用户名: 密码: 验证码:
中国苹果树腐烂病菌的种群组成、分子检测及其ISSR遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苹果树腐烂病是影响我国苹果生产最重要的枝干性病害之一,其主要危害果树的主枝、主干和小枝的皮层部分,造成主枝、主干枯死,从而严重的影响苹果的产量和品质。目前,由于对引起苹果树腐烂病的病原菌种类还存在一定的争议,导致对病原菌生物学特性和流行规律缺乏足够的认识,严重的影响到了病害防治策略的制定。由于苹果树腐烂病菌具有潜伏侵染的现象,潜伏期会因为寄主自身的生理条件的不同而长短不一。因此,在病害发展的早期阶段,果树是否被病原菌侵染不易察觉。当果树表现出明显的症状时,再进行防治不仅费时费力,而且往往因为错过了最佳的防治时间而收效甚微,造成了人力和财力的浪费。合理的选用抗病品种是被公认为防治腐烂病最为经济有效的方法,但由于对苹果树腐烂病菌群体遗传特性的研究一直以来都是空白,严重的阻碍了抗病育种工作的开展。本研究针对这些问题,主要采用分子生物学的方法,逐一进行了深入的研究,取得了以下主要结果:
     1.以rDNA-ITS,EF1α和β-tubulin三个基因序列和其形成的联合基因序列数据集为基础,通过MP、ML和BI三种系统分析法,明确了我国苹果树腐烂病菌的三个种类组成,即Valsa mali Miyabe et Yamada,V. malicola Z. Urb和V. persoonii(=Leucostompersoonii)。而V. mali种下又可以划分为两个不同的变种,即V. mali var. mali(Vmm)和V. mali var. pyri(Vmp),其中Vmm是我国苹果树腐烂病最主要的致病菌。来自于苹果或野苹果的V. cerastosperma与V. mali是同物异名,但其与来自其它阔叶树的V.cerastosperma有比较大的遗传差异。
     2.分别以Vmm,V. malicola和V. persoonii的rDNA-ITS的特异序列为基础,设计出针对每种病原菌的种特异性引物VmF/R,VmcF/R,VpF/R;并以其共有序列为基础,设计出针对壳囊孢属(Valsa)病菌的属专化性引物VF/R,以这两者相结合,建立起了针对这三种病原菌的巢氏PCR检测体系。检测体系的灵敏度检测结果表明,本实验所建立的巢氏PCR检测体系,对这三种病原菌的最低检测剂量分别达到了100fg/μl,1fg/μl和1fg/μl,表明其具有非常高的灵敏度,可以满足分子检测的需要。体系特异性的检测结果表明,这些引物只能从其要检测的靶标菌样品中扩增到目的条带,表明其具有高度的特异性。通过真菌分离法和巢氏PCR检测方法的比较,发现凡是通过真菌分离法发现病原菌的样品同时也能通过巢氏PCR检测到病原菌的存在。试验中不存在通过真菌分离法可以获得病原菌,但巢氏PCR却检测不到病原菌的现象。巢氏PCR和真菌分离法对有明显症状样品的检测率都达到了100%,对无明显症状样品的检测比率分别达到了64.7%和20.6%,表明巢氏PCR具有比传统真菌分离法更高的检测率和准确性。
     3.通过巢式PCR的方法,对采自陕西省苹果产区的279份节间组织样品进行了检测。检测结果表明在其中的150份样品中检测到了V. mali var. mali,占所检测样品的53.76%;在64份样品中检测到了V. malicola,占所检测样品的22.94%;在24份样品中,检测到了病原菌V. persoonii,占所检测样品的8.60%。检测结果说明,外表无明显腐烂症状的苹果树节间组织中,也普遍带有苹果树腐烂病菌,其中以V. mali var. mali最为普遍,V. malicola居中,V. persoonii检测到的频率最低。在检测的279份外表无症状的节间组织样品中,共有56份样品中检测到了两种或两种以上的病原菌,占所检测样品的20%,说明两种或两种以上病菌共同侵染的寄主的情况,在田间条件下广泛存在。
     4.采用巢氏PCR的方法,对苹果树不同组织样品的带菌率进行了检测,结果表明,不同种类的病原菌在不同的组织中的分布情况不同。V. mali var. mali在各种组织中的分布差异明显,顶芽的平均带菌率为89%,节间组织平均带菌率为71%,芽鳞痕组织平均带菌率为48%。而V. malicola在各种组织中的分布则没有明显差异。在病株率不同的两类果园内,病株率高的果园中,样品中Vmm的带菌率明显较病株率低的果园高,但样品中V. malicola的带菌率则没有明显差异。表明Vmm和V. malicola这两种病原菌在田间具有不同的分布规律,Vmm趋向于聚集分布,而V. malicola则更趋向于均匀分布。
     5.采用正交设计实验,对影响苹果树腐烂病菌ISSR-PCR的四种主要因素进行了三个不同水平的研究,确定出最优的PCR扩增体系,即:25μL的PCR反应体系中含:0.20μmol/L dNTP、0.1μmol/L ISSR引物、3.00mmol/L Mg2+和0.05U的Taq酶。ISSR-PCR最佳扩增体系的获得,保证了实验可以获得稳定、可靠的实验结果。通过对47条ISSR引物退火温度的逐一筛选,获得了各引物最佳的退火温度,并在此基础上,筛选到了11条对苹果树腐烂病菌具有较高多态性的引物。11条引物共从129个位点扩增到稳定的条带,在供试的87个陕西分离株中,119个位点为多态性位点,多态性位点百分率为92.25%;在126个中国分离株中,129个位点全为多态性位点,多态性位点百分率为100%。
