:1995-2000
    [62]Meinhardt M,Cramer G.Past,present and future of grid connected photovoltaic and hybrid-power-systems[C].IEEE Power Engineering Society Summer Meeting,2000:1283-1288
    [63]Calais M,Agelidis V G.Multilevel converters for single-phase grid connected photovoltaic systems-an overview[C].IEEE International Symposium on Industrial Electronics,1998:224-229
    [64]Myrzik J M A,Calais M.String and module integrated inverters for single-phase grid connected photovoltaic systems-a review[C].IEEE Bologna Power Tech Conference,2003:430-437
    [65]Kjaer S B,Pedersen,Blaabjerg F.Power inverter topologies for photovoltaic modules-a review[C].Conference Record of the Industry Applications Conference,2002:782-788
    [66]Shimizu T,Wada K,Nakamura N.A flyback-type single phase utility interactive inverter with low-frequency ripple current reduction on the DC input for an AC photovoltaic module system[C].IEEE 33rd Annual of Power Electronics Specialists Conference,2002:1483-1488
    [67]Kjaer S B,Blaabjerg F.Design optimization of a single phase inverter for photovoltaic applications[C].IEEE 34th Annual of Power Electronics Specialist Conference,2003:1183-1190
    [68]Achille E,Martite T,Glaize C,et al.Optimizes DC-AC boost converters for modular photovoltaic grid-connected generators[C].IEEE International Symposium on Industrial Electronics,2004:1005-1010
    [69]Saha S,Sundarsingh V P.Novel grid-connected photovoltaic inverter[J].IEEE Proceedings on Generation Transmission and Distribution,1996,143:219-224
    [70]Bose B K,Szczesny V P,Steigerwald.Microcomputer control of a residential photovoltaic power conditioning system[J]. IEEE Transactions on Industry Applications, 1985, 21(5): 1182-1191
    [71] Papanikolaou N P, Tatakis E C, Crisis A, et al. Simplified high frequency converter in decentralized grid-connected PV systems: a novel low-cost solution[J]. EPE'03, 2003, CD-ROM
    [72] Kjaer S B. Design and control of an inverter for photovoltaic applications[D]. PH.D dissertation, Aalborg University, 2005.
    [73] Martins D C, Demon R.. Grid connected PV system using two energy processing stages[C]. The 29~(th) IEEE Photovoltaic Specialists Conference, 2002: 1649-1652
    [74] Nagao M, Harada F. Power flow of Photovoltaic system using buck-boost PWM power inverter[C]. International Conference on Power Electronics and Drive Systems, 1997: 144-149
    [75] Kusakawa M, Nagayoshi H, Kamisako K, et al. Further improvement of a transformerless, voltage-boosting inverter for ac modules[J]. Solar Energy Materials and Solar Cells, 2001, 67: 379-387
    [76] Lohner A, Meyer T, Nagel A. A New Panel-Integratable Inverter Concept for Grid-Connected Photovoltaic Systems[C]. IEEE International Symposium on Industrial Electronics, Warsaw , 1996: 827-831
    [77] Wang C M. A novel single-stage full-bridge buck-boost inverter[J]. IEEE Transactions on power electronics, 2004, 19(1): 150-159
    [78] Kasa N, Iida T, Iwamoto H. An inverter using buck-boost type chopper circuits for popular small-scale photovoltaic power system[C]. The 25~(th) Annual Conference of the IEEE Industrial Electronics Society, San Jose, 1999: 185-190
    [79] Shimizu T, Hashiimoto O, Kimura G. A novel high-performance utility-interactive photovoltaic inverter system [J]. IEEE transactions on power electronics, 2003, 18(2): 704-711
    [80] Calais M, Myrzik J, Spooner T, et al. Inverter for single-phase grid connected photovoltaic systems-an overview[C]. IEEE 33~(rd) annual conference of power electronics specialists, Gairns,2002:1995-2000
    [81]Sunny Boy 5000TL Multi-string operating instructions,SMA.http://www.sma.de
