用户名: 密码: 验证码:
基于分子标识的工业微生物资源快捷分类与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物是一类重要的生物资源,是现代工业生物技术发展的生物学基础。人类利用微生物资源已经产生了巨大的经济和社会效益。微生物资源被有效应用的基础是微生物的分离培养和分类鉴定。随着分子生物学理论和方法的不断发展,目前,微生物的分类鉴定已经在形态、生理生化等传统鉴定实验技术的基础上,更多的利用分子生物学的发展成果,通过分子标识的核苷酸序列及其解析实现微生物分离培养物的高效、快捷和准确鉴定。微生物核糖体DNA(rDNA)序列是微生物分类鉴定中最重要的分子标识。为确定rDNA序列在大规模工业微生物资源分类与鉴定中的应用可行性和应用价值,本文创建了微生物基因组DNA及其rDNA分子标识的快速高通量制备方法,研究了细菌16SrDNA序列、酵母和丝状真菌内部转录间隔区(Internal transcribed spacer, ITS)序列等分子标识在工业微生物资源分类与鉴定中的价值与意义。获得的主要研究结果如下:
     (1)建立了核糖体DNA分子标识的快速制备方法,为工业微生物资源的批量、快捷分类与鉴定奠定了基础。研究了从基因组DNA释放到标识分子PCR扩增的各阶段影响因素,优化了不同种属微生物基因组DNA的通用制备方法,建立了一种快捷的工业微生物资源的批量鉴定方法,此方法中的基因组DNA制备过程耗时仅20min,并省去了有机溶剂抽提和蛋白酶、RNase等的处理步骤,可实现微生物资源的批量(96n个分离物)鉴定。此方法可应用于细菌、放线菌、酵母和丝状真菌等不同种属微生物资源的快捷分类鉴定。利用该方法对5296株不同种属的工业微生物资源保藏物进行了成功鉴定。
     (2)研究了16S rDNA分子标识在细菌分类与鉴定中的价值,所研究的全部细菌分离物均可通过16S rDNA分子标识鉴定到属,绝大多数(82.5%)细菌分离物可直接鉴定到种。运用上述工业微生物资源批量、快捷分类鉴定方法,对3726株细菌分离物的16S rDNA进行了有效扩增、核苷酸序列测定、序列比对和分类鉴定,其中3073株细菌分离物可被成功鉴定到种一级,分属于210个种,45个属,占整个细菌分离物的82.5%;其余653株细菌分离物仅可鉴定到属,占整个细菌分离物的17.5%。研究中也发现,16S rDNA分子标识在芽孢杆菌属(Bacillus)和土芽孢杆菌属(Geobacillus)等少数菌属中的部分种间鉴定的敏感性不高。
     (3)研究了ITS分子标识在丝状真菌分子鉴定中的普适性,所研究丝状真菌分离物中的99.4%可通过ITS分子标识鉴定到属,其中82.2%的分离物可直接鉴定到种。利用ITS序列同源性分析对832株丝状真菌分离物进行了分子鉴定,其中684株(82.2%)分离物可被成功鉴定到种,分属于84个种,33个属;143株分离物仅可鉴定至属一级水平,占整个丝状真菌分离物的17.2%。研究中也发现,ITS分子标识在曲霉属(Aspergillus)和青霉属(Penicillium)等少数菌属内部分种间鉴定的敏感性不高。本研究中,另有5株(0.6%)丝状真菌分离物尚不能通过ITS分子标识获得有效鉴定。
     (4)研究了ITS分子标识在酵母分类鉴定中的适用性,所研究酵母分离物中的99.7%可通过ITS分子标识鉴定到属,其中94.3%的分离物可直接鉴定到种。利用ITS分子标识对738株酵母分离物进行了分类鉴定,有696株(94.3%)酵母分离物可被成功鉴定到种,分属于42个种,18个属;40株分离物仅能鉴定到属,占整个酵母分离物的5.4%。另有2株(0.3%)分离物尚不能通过ITS分子标识获得有效鉴定。
     综上所述,本研究在建立批量、快捷和高效的微生物鉴定方法的基础上,研究确认了16S rDNA序列在细菌分类鉴定、ITS序列在酵母和丝状真菌分类鉴定中拥有很高的敏感性和特异性,可以将绝大部分的微生物分离物直接鉴定到种属。因此,细菌16SrDNA序列及酵母和丝状真菌ITS序列可以作为第一轮分类鉴定标识,用于微生物分离物的分类鉴定。微生物的鉴定可以也应该从rDNA开始。
Microorganism is one of the most important biological resources on the earth, also thebiological basis for the industrial biotechnology. Microbial resources applied in biotechnologyhave been contributing greatly to economic and social benefits. Identification of microbialresources is the key point to the development of biotechnology. Conventional microbialidentification has been based on the phenotype and biochemical characteristics. With theadvances in polymerase chain reaction (PCR) and DNA sequencing technologies, moleculartechniques have progressively been developed as standard approaches in studies dealing withmicrobial classification. The microbial taxonomy has shift from phenotypic to DNA-basedmolecular technology. In recent years, several molecular identification methods have beenestablished by making use of the variable domains of the rDNA sequences. With the aim toevalueate the feasibility and value of rDNA sequences applied in industrial microbialidentification, this study focused on the establishment of rapid method for microbial genomicDNA extraction and the applicability of molecular markers (bacterial16S rDNA, internaltranscribed spacer of yeasts and filamentous fungi) used in microbial taxonomy. The mainresults are as follows:
     (1) A rapid, efficient approach for molecular markers prepartion in bulk wasestablished based on a novel rapid microbial genomic DNA extraction method. In thisstudy, a novel rapid and efficient DNA extraction method based on alkaline lysis which candeal with a large number of microbial isolates (96n) in the same batch was established. Thegenomic DNA required only20minutes to prepare, and eliminated the need for complexDNA purification protocols such as solvent extraction. The extracted genomic DNA can bedirectly used as template for molecular markers amplification using PCR assay. The amplifiedrDNA sequences were easy to identify by analysis. The extracted DNA also can be used toamplify other protein-coding genes for molecular identification. This method can be used forrapid systematic microbial identification. Up to now, we have already successfully identified5296strains (including bacteria, actinomycetes, filamentous fungi and yeast) based on thismethod.