     6.通过对陕西和全国不同地理区域种群遗传多样性的分析表明,不同地理区域种群的Nei’s(1973)基因多样性指数(H)和Shannon信息指数(I)均达到了H>0.2,I>0.3的水平,表明我国的苹果树腐烂病菌具有丰富的遗传多样性。对不同地理区域种群遗传结构的分析表明,不同地理区域种群间的遗传变异,只占总变异很小的一部分,各自然种群内的不同分离株之间的遗传变异是腐烂病菌最主要的变异来源。对陕西省苹果树腐烂病菌21自然种群遗传关系的UPGMA聚类分析结果显示,在相似系数为0.88时,可将供试自然种群聚成9个类群中,其中属于第二(Ⅱ)类群的分离株,数量多(60株)、分布广(10县区),表明该类群是陕西省苹果树腐烂病菌的优势种群。同时,聚类分析也发现来自于同一地理区域种群的不同自然种群可分布于不同的聚类群中,说明各个自然种群之间的遗传亲缘关系与其地理来源之间并没有明显的相关性。对中国不同地理区域种群内不同自然种群的UPGMA聚类分析发现,苹果树腐烂病菌种群的遗传分布与其所处的纬度位置之间具有一定的关系,但是这种关系却非常弱。
Apple tree Valsa canker caused by species of Valsa, is one of the most destructive stemdiseases of apple tree (Malus domestica Borkh.) in China.The phloem of the twigs, limbs andbranches can be invaded by the pathogens, which can cause these tissues dead. Under thissituation, the production and quality of apple would be deeply affected. At present, it was stillcontroversial on the causal agents caused this disease. It was the partly reasons that limitedknowledgement was known on the physiological characteristics and epidemic rules, under thiscircustance, the effective disease control strategies have not been established by now. It wasreported that the pathogens were characteristical of latent infection.The latent period wasdependent on the physiological condition of the host. Because of latent infection, it wasdifficult in finding whether the apple trees were infected by the pathogens or not at the earlystage of disease development. Until the visible cankers can be seen on the trunks that controlmeasures will be applied. Thus, the optimal stage for controlling this disease will be missed,and the control efficiency was always not obtained after more labour and financial resourceswere spent. It was said that disease-resistant cultivar was the most effective and cost-optimalways for farmers to control this disease. However, it was still unknown on the populationgenetic diversity of the pathogens, which seriously impedes the breeding for diseaseresistance development. In order to solve these problems gradually, the molecular technologywas employed in this study, and the main results were obtained as follows.