    [82]张承慧,叶颖,陈阿莲等.基于输出电流控制的光伏并网逆变电源[J].电工技术学报,2007,22(8):41-45
    [83]王飞,余世杰,苏建徽等.太阳能光伏并网发电系统的研究[J].电工技术学报,2005,20(5):72-74
    [84]雷元超,陈春根,陈国呈.滞环比较PWM跟踪控制分析[J].水电能源科学,2004,22(1):83-85
    [85]顾和荣,扬子龙,邬伟扬.并网逆变器输出电流滞环跟踪控制技术[J].中国电机工程学报,2006,26(9):108-112
    [86]赵振波,李和明,董淑惠.采用电流滞环调节器的电压矢量控制PWM整流器系统[J].电工技术学报,2004,19(1):31-34
    [87]扬旭,王兆安.一种新的准固定频率滞环PWM电流控制方法[J].电工技术学报,2003,18(3):24-28
    [88]Zare F,Ledwich G.A hysteresis current control for single-phase multilevel voltage source inverters:PLD implementation[J].IEEE transactions on power electronics,2002,17(5):731-738
    [89]Lindgren M.B.Analysis and simulation of digitally-controlled grid-connected PWM-converters using the space-vector average approximation[J].IEEE workshop on computers in power electronics,1996,11-14 Aug:85-89
    [90]马皓,郎芸萍.空间矢量简化算法在三相PWM电压型整流器中的应用[J].浙江大学学报(工学版),2006,40(1):176-180
    [91]屈莉莉,杨振,杨兆华.三相电压型PWM整流器空间矢量脉宽调制研究[J].电工技术杂志,2002,(7):7-9
    [92]刘树,刘建政,赵争鸣等.基于改进MPPT算法的单级式光伏并网系统[J].清华大学学报(自然科学版),2005,45(7):873-876
    [93]王飞,余世杰,苏建徽等.光伏并网发电系统的研究及实现[J].太阳能学报,2005,26(5):605-608
    [94]张超,王章权,蒋燕君.无差拍控制在光伏并网发电系统中的应用[J].电力电子技术,2007,41(7):3-5
    [95]刘伟,戴瑜兴,文劲松.基于无差拍控制的并网逆变器[J].低压电器,2007,(11):18-20
    [96]李春龙,沈颂华,卢家林等.基于状态观测器的PWM整流器电流环无差拍控制技术[J].电工技术学报,2006,21(12):84-89
    [97]郭卫农,段善旭,康勇等.电压型逆变器的无差拍控制技术研究[J].华中理工大学学报,2000,28(6):30-33
    [98]Mohamed Y A -R I,EI-Saadang E F.An Improved Deadbeat Current Control Scheme With a Novel Adaptive Self-Tuning Load Model for a Three-Phase PWM Voltage-Source Inverter[J].IEEE transactions on industrial electronics,2007,54(2):747-759
    [99]刘新民,邹旭东,康勇等.带状态观测器的逆变器增广状态反馈控制和重复控制[J].电工技术学报,2007,22(1):91-95
    [100]熊健,史鹏飞,张凯等.基于积分环节电压微分反馈的逆变器重复控制策略[J].电工技术学报,2007,22(1):85-90
    [101]张凯,彭力,熊健等.基于状态反馈和重复控制的逆变器控制技术[J].中国电机工程学报,2006,26(10):56-62
    [102]刘飞,邹云屏,李辉.基于重复控制的电压源型逆变器输出电流波形控制方法[J].中国电机工程学报,2005,25(19):58-63
    [103]郭小强,邬伟扬,赵清林.新型并网逆变器控制策略比较和数字实现[J].电工技术学报,2007,22(5):111-116
    [104]赵清林,郭小强,邬伟扬.单相逆变器并网控制技术研究[J].中国电机工程学报,2007,27(16):60-64
    [105]Sera D,Kerekes T,Lungeanu M.Low-cost digital implementation of proportional-resonant current controllers for PV inverter applications using delta operator[C].32nd Annual Conference of IEEE Industrial Electronics Society,2005:6-10
    [106]Zmood D N,Holmes D G.Stationary frame current regulation of PWM inverters with zero steady-state error[J].IEEE Transactions on Power Electronics,2003,18(3):814-822
    [107]吴理博,赵争鸣,刘建政等.具有无功补偿功能的单级式三相光伏并网系统[J].电工 技术学报,2006,21(1):28-32
    [108]汪海宁,苏建徽,张国荣等.具有无功功率补偿和谐波抑制的光伏并网功率调节器控制研究[J].太阳能学报,2006,27(6):540-544
    [109]汪海宁,苏建徽,张国荣等.光伏并网发电及无功补偿的统一控制[J].电工技术学报,2005,20(9):114-118
    [110]禹华军.光伏并网发电与电网无功功率补偿一体化技术的研究[D].上海交通大学博士学位论文,2005
    [111]雷元超.光伏电源系统研究[D].上海大学硕士学位论文,2004
    [112]吴理博.光伏并网逆变系统综合控制策略研究及实现[D].清华大学博士学位论文,2006
    [113]Yeong-Chau Kuo,Tsorng-Juu Liang,Jiann-Fuh Chen,Novel Maximum Power Point Tracking Controller for Photovoltaic Energy Conversion System[J].IEEE Trans.on Industrial Electronics,2001,48(3):594-601
    [114]Koutroulis.E,Kalaistzakis.K.Novel Battery Charging Regulation System for Photovoltaic Applications[J].IEE Proceeding electric power applications,2004,151(2):191-197
    [115]吴理博,赵争鸣,刘建政等.独立光伏照明系统中的能量管理控制[J].中国电机工程学报,2005,25(22):68-72
    [116]黄跃杰.新型光伏发电系统的控制策略研究[D].上海大学硕士学位论文,2005
    [117]欧阳名三.独立光伏系统中蓄电池管理的研究[D].合肥工业大学博士学位论文,2004
    [118]朱军卫,龚春英.逆变器单极性电流SPWM控制与滞环控制比较[J].电力电子技术,2004,38(1):26-29
    [119]陈国呈.PWM变频调速及软开关电力变换技术[M],北京:机械工业出版社,2002
    [120]Hisaichi Irie,Shoshi Takashita et al.Utility interactive inverter using immittance converter[J].Trans.IEE of Japan,2000,120-D(3):410-416.