     (2) Evaluated the feasibility of16S rDNA sequence for systemic classification andidentification of bacterial isolates,82.5%of test strains can be assigned to species leveldirectly. The16S rDNA sequences of3726bacterial strains deposited in CICIM-CU (Cultureand information center of industrial microorganism of China universities) were amplifiedusing PCR reaction. The sequences were compared to reference data available at the GenBankdatabase by using BLAST (Basic local alignment search tool). The results shown all of teststrains were identified to genus level successful by16S rDNA sequence-based anaylsis. Mostof isolates (82.5%) were identified to species level which assigned to210species belongingto45genera. Some closely-related Bacillus and Geobacillus species have highly similar16SrDNA sequences, making16S rDNA sequence analysis-based identification problematic.
     (3) Assessment of the sensitivity of ITS sequence for classification of filamentousfungal isolates,82.2%of test strains were assigned to species level successfully. The ITS regions of832fungal isolates were amplified by PCR and sequenced. The results of ITSsequences analysis shown most of fungal isolates (82.2%) were identified to species levelsuccessfully which assigned to84species belonging to33genera.143fungal isolates (17.2%)were identified to genus level merely which difficult to distinguished from each other becausepoor interspecies homology of ITS sequence, especially in genus Aspergillus and Penicillium.Only5strains (0.6%) cannot be identified based on ITS sequences analysis. Although ITSsequence may not be sufficiently sensitive for identifying some closely related taxa to specieslevel, it can be used as first-round molecular marker to systemic identification of bulk fungalisolates efficiently.
     (4) Assessment of the sensitivity of ITS sequence for classification of yeast isolates,94.3%of isolates were assigned to species level by ITS sequence variability. The738yeast isolates deposited in CICIM-CU were identified by ITS regions sequence-basedalignment, the result shown696test strains (94.3%) were identified to species levelsuccessfully which assigned to42species belonging to18genera.40strains (5.4%) wereassigned to genus level merely.2strains (0.3%) cannot be identified based on ITS sequencesanalysis.The results shown the ITS sequence exhibits enough differences between yeasts, andcan be used in the discrimination of intra-and inter-species relationships.
     In summary, based on the novel efficient method of microbial identification, this researchconfirmed the sequences of16S rDNA and ITS have sufficiently sensitive for identifyingbacterial, yeast and fungal isolates, respectively. Most of microbial isolates in this study canbe assiganed to species or genus level successfully by using these two molecular markers. Thepresent results clearly demonstrate that the16S rDNA and ITS region are sufficient asfirst-round molecualer markers used in microbial isolates identification. Therefore, microbialidentification can and should starts from the rDNA sequences.
引文
1.徐丽华,娄恺,张华,等.微生物资源学[M].第二版.北京:科学出版社,2010.
    2.中国科学技术学会,中国微生物学会.2009-2010微生物学科发展报告[M].北京:中国科学技术出版社,2010.
    3. Rohlin L, Oh MK, Liao JC. Microbial pathway engineering for industrial processes:evolution, combinatorial biosynthesis and rational design [J]. Curr Opin Microbiol,2001,4(3):330-335.
    4.国家自然科技资源平台“微生物菌种资源”项目组.微生物菌种资源描述规范汇编(增补版)[M].北京:中国农业科学技术出版社,2009.
    5. Madigan MT, Martinko JM, Parker J. Brock biology of microorganisms [M].10thed.San Francisco: Benjamin-Cummings,2008.
    6.沈萍,陈向东.微生物学[M].第二版.北京:高等教育出版社,2006.
    7.林稚兰,罗大珍.微生物学[M].北京:北京大学出版社,2011.
    8. Schleifer KH. Classification of bacteria and archaea: past, present and future [J]. SystAppl Microbiol,2009,32(8):533-542.