     1. On the basis of rDNA-ITS, EF1α, β-tubulin and their combined genes sequences datasets, MP, ML and BI phylogenetic trees were repectively established. The results showed thatthere were three species of Valsa can caused this disease. They are repectively Valsa maliMiyabe et Yamada,V. malicola Z. Urb and V. persoonii (syn: Leucostom persoonii). Thecausal agent, V. mali Miyabe et Yamada, can be also divided into two varieties below the rankof species level, V. mali var. mali (Vmm) and V. mali var. pyri (Vmp). The variety of Vmm wasthe predominant pathogen of apple tree valsa canker in China. V. cerastosperma isolated from apple and Chinese crabapple was a synonym with V. mali, however, which was different fromV. cerastosperma isolated from other broad-leaf trees.
     2. Based on the rDNA-ITS conservative sequence of the Valsa genus, one pair ofgenus-specific primers was designed. Similarly, three pairs of species-specific primers weredesigned based on the specific sequence of Vmm, V. malicola and V. persoonii. Combinedthese two kinds of primers, a reliable and precise nested-PCR protocol was established. Thesensitivity of this assay was evaluated by serial dilutions of DNA extracted from Vmm, V.malicola and V. persoonii pure cultures, the results showed that the it was able to detect as lowas100fg of DNA in Vmm mycelial samples,1fg of DNA in V.malicola and V. persooniimycelial samples. The specificity of the three species-specific primers were evaluated againstVmm, V. malicola and V. persoonii isolates respectively, and four isolates from closely relatedValsa species and eight isolates from fungal species that are commonly isolated from naturallyinfected tissue. The results indicated that a distinct band of348bp in length was detected inall Vmm isolates, but not in other tested species. Similarly, a distinct band of312bp wasdetected in all V. malicola isolates and a354bp band generated in all V. persoonii isolates, butnot in other tested species. These data indicated that the protocol developed in this study hashigher specificity and sensitive, which can be applied in the detection of pathogens in theorchards. The efficiency of the nested PCR assay was compared to that of fungal isolationassays. All samples from which the pathogen was successfully isolated yielded a PCR productof the expected size.There was no incidence in which the pathogens were isolated, but failedto be detected by the nested PCR. For visible canker samples, the detection rate of the twomethods are both100%, while the detection rate of nested PCR for symptomless samples was64.7%, which was much higher than the detection rate of20.6%by fungal isolation. Thesedata showed that the nested-PCR had higher precision and detection rate than fungal isolation.
     3. A total number of279internodes tissues samples without symptoms from Shaanxiapple-producing area was detected by nested-PCR, the results showed that the species of Vmmwas detected in150samples, which had a proportion of53.76%. There were64samples inwhich V. malicola was detected and the proportion was22.94%. The species of V. persooniiwas detected in24samples, which had a proportion of8.60%. These data indicated that thecausal agents existed in the internodes tissues without visible symptoms. The detection rate ofVmm was the maximum, which indicated that this spcies was dominated. V. malicola was thesecond and V. persoonii was the minmum. In addition, there were56samples in which two orthree species were detected simultaneously by nested-PCR, this result showed that thecoinfection by two or three species was existed extensively in the orchards.
     4. The nested-PCR detection results in different symptomless tissues showed that theincidence of different pathogens has their own features in different tissues of apple trees. Theincidence of Vmm in different tissues was significantly different. The average incidence ofVmm was89%in terminal buds,71%in internodes, and48%in bud scale scars. While theincidence of V. malicola in different tissues was almost the same. In the two kinds of orchardswith different diseased tree rate, Vmm incidence in the orchards with higher diseased tree ratewas significantly higher than the orchards with lower diseased tree rate. However, V. malicolaincidence in these two kinds of orchards was not significantly different. The distributionpatterns of the pathogens were different, Vmm trends to aggregation distribution, while V.malicola trends to uniform distribution pattern.