    [121]Irie H,Yamada H.Immittance converters suitable for power electronics[J].Trans.IEE of Japan,1997,117-D(8):962-969.
    [122]Irie H,Minami N,Miniami H,et al.Non-contact energy transfer system using immittance converter[J].Trans.IEE of Japan,2000,120-D(6):789-793.
    [123]Irie H,Kawabata Y.Hybrid Type Immittance Converter[J].Trans.IEE of Japan,2001,121-D(1):119-124.
    [124]沈俊.导抗变换器在光伏电源系统中的应用研究[D].上海大学硕士学位论文,2004
    [125]Mangesh Borage,Sunil Tiwari,Swarna Kotaiah.Analysis and design of an LCL-T resonant converter as a constant current power supply[J].IEEE transactions on industrial electronics,2005,52(6):1547-1554.
    [126]Michio Tamate,Hideki Ohguchi,Makoto Hayashi,et al.A novel approach of power converter topology based on the immittance conversion theory[J].ISIE'2000,Mexico,2000.
    [127]顾和荣,杨子龙,邬伟扬.并网逆变器输出电流滞环跟踪控制技术研究[J].中国电机工程学报,2006,26(9):108-112.
    [128]董密,罗安.光伏并网发电系统中逆变器的设计与控制方法[J].电力系统自动化,2006,30(20):97-102.
    [129]姚志垒,王赞,肖岚等.一种新的逆变器并网控制策略的研究[J].中国电机工程学报,2006,26(18):61-64
    [130]Kojabadi H M,Bin Yu,Gadoura I A,et al.A novel DSP-based current-controlled PWM strategy for single phase grid connected inverters[J].IEEE transactions on power electronics,2006,21(4):985-993
    [131]Kwon J M,Nam K H,Kwon B H et al.Photovoltaic power conditioning system with line connection[J].IEEE transactions in industrial electronics,2006,53(4):1048-1054
    [132]Li Q,Wolfs P.The power loss optimization of a current fed ZVS two-inductor boost converter with a resonant transition gate drive[J].IEEE transactions on power electronics,2006,21(5):1253-1263
    [133]Barbosa P G,Braga H A C,Rodrigues M C B,et al.Boost current multilevel inverter and its application on single-phase grid-connected photovoltaic systems[J].IEEE transactions on power electronics,2006,21(4):1116-1124
    [134]鲍建宇,王正仕,张仲超,一类单相多电平电流型变流器拓扑的建模分析[J].中国电 机工程学报,2006,26(2):112-115.
    [135]Yang Chen,Smedley K.Three-phase boost-type grid-connected inverters[C].IEEE Applied Power Electronics Conference and Exposition.Dallas:2006:791-797.
    [136]雷鹏,周林.i_p-i_q检测法的单周控制三电平有源电力滤波器[J].高电压技术,2007,33(11):143-149.
    [137]范瑞祥,罗安,涂春鸣.并联混合型有源滤波器的分频控制方法研究[J].中国电机工程学报,2007,27(25):108-113.
    [138]薛花,姜建国.并联型有源滤波器的自适应无源性控制方法研究[J].中国电机工程学报,2007,27(25):114-118.
    [139]郭伟峰,杨世彦,杨威.基于DSP-FPGA全数字控制的并联有源电力滤波器[J].电工技术学报,2007,22(5):123-127.
    [140]耿攀,戴珂,魏学良等.三相并联型有源电力滤波器电流重复控制[J].电工技术学报,2007,22(2):127-131.
    [141]张国荣,张铁良,丁明等.光伏并网发电与有源电力滤波器的统一控制[J].电力系统自动化,2007,31(8):61-66.
    [142]黄胜利,张国伟,孔力.并网发电和电力有源滤波的统一控制方法[J].电力电子技术,2007,41(12):72-75.
    [143]Jeong G Y,Park T J,Kwon B H.Line-voltage-sensorless active power fliter for reactive power compensation[J].IEE proceedings electric power applications,2000,147(5):385-390.
    [144]Wu Longhui,Zhuo Fang,Zhang Pengbo et al.Study on the influence of supply -voltage fluctuation on shunt active power filter[J].IEEE transactions on power delivery,2007,22(3):1743-1749.
    [145]Garcia-Cerrada A,Pinzon-Ardila O,Feliu-Batlle V,et al.Application of a repetitive controller for a three phase active power filter[J].IEEE transaetions on power electronics,2007,22(1):237-246.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700