    9. Müller T, Philippi N, Dandekar T, et al. Distinguishing species [J]. RNA,2007,13(9):1469-1472.
    10. Stackebrandt E, Frederiksen W, Garrity GM, et al. Report of the ad hoc committee forthe re-evaluation of the species definition in bacteriology [J]. Int J Syst Evol Microbiol,2002,52(3):1043-1047.
    11. Cohan FM. What are bacterial species [J]. Annu Rev Microbiol,2002,56:457-487.
    12.黄秀梨,辛明秀.微生物学教程[M].第三版.北京:高等教育出版社,2009.
    13. McClenny N. Laboratory detection and identification of Aspergillus species bymicroscopic observation and culture: the traditional approach [J]. Med Mycol,2005,43(1):125-128.
    14.东秀珠,蔡妙英.常见细菌鉴定手册[M].北京:科学出版社,2001.
    15.陶天申,杨瑞馥,东秀珠.原核生物系统学[M].北京:化学工业出版社,2007.
    16.阮继生,黄英.放线菌快速鉴定与系统分类[M].北京:科学出版社,2011.
    17. Jones D, Krieg NR,陈文新.细菌分类—血清学和化学分类[J].微生物学通报,1987,6(1):281-284.
    18. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in theclassification of aerobic actinomycetes [J]. Int J Syst Bacteriol,1970,20(4):435-443.
    19.邢来君,李明春,魏东盛.普通真菌学[M].第三版.北京:高等教育出版社,2010.
    20. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposalfor the domains Archaea, Bacteria, and Eucarya [J]. Proc Natl Acad Sci USA,1990,87(12):4576-4579.
    21. Olsen GJ, Woese CR. Ribosomal RNA: a key to phylogeny [J]. FASEB J,1993,7(1):113-123.
    22. Woese CR, Fox GE, Zablen L, et al. Conservation of primary structure in16S ribosomalRNA [J]. Nature,1975,254(5495):83-86.
    23. Noller HF. Structure of ribosomal RNA [J]. Annu Rev Biochem,1984,53(1):119-162.
    24. Vandamme P, Pot B, Gillis M, et al. Polyphasic taxonomy, a consensus approach tobacterial systematic [J]. Microbiological Rev,1996,60(2):407-438.
    25. Fox GW, Woese CR.5S RNA secondary structure [J]. Nature,1975,256(5517):505-507.
    26. Janda JM, Abbott SL.16S rRNA gene sequencing for bacterial identification in thediagnostic laboratory: pluses, perils, and pitfalls [J]. J Clin Microbiol,2007,45(9):2761-2764.
    27. Maidak BL,Olsen GJ,Larsen N,et al. The RDP (ribosomal database project)[J].Nucleic Acids Res,1997,25(1):109-110.
    28. Bruns TD, White TJ, Taylor JW. Fungal molecular systematic [J]. Ann Rev Ecol Syst,1991,22:525-564.
    29. Hibbett DS. Ribosomal RNA and fungal systematic [J]. Trans Mycol Soc Japan,1992,33(1):533-556.
    30. Bridge PD. The history and application of molecular mycology [J]. Mycologist,2002,16(3):90-99.
    31. Ciardo DE, Schar G, Altwegg M, et al. Identification of moulds in the diagnosticlaboratory, an algorithm implementing molecular and phenotypic methods [J]. DiagnMicrobiol Infect Dis,2007,59(1):49-60.
    32. Kurtzman CP, Fell JW. The yeasts, a taxonomic study [M].4thed. Amsterdam: Elsevier,1998.
    33. Peterson SW, Kurtzman CP. Ribosomal RNA sequence divergence among siblingspecies of yeasts [J]. Syst Appl Microbiol,1991,14(2):124-129.
    34. Garner CD, Starr JK, McDonough PL, Altier C. Molecular identification ofveterinary yeast isolates by use of sequence-based analysis of the D1/D2region of thelarge ribosomal subunit [J]. J Clin Microbiol,2010,48(6):2140-2146.
    35. Fell JW, Boekhout T, Fonseca A, et al. Biodiversity and systematics ofbasidiomycetous yeasts as determined by large-subunit rDNA D1/D2domain sequenceanalysis [J]. Int J Syst Evol Microbiol,2000,50(3):1351-1371.
    36. Kurtzman CP, Fell JW. Yeast systematics and phylogeny: implications of molecularidentification methods for studies in ecology. Biodiversity and ecophysiology of yeasts:the yeast handbook [M]. New York: Springer,2006.
    37. Shearer JG. Cloning and analysis of cDNA encoding an elongation factor1a from thedimorphic fungus Histoplasma capsulatum [J]. Gene,1995,161(1):119-123.
    38. Li J, Edlind T. Phylogeny of Pneumocystis carinii based on β-tubulin sequence [J]. JEukaryot Microbiol,1994,41(5):97.