     5. The orthogonal designed experiments were employed to screen the optimal ISSRamplification protocol at three levels of four factors including Taq DNA polymerse, primer,dNTP, and Mg2+concentration. The optimized ISSR-PCR amplification protocol wasobtained, the25μL reaction mixture included0.20μmol/L dNTP,0.1μmol/L ISSR primer,3.00mmol/L Mg2+, and0.05U Taq DNA polymerase. The optimized amplification protocolpaved the way for getting reliable, steady and clear amplification bands. The annealingtemperatures of47ISSR primers were screened one by one, and the optimized annealingtemperatures of these primers were obtained. Regard these as foundation,11ISSRpolymorphic primers was screened. These primers were used to study the genetic diversity of87Vmm isolates isolated from Shaanxi province and126isolates isolated from differentprovinces of China. A total number of129loci were detected of which119loci werepolymorphic loci in Shaanxi isolates, the polymorphic loci percentage was92.25%. However,the129loci were all polymorphic loci in the isolates from different provinces of China, thepolymorphic loci percentage was100%.
     6. The results of genetic diversity of different geographical groups showed that Nei’s(1973) gene diversity index (H) and Shannon’s information index (I) were both greater than0.2and0.3respectively, which indicated that that the genetic diversity of Vmm geographicalgroups not only in Shaanxi but also in all over China was considerably abundant. The resultsof population genetic structure of different geographical groups showed that genetic variationamong geographical groups accounted for small part of the total genetic variation. The geneticvariation within the populations was the main source of genetic variation. The dendrogrambased on ISSR markers revealed that the21natural populations were clustered into nineclusters at the threshold of genetic similar coefficient0.88by UPGMA. The number ofisolates belongs to cluster Ⅱwas60, which occupied the great majourity of tested isolatesand distributed in a wider range, which indicated that this cluster was dominant. The populations belonged to the same geographical groups can be clusted into different clusters,which indicated that there was no significant correlation between the genetic relationships andtheir geographical originals. Moreover, the dendrogram of different populations from differentprovinces of China showed that the distribution of the population was associated with latitude,but this relationship was very weak.
引文
宾晓芸,唐绍清,周俊亚,宋洪涛,黎尊谊.2005.金花茶遗传多样性的ISSR分析.武汉植物学研究,23(1):20~26
    曹克强,国力耘,李保华,孙广宇,陈汉杰.2009.中国苹果树腐烂病发生和防治情况调查.植物保护,35(2):114~116
    曹丽华,叶华智.2001.麦类穗腐镰刀菌的同工酶电泳分析.西北农业学报,10(2):45~48
    曹若彬.1992.果树病理学:北京:农业出版社:93~97
    长内,昌彦.1994.苹果树腐烂病.国外农学一植物保护,7(3):28~29
    陈策.2009.苹果树腐烂病发生规律和防治研究.北京:中国农业科学技术出版社:154
    陈策,刘福昌,刑祖芳,张学炜,史秀芹,郭进贵,陈延熙.1982.苹果树对腐烂病抗病因素初探:树皮愈伤能力与抗扩展关系的研究.植物病理学报, PP
    陈策,王金友,史秀芹,李美娜.1974.辽宁西部地区苹果树腐烂病发生过程观察和药剂防治实验.中国果树,(4):39~41
    陈策,王金友,史秀芹,李美娜.1979.辽宁西部地区苹果树腐烂病发生发展的过程观察和药剂防治实验.中国果树,(4):39~41
    陈策,王金友,史秀芹,李美娜.1983.苹果树腐烂病药剂防治的实验(1979-1982年).中国果树,(3):29~32
    陈长卿.2005.大豆疫霉的分子检测及游动孢子的多样性研究.[硕士学位论文]:杨凌:西北农林科技大学
    陈长卿.2008.中国小麦条锈菌分子群体遗传结构研究.[博士学位论文]:杨凌:西北农林科技大学
    陈凤毛,叶建仁,汤坚.2005.松材线虫与拟松材线虫RAPD检测技术.南京林业大学学报自然科学版,29(4):25~28
    陈甲法.2009.一个玉米叶色突变体的遗传研究.[硕士学位论文].郑州:河南农业大学
    陈剑山,郑服丛.2007. ITS序列分析在真菌分类鉴定中的应用.安徽农业科学,35(13):3785~3786
    陈瑞风.2011.短葶山麦冬遗传多样性研究.[硕士学位论文].厦门:华侨大学
    陈术强.2011.我国山女鳟引进群体遗传多样性评估及其改良.[硕士学位论文].上海:海洋大学
    程廉.1988.11371发酵液防治苹果树腐烂病菌的实验.生物防治通报,(1):46~47
    程廉.1993.苹果树腐烂病的发生诱因.果树学报,4:226~22
    陈曦,汤庚国,郑玉华,王雷宏.2008.苹果属山荆子遗传多样性的RAPD分析.西北植物学报,28(10):1954~1959
    党江鹏.2008.云斑车蝗线粒体基因组序列测定与分析.[硕士学位论文].西安:陕西师范大学
    邓丛良,梁新苗,汪万春,高文娜,任鲁风,周琦,马新颖,汪琳.2007.基因芯片在百合无症病毒检测中的应用.植物检疫,21(5):265~268
    董艳玲.2005.苹果黑星病菌遗传多样性的SSR分析.[硕士学位论文].杨凌:西北农林科技大学
    窦坦德,沈崇尧.1997.快速检测大豆疫霉菌的酶联免疫吸附技术研究.植物检疫,11(3):138~142
    杜洪忠,吴品珊,严进.2009.葡萄苦腐病菌的分子检测.植物检疫,23(6):13~15