    39. Wery J, Dalderup MJM, Linde JT, et al. Structural and phylogenetic analysis of theactin gene from the yeast Phaffia rhodozyma [J]. Yeast,1996,12(7):641-651.
    40. Janbon G, Rustchenko EP, Klug S, et al. Phylogenetic relationships of fungalcytochromes C [J]. Yeast,1997,13(10):985-990.
    41. MartinW, Brinkmann H, Savonna C, et al. Evidence for a chimeric nature of nucleargenomes: Eubacterial origin of eukaryotic glyceraldehydes-3-phosphate dehydrogenasegenes [J]. Proc Natl Acad Sci USA,1993,90(18):8692-8696.
    42. Samson RA, Seifert KA, Kuijpers AFK, et al. Phylogenetic analysis of Penicilliumsubgenus Penicillium using partial β-tubulin sequences [J]. Stud Mycol,2004,49(1):175-200.
    43. Fleishmann RD, Adams MD, White O, et al. Whole-genome random sequencing andassembly of Haemophilus influenzae Rd [J]. Science,1995,269(5223):496-512.
    44. Goris J, Konstantinidis TK, Klappenbach JA, et al. DNA-DNA hybridization valus andtheir relationship to whole genome sequence similarities [J]. Int J Syst Evol Microbiol,2007,57(1):81-91.
    45. Wu D, Hugenholtz P, Mavromatis K, et al. A phylogeny-driven genomic encyclopaediaof Bacteria and Archaea [J]. Nature,2009,462(7276):1056-1060.
    46.戴芳澜.真菌的形态和分类[M].北京:科学出版社,1987.
    47.巴尼特JA,佩恩RW,亚罗D.酵母菌的特征与鉴定手册[M].胡瑞卿,译.青岛:青岛海洋大学出版社,1991.
    48.周德庆.微生物学教程[M].第三版.北京:高等教育出版社,2011.
    49. Baker S, Nicjlin J, Khan N, et al. Instant note in microbiology [M].3rded. Abingdon:Taylor&Francis,2006.
    50.陈源源,石贵阳,王正祥.一种酵母快速批量分子鉴定方法[J].食品与发酵工业,2011,37(2):25-27.
    51. Ochi K. A taxonomic study of the genus Streptomyces by analysis of ribosomal proteinAT-L30[J]. Int J Syst Bacteriol,1995,45(3):507-514.
    52. Gottschalk G. Methods in microbiology [M]. London: Academic Press,1985.
    53.姜成林,徐立华.放线菌研究[M].昆明,云南大学出版社,1998.
    54. Saddler GS, Goodfellow M, Minnikin DE, et al. Influence of the growth cycle on thefatty acid and menaquinone composition of Streptomyces cyaneus NCIB9616[J]. JAppl Bacteriol,1986,60(1):51-56.
    55. Rosypal S, Rosypalova A, Horejs J. The classification of Micrococci and Staphylococcibased on their DNA base composition and adansonian analysis [J]. Microbiology,1966,44(2):281-292.
    56. Hamelin RC, Ouellette GB, Bernier L. Identification of Gremmeniella abietina raceswith random amplified polymorphic DNA markers [J]. Appl Environ Microbiol.1993,59(6):1752-1755.
    57. Farmer DJ, Sylvia DM. Variation in the rDNA ITS of ectomycorrhizal fungi [J]. MycolRes,1998,102(7):859-869.
    58.阎培生,罗信昌,周启.木耳属真菌rDNA特异性扩增片段的RFLP研究[J].菌物系统,1999,18(2):206-213.
    59. Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting [J].Nucleic Acids Res,1995,23(21),4407-4414.
    60. de Barros Lopes M, Rainieri S, Henschke PA, et al. AFLP fingerprinting for analysis ofyeast genetic variation [J]. Int J Syst Bacteriol,1999,49(2):915-924.
    61. Tautz D, Arctander P, Minelli A, et al. DNA points the way ahead in taxonomy [J].Nature,2002,418(6904):479.
    62.程池,刘光全,李金霞,等.55株芽孢杆菌16S rRNA基因序列测定与系统发育学分析[J].食品与发酵工业,2006,32(10):20-24.
    63. Lee JS, Heo GY, Lee JY. Analysis of kimchi microflora using denaturing gradient gelelectrophoresis [J]. Int J Food Microbiol,2005,102(2),143-150.
    64. Druzhinina IS, Kopchinskiy AG, Komoj M, et al. An oligonucleotide barcode forspecies identication in Trichoderma and Hypocrea [J]. Fungal Genet Biol,2005,42(10):813-828.
    65. Henry T, Iwen PC, Hinrichs SH. Identification of Aspergillus species using internaltranscribed spacer regions1and2[J]. J Clin Microbiol,2000,38(4):1510-1515.
    66. Zhao J, Kong F, Li R, et al. Identification of Aspergillus fumigatus and related speciesby nested PCR targeting ribosomal DNA internal transcribed spacer regions [J]. J ClinMicrobiol,2001,39(6):2261-2266.
    67. Hinrikson HP, Hurst SF, Lott TJ, et al. Assessment of ribosomal large-subunit D1-D2,internal transcribed spacer1, and internal transcribed spacer2regions as targets formolecular identification of medically important Aspergillus species [J]. J Clin Microbiol,2005,43(5):2092-2103.
    68. Rossman A. Report of the planning workshop for all fungi DNA barcoding [J].Inoculum,2007,58(6):1-5.
    69. Nilsson RH, Kristiansson E, Ryberg M, et al. Intraspecific ITS variability in thekingdom fungi as expressed in the international sequence databases and its implicationsfor molecular species identification [J]. Evol Bioinform,2008,4(1):193-201.
    70. Kurtzman CP, Robnett CJ. Phylogenetic relationships among yeasts of the‘Saccharomyces complex’ determined from multigene sequence analyses [J]. FEMSYeast Res,2003,3(4):417-432.
    71. James SA, Collins MD, Roberts IN. Use of an rRNA internal transcribed spacer regionto distinguish phylogenetically closely related species of the generaZygosaccharomyces and Torulaspora [J]. Int J Syst Bacteriol,1996,46(1):189-194.
    72. Fell JW, Blatt G. Separation of strains of the yeasts Xanthophyllomyces dendrorhousand Phaffia rhodozyma based on rDNA, IGS and ITS sequence analysis [J]. J IndMicrobiol Biotechnol,1999,23(1):677-681.
    73. Scorzetti G, Fell JW, Fonseca A, et al. Systematics of basidiomycetous yeasts: acomparison of large subunit D1/D2and internal transcribed spacer rDNA regions [J].FEMS Yeast Res,2002,2(4):495-517
    74. Diaz MR, Boekhout T, Theelen B, et al. Molecular sequence analysis of the intergenicspacer (IGS) associated with rDNA of the two varieties of the pathogenic yeast,Cryptococcus neoformans [J]. Syst Appl Microbiol,2000,23(4):535-545.
    75. Diaz MR, Fell JW. Molecular analysis of ITS and IGS rDNA regions of thepsychrophilic yeasts in the genus Mrakia [J]. Antonie van Leeuwenhoek,2000,77(1):7-12.
    76. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructingphylogenetic trees [J]. Mol Biol Evol,1987,4(4):406-426.
    77. Burggraf S, Mayer T, Amann R, et al. Identifying members of the domain Archaea withrRNA-targeted oligonucleotide probes [J]. Appl Environ Microbiol,1994,60(9):3112-3119.
    78. Garrity GM. Bergey’s manual of systematic bacteriology [M].2thed. Now York:Springer,2005.
    79. Holt JG,Krieg NR, Sneath PHA, et al. Bergey’s manual of determinative bacteriology[M].2thed. Philadelphia: Lippincott Williams&Wilkins,2001.
    80. Hawksworth DL. The magnitude of fungal diversity: the1.5million species estimaterevisited [J]. Mycol Res,2001,105(12):1422-1432.
    81. Hawksworth DL. Fungal diversity and its implications for genetic resource collections[J]. Stud Mycol,2004,50(1):9-18.
    82. Bruns TD. A kingdom revised [J]. Nature,2006,443(19):758-760.
    83. James TY, Kauff F, Schoch CL, et al. Reconstructing the early evolution of Fungi usinga six-gene phylogeny [J]. Nature,2006,443(19):818-822.
    84. Sogin ML. Evolution of eukaryotic microorganisms and their small subunit ribosomalRNAs [J]. Am Zool,1989,29(2):487-499.
    85. Van der Auwera G, Chapelle S, De Wachter R. Structure of the large ribosomal subunitRNA of Phytophthora megasperma, and phylogeny of the Oomycetes [J]. FEBS Lett,1994,338(2):133-136.
    86. Van der Auwera G, De Baere R, Van de Peer, et al. The phylogeny of theHyphochytriomycota as deduced from ribosomal RNA sequences of Hyphochytriumcatenoides [J]. Mol Biol Evol,1995,12(2):671-678.
    87. Hambleton S, Egger KN, Currah RS. The genus Oidiodendron: species delimitation andphylogenetic relationships based on nuclear ribosomal DNA analysis [J]. Mycologia,1998,90(5):851-869.
    88. Blackwell M, Hibbett DS, Taylor JW, et al. Research coordination networks: aphylogeny for kingdom Fungi (Deep Hypha)[J]. Mycologia,2006,98(6):829-837.
    89. O’Donnell K. Molecular phylogeny of the Nectria haematococca-Fusarium solanispecies complex [J]. Mycologia,2000,92(5):919-938.
    90. Zhang N, O’Donnell K, Sutton DA, et al. Members of the Fusarium solani speciescomplex that cause infections in both humans and plants are common in theenvironment [J]. J Clin Microbiol,2006,44(6):2186-2190.
    91. Kwon-Chung KJ, Varma A. Do major species concepts support one, two or morespecies within Cryptococcus neoformans?[J]. FEMS Yeast Res.2006,6(4):574-587.