    杜琳,钟先锋,陈剑泓,易军鹏.2007.植物病毒检测技术研究进展.农产品加工学刊,106:48~52
    樊民周.2004.陕西苹果腐烂病发生规律及化学防治的研究.[硕士学位论文].杨凌:西北农林科技大学
    范晨昕.2008.白沙枇杷离体再生及ISSR分子标记研究.[硕士学位论文].南京:南京农业大学
    付景.2007.瓢虫科部分种类基于线粒体COI基因的系统发育与食性演化研究.[硕士学位论文].西安:陕西师范大学
    傅明洋.2010.白杨派树种亲缘关系的RAPD分析.[硕士学位论文].杨凌:西北农林科技大学
    甘丽萍,王荣生.2004. RAPD标记在植物病原真菌遗传多样性及生理分化研究中的应用.甘肃农业大学学报,39(1):72~76
    郜刚,屈冬玉,连勇,金黎平,冯兰香.2000.马铃薯青枯病抗性的分子标记.园艺学报,27(1):37~41
    高军.2003.小麦叶锈菌(Puccinia recondita f.sp tritici)毒性及AFLP分析.[硕士学位论文].保定:河北农业大学
    高克祥,刘晓光.1995.苹果树腐烂病菌研究概况.河北林学院学报,10:(1)87~91
    高克祥,王淑红,刘晓光,李静,马昌水.1999.木霉菌株T88对7种病原真菌的拮抗作用.河北林果研究,14(2):159~162
    郜左鹏.2008.利用植物内生放线菌及化学药剂防治苹果树腐烂病的研究.[硕士学位论文].杨凌:西北农林科技大学
    葛建军,刁鹏,陈洪俊.2008.马铃薯金线虫的分子检测技术.植物检疫,22(1):21~23
    葛芸英,郭坚华.2003.小麦苗枯病菌的ITS分析及PCR检测.植物病理学报,33(3):198~202
    郭京泽,李兴红,廖芳,张文明,刘鹏.2008.实时荧光RT-PCR检测辣椒轻斑驳病毒的初步研究.植物保护,34(2):117~120
    侯保林,王江柱.1997.果树病害防治技术.北京:中国农业大学出版社:1~12
    侯丽冰,贺伟,刘小勇,杨佐忠.2002.我国几种松干锈菌亲缘关系的ITS序列分析.北京林业大学学报,24(56):175-182
    侯立华,黄新,朱水芳.2010.枣疯病植原体实时荧光定量PCR检测方法的研究.生物技术通讯,21(1):70~72
    胡能书,万国贤.1985.同工酶技术及其应用.湖南科学技术出版社:长沙
    胡棕棂,蔡红,范静华,陈海如.2009.水稻稻瘟病菌TaqMan探针实时荧光PCR检测方法的建立.云南农业大学学报,24(3):349~353
    怀雁,徐丽慧,余山红,谢关林.2009.水稻细菌性谷枯病菌的实时荧光PCR检测技术研究.中国水稻科学,23(1):107~110
    黄龙花,吴清平,杨小兵,胡惠萍.2011.基于特定引物PCR的DNA分子标记技术研究进展.生物技术通报,2:61~65
    黄丽丽,张管曲,康振生,严勇敢.2001.果树病害图鉴.西安:西安地图出版社:1
    黄留玉.2005. PCR最新技术原理、方法及应用.北京:化学工业出版社:306
    姜述君.2001. RAPD标记及其在植物真菌病害研究中的应用.黑龙江八一农垦大学学报,13(1):17~22
    焦振泉,曹玮,余东敏,刘秀梅,王晓英.2008.椰酵假单胞菌与唐菖蒲伯克霍尔德菌16S~23S rRNA基因间区序列的比较研究.中国食品卫生杂志,20(3):197~203
    焦振泉,刘秀梅.2001.细菌分类与鉴定的热点区:16S~23S rRNA间区.微生物学通报,28(1):85~89
    李川,刘海英,范永山,李聪文.2003.植物病原真菌群体遗传学研究进展.河北农业大学学报,26(Sup):177~179
    李德三,杨明江,刘进,刘照银.2008.苹果树腐烂病呈上升趋势的原因及对策.烟台果树,(1);36~37
    李国景.2007.硅提高豇豆锈病抗性机理及抗锈病分子标记研究.[博士学位论文].杭州:浙江大学
    李海生,陈桂珠.2004.海南岛红树植物海桑遗传多样性的ISSR分析.生态学报,24(8):1657~1663
    李惠民,岑剑,王保莉,曲东.2009.水稻土细菌群落结构的RFLP分析.西北农业学报,18(5):176~180
    李剑,徐章逸,边银丙,苏纬,王克勤.2008.基于ISSR标记的27个茯苓菌株遗传多样性分析.中国菌物学会第四届会员代表大会暨全国第七届菌物学学术讨论会,224~227
    李可.2009.四川省不同来源地金钱草种质资源的遗传多样性研究.[硕士学位论文].雅安:四川农业大学