    92.李金霞,程池,姚粟,等. Biolog微生物自动分析系统—酵母菌鉴定操作规程的研究[J].食品与发酵工业,2006,32(7):50-53.
    93.姚粟,程池,李金霞,等. Biolog微生物自动分析系统—丝状真菌鉴定操作规程的研究[J].食品与发酵工业,2006,32(8):63-67.
    94. Bruns TD, Shefferson RP. Evolutionary studies of ectomycorrhizal fungi: recentadvances and future directions [J]. Can J Bot,2004,82(8):1122-1132.
    95. Greisen K, Loffelholz M, Purohit A, et al. PCR primers and probes for the16S rRNAgene of most species of pathogenic bacteria, including bacteria found in cerebrospinalfluid [J]. J Clin Microbiol,1994,32(2):335-351.
    96. Drancourt M, Bollet C, Carlioz A, et al.16S ribosomal DNA sequence analysis of alarge collection of environmental and clinical unidentifiable bacterial isolates [J]. J ClinMicrobiol,2000,38(10):3623-3630.
    97. Liguori AP, Warrington SD, Ginther JL, et al. Diversity of16S-23S rDNA internaltranscribed spacer (ITS) reveals phylogenetic relationships in Burkholderiapseudomallei and its near-neighbors [J]. PLoS One,2011,6(12): e29323.
    98. La Scola B, Gundi VA, Khamis A, et al. Sequencing of the rpoB gene and flankingspacers for molecular identification of Acinetobacter species [J]. J Clin Microbiol,2006,44(3):3827-3832.
    99. Bavykin SG, Lysov YP, Zakhariev V, et al. Use of16S rRNA,23S rRNA, and gyrB genesequencing analysis to determine phylogenetic relationships of Bacillus cereus groupmicroorganisms [J]. J Clin Microbiol,2004,42(8):3711-3730.
    100. Caligiorne RB, Licinio P, Dupont J, et al. Internal transcribed spacer rRNA gene-basedphylogenetic reconstruction using algorithms with local and global sequence alignmentfor black yeasts and their relatives [J]. J Clin Microbiol,2005,43(6):2816-2823.
    101. Sugita T, Kodama M, Saito M, et al. Sequence diversity of the intergenic spacer regionof the rRNA gene of Malassezia globosa colonizing the skin of patients with atopicdermatitis and healthy individuals [J]. J Clin Microbiol,2003,41(7):3022-3027.
    102. Linton CJ, Borman AM, Cheung G, et al. Molecular identification of unusualpathogenic yeast isolates by large ribosomal subunit gene sequencing:2years ofexperience at the United Kingdom mycology reference laboratory [J]. J Clin Microbiol,2007,45(4):1152-1158.
    103. Melchers WJ, Verweij PE, et al. General primer-mediated PCR for detection ofAspergillus species [J]. J Clin Microbiol,1994,32(7):1710-1717.
    104. Craven KD, Hsiau PTW, Leuchtmann A, et al. Multigene phylogeny of Epichloespecies, fungal symbionts of grasses [J]. Ann Mo Bot Gard,2001,88(1):14-34.
    105. Turenne CY, Sanche SE, Hoban DJ, et al. Rapid identification of fungi by using theITS2genetic region and an automated fluorescent capillary electrophoresis system [J].J Clin Microbiol,1999,37(6):1846-1851.
    106. Hibbett DS, Binder M, Bischoff JF, et al. A higher-level phylogenetic classification ofthe Fungi [J]. Mycol Res,2007,111(5):509-547.
    107. Campbell J, Volkmann-Kohlmeyer B, Grafenhan T, et al. A re-evaluation ofLulworthiales: relation-ships based on18S and28S rDNA [J]. Mycol Res,2005,109(5):556-568.
    108. Keeling PJ. Congruent evidence for alpha-tubulin and beta-tubulin gene phylogeniesfor a zygomycete origin of Micro-sporidia [J]. Fungal Genet Biol,2003,38(3):298-309.
    109. Tanabe Y, Saikawa M, Watanabe MM, et al. Molecular phylogeny of Zygomycotabased on EF-1and RPB1sequences: limitations and utility of alternative markers torDNA [J]. Mol Phylogenet Evol,2004,30(2):438-449.
    110. Shenoy BD, Jeewon R, Wu WP, et al. Ribosomaland RPB2DNA sequence analysessuggest that Sporidesmium and morphologically similar genera are polyphyletic [J].Mycol Res,2006,110(8):916-928.
    111.周俊初.微生物生物学[M].北京:科学出版社,2004.
    112. Liu D, Coloe S, Baird R, et al. Rapid mini-preparation of fungal DNA for PCR [J]. JClin Microbiol,2000,38(1):471.
    113. Chen SC, Halliday CL, Meyer W. A review of nucleic acid-based diagnostic tests forsystemic mycoses with an emphasis on polymerase chain reaction-based assays [J].Med Mycol,2002,40(4):333-357.
    114. van Burik JA, Schreckhise RW, White TC, et al. Comparison of six extractiontechniques for isolation of DNA from filamentous fungi [J]. Med Mycol,1998,36(5):299-303.
    115. Melo SCO, Pungartnik C, Cascardo JCM, et al. Rapid and efficient protocol for DNAextraction and molecular identification of the basidiomycete Crinipellis perniciosa [J].Genet Mol Res,2006,5(4):851-855.
    116. Zhu H, Qu F, Zhu LH. Isolation of genomic DNAs from plants, fungi and bacteriausing benzyl chloride [J]. Nucleic Acids Res,1993,21(22),5279-5280.
    117. Müller FMC, Werner KE, Kasai M, et al. Rapid extraction of genomic DNA frommedically important yeasts and filamentous fungi by high-speed cell disruption [J]. JClin Microbiol,1998,36(6):1625-1629.
    118. Karakousisa A, Tana L, Ellisb D, H. et al. An assessment of the efficiency of fungalDNA extraction methods for maximizing the detection of medically important fungiusing PCR [J]. J Microbiol Meth,2006,65(1):38-48.
    119. Tendulkar SR, Gupta A, Chattoo BB. A simple protocol for isolation of fungal DNA[J]. Biotechnol Lett,2003,25(22):1941-1944.
    120. Fredricks DN, Smith C, Meier A. Comparison of six DNA extraction methods forrecovery of fungal DNA as assessed by quantitative PCR [J]. J Clin Microbiol,2005,43(10):5122-5128.
    121. Mahuku GS. A simple extraction method suitable for PCR-based analysis of plant,fungal, and bacterial DNA [J]. Plant Mol Biol Rep,2004,22(1):71-81.
    122. Begerow D, Stoll M, Bauer R. A phylogenetic hypothesis of Ustilaginomycotina basedon multiple gene analyses and morphological data [J]. Mycologia,2007,98(6):906-916.
    123. Pearson WR, Lipman DJ. Improved tools for biological sequence comparison [J]. ProcNatl Acad Sci USA,1998,85(8):2444-2448.
    124. Bidartondo MI. Preserving accuracy in GenBank [J]. Science,2008,319(5870):1616.
    125. Benson DA, Karsch-Mizrachi I, Lipman DJ, et al. GenBank [J]. Nucleic Acids Res,2011,39:32-37.
    126. Bridge PD, Roberts PJ, Spooner BM, et al. On the unreliability of published DNAsequences [J]. New Phytologist,2003,160(1):43-48.
    127. Vilgalys R. Taxonomic misidentification in public DNA database [J]. New Phytologist,2003,160(1):4-5.
    128.陈源源,沈微,樊游,等. GenBank数据库中微生物rDNA序列准确性研究[J].食品与发酵工业,2012,38(3):111-114.
    128. Hugenholtz P, Huber T. Chimeric16S rDNA sequences of diverse origin areaccumulating in the public databases [J]. Int J Syst Evol Micrbiol,2003,53(1):289-293.
    130.陈源源,牛丹丹,王正祥.一种快速鉴定细菌的方法[J].食品与发酵工业,2007,33(5):29-31.
    131. Kurtzman CP, Robnett CJ. Identification of clinically important ascomycetous yeastsbased on nucleotide divergence in5' end of the large subunit (26S) ribosomal DNAgene [J]. J Clin Microbiol,1997,35(5):1216-1223.
    132. Gardes M, Bruns TD. ITS primers with enhanced specificity for Basidiomycetesapplication to the identification of mycorrhizae and rusts [J]. Mol Ecol,1993,2(2):113-118.
    133. Rehner SA, Buckley E. A Beauveria phylogeny inferred from nuclear ITS and EF-1αsequences: evidence for cryptic diversification and links to Cordyceps teleomorphs [J].Mycologia,2005,97(1),84-98.
    134. Matheny PB. PCR Primers to Amplify and Sequence rpb2in the Basidiomycota(Fungi).2006. http://www.clarku.edu/faculty/dhibbett.
    135.诸葛健,王正祥.工业微生物实验技术手册[M].北京:中国轻工业出版社,1994.
    136. Atlas RM. Handbook of microbiological media [M]. Boca Raton: CRC Press,1997.
    137. Ma XJ, Shu YL. Short protocols in molecular biology [M]. Beijin: Science Press,2005.
    138.萨姆布鲁克J,弗里奇EF.分子克隆实验指南[M].第二版.金冬雁,黎孟枫,侯云德,等译.北京:科学出版社,1998.
    139.姚婷婷.糖化酶生产菌的遗传改良[D].无锡:江南大学,2006.
    140. Chen YY, Prior BA, Shi GY, et al. A rapid PCR-based approach for molecularidentification of filamentous fungi [J]. J Microbiol,2011,49(4):675-679.
    141. Thompson JD, Gibson TJ, Plewniak F, et al. The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools [J].Nucleic Acids Res,1997,25(24):4876-4882.
    142. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructingphylogenetic trees [J]. Mol Biol Evol,1987,4(4):406-426.
    143. Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap [J].Evolution,1985,39(1):783-791.