    李军,张娜莉,温珍昌.2008.生物软件选择与使用指南.北京:化学工业出版社:78
    李琳,李瑾年,余为一.2004.细菌分类鉴定方法的研究概况.安徽农业科学,32(3):549-551
    李美娜,王金友.1990.苹果树腐烂病菌来源的探讨.北方果树,28-30
    李若瑜,李东明,余进,王爱平,王晓红,万哲,陈伟,涂平,马圣清,朱学骏,王端礼.2002.真菌和真菌病研究进展.北京大学学报(医学版),34(5):559~563
    李珊,赵桂仿.2003.AFLP分子标记及其应用.西北植物学报,23(5):830~836
    李晓君,戴玉才.2008.中国苹果产业国际竞争力评价及提升对策.广东财经职业学院报,7(1):76~80
    李严,张春庆.2009.新型分子标记―SRAP技术体系优化及应用前景分析.农业生物科学技术,21(5):108~112
    李正力.2010.苹果树腐烂病菌的SRAP和ISJ遗传分析.[硕士学位论文]:杨凌:西北农林科技大学
    李志敏,臧继武,李桂良.1991.苹果树腐烂病感病情况调查.河北果树,2:13~14
    李振歧,商鸿生,1989.小麦锈病及其防治.上海:上海科技出版社,1~237
    李振歧,曾士迈.2000.中国小麦锈病.北京:中国农业出版社.1~376
    刘福昌,陈策,史秀芹,郭进贵,刑祖芳,张学炜.1979.苹果树腐烂病菌潜伏侵染研究.植物保护学报,6(3):1~8
    刘福昌,李美娜,王永洤.1980.苹果树腐烂病菌致病因素-果胶酶的初步探讨.中国果树,4:45~48
    刘捍中,任庆棉,刘立军.1990.苹果属主要种质资源抗苹果腐烂病性状鉴定.山西果树,2:5~8
    柳李旺,龚义勤,黄浩,朱献文.2004.新型分子标记SRAP与TRAP及应用.遗传,26(5):777~781
    刘志坚,张钦书.1992.安索菌毒清防治苹果腐烂病实验研究.莱阳农学院学报,9(2):155~158
    陆宁海.2009a.中国西北越夏区小麦条锈菌分子流行学研究.[博士学位论文].杨凌:西北农林科技大学
    陆宁海,王建峰,詹刚明,黄丽丽,康振生.2009b.陇南地区不同海拔区域内小麦条锈菌群体遗传多样性的分析.菌物学报,28(4):496~503
    陆宁海,郑文明,王建峰,詹刚明,黄丽丽,康振生.2009c.陇南地区小麦条锈菌群体遗传多样性SSR分析.中国农业科学,42(8):2763~2770
    吕翔.2011.不同产地角倍性状的差异及角倍蚜(Schlechtendalia chinensis)遗传多样性的SSR分析.[硕士学位论文].北京:中国林业科学研究院
    侯香莲,杨大荣,曹永强,柳青,彭艳琼.2011.地石榴ISSR扩增体系的优化及应用.云南大学学报,33(S1):310~316
    马新颖,汪琳,任鲁风,邓丛良,高文娜,汪万春,周琦.2007.应用基因芯片检测烟草脆裂病毒.植物病理学报,37(4):352~355
    马新颖,汪琳,任鲁风,高文娜,邓丛良,张永江,吴小兵,相宁,周琦.2007.10种植物病毒的基因芯片检测技术研究.植物病理学报,37(6):561~565
    孟江红.2009.雏蝗属分子系统学及前翅演化研究.[硕士学位论文].西安:陕西师范大学
    梦宪婷,迟德福,王秀华,夏德安.2012.水曲柳SRAP分子标记反应系统的优化.东北林业大学学报,37(11):13~16
    年四季,袁青,殷幼平,蔡俊,王中康.2009.实时荧光定量PCR鉴定小麦矮腥黑穗菌技术研究.中国农业科学,42(12):4403~4410
    朴红梅,李万良,穆楠,尹航.2007. ISSR标记的研究与应用.吉林农业科学,32(5):28~32
    漆艳香,肖启明,朱水芳.2003.玉米细菌性枯萎病菌16S rDNA基因克隆及TaqMan探针实时荧光PCR.湖南农业大学学报(自然科学版),29(3):183~187
    秦旭升,刘学敏,于荣利.2003.运用PCR-RFLP标记检测南瓜疫病菌.东北农业大学学报,34(4):368~371
    秦旭升,刘学敏,周艳玲,李立军.2000.植物病原真菌中DNA分子鉴定技术.植物生理学通讯,36(4):342~347
    邱芳,伏健民,金德敏,王斌.1998.遗传多样性的分子检测.生物多样性,6(2):143~150
    任刚.2003.黄瓜属种间杂交新种(Cucumis×hytivus Chen