    144. Rasko DA, Altherr MR, Han CS, et al. Genomics of the Bacillus cereus group oforganisms [J]. FEMS Microbiol Rev,2005,29(2),303-329.
    145. Giffel MC, Beumer RR, Klijn N, et al. Discrimination between Bacillus cereus andBacillus thuringiensis using specific DNA probes based on variable regions of16SrRNA [J]. FEMS Microbiol Lett,1997,146(1):47-51.
    146. Chen ML, Tsen HY. Discrimination of Bacillus cereus and Bacillus thuringiensis with16S rRNA and gyrB gene based PCR primers and sequencing of their annealing sites[J]. J Appl Microbiol,2002,92(5):912-919.
    147. Priest FG, Goodfellow M, Shute LA, et al. Bacillus amyloliquefaciens sp.nov., nom. rev [J]. Int J Syst Bacteriol,1987,37(1):69-71.
    148. Wang LT, Lee FL, Tai CJ, et al. Comparison of gyrB gene sequences,16S rRNA genesequences and DNA-DNA hybridization in the Bacillus subtilis group [J]. Int J SystEvol Microbiol,2007,57(8):1846-1850.
    149. Oleg NR, Christina D, Johan M, et al. Taxonomic characterization and plant colonizingabilities of some bacteria related to Bacillus amyloliquefaciens and Bacillus subtilis [J].FEMS Microbiol Ecol,2004,48(2):249-259.
    150. Nazina TN, Tourova TP, Poltaraus AB, et al. Taxonomic study of aerobic thermophilicbacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillusuzenensis sp. nov. from petroleum reservoirs and transfer of Bacillusstearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacilluskaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G.stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G.thermodenitrificans [J]. Int J Syst Evol Microbiol,2001,51(2):433-446.
    151.周为民,杨世忠, Nazina TN,等. Geobacillus研究进展[J].微生物学杂志,2005,25(3):46-49.
    152. Weng FY, Chiou CS, Lin PH, et al. Application of recA and rpoB sequence analysis onphylogeny and molecular identification of Geobacillus species [J]. J Appl Microbiol,2009,107(2):452-464.
    153. Alexopoulos CJ, Mims CW, Blackwell M. Introductory Mycology [M].4thed. NewYork: John Wiley,1996.
    154. Kirk MP, Cannon PF, Minter DW, et al. Dictionary of the Fungi [M].10thed. CABIPublishing,2008.
    155. Ciardo DE, Lucke K, Imhof A, et al. Systematic internal transcribed spacer sequenceanalysis for identification of clinical mold isolates in diagnostic mycology: a5-yearstudy [J]. J Clin Microbiol,2010,48(8):2809-2813.
    156. Aime MC, Matheny PB, Henk DA, et al. An overview of the higher-level classificationof Pucciniomycotina based on combined analyses of nuclear large and small subunitrDNA sequences [J]. Mycologia,2007,98(6):896-905.
    157. Wang Z, Johnston PR, Takamatsu S, et al. Toward a phylogenetic classification of theLeotiomycetes based on rDNA data [J]. Mycologia,2006,98(6):1065-1075.
    158. Skouboe P, Frisvad JC, Taylor JW, et al. Phylogenetic analysis of nucleotidesequences from the ITS region of terverticillate Penicillium species [J]. Mycol Res,1999,103(7):873-881.
    159. Geiser DM, Dorner JW, Horn BW, et al. The phylogenetics of mycotoxin andsclerotium production in Aspergillus flavus and Aspergillus oryzae [J]. Fungal GenetBiol,2000,31(3):169-179.
    160. Kurtzman CP. Systematics of the ascomycetous yeasts assessed from ribosomal RNAsequence divergence [J]. Antonie van Leeuwenhoek,1993,63(2):165-174.
    161. Kurtzman CP, Robnett CJ. Molecular relationships among hyphal ascomycetous yeastsand yeastlike taxa [J]. Can J Bot,1995,73(1):824-830.
    162. Swann EC, Taylor JW. Phylogenetic perspectives on basidiomycete systematics:evidence from the18S rRNA gene. Can J Bot,1995,73(1): S862-S868.
    163. Suh S-O, Blackwell M, Kurtzman CP, et al. Phylogenetics of Saccharomycetales, theascomycete yeasts [J]. Mycologia,2007,98(6):1008-1019.
    164. Fell JW, Roeijmans H, Boekhout T. Cystofilobasidiales, a new order ofbasidiomycetous yeasts [J]. Int J Syst Bacteriol,1999,49(2):907-913.
    165. Leaw SN, Chang HC, Sun HF, et al. Identification of medically important yeastspecies by sequence analysis of the internal transcribed spacer regions [J]. J ClinMicrobiol,2006,44(3):693-699.
    166. Tavanti A, Davidson AD, Gow NA, et al. Candida orthopsilosis and Candidametapsilosis spp. nov. to replace Candida parapsilosis groups II and III [J]. J ClinMicrobiol,2005,43(1):284-292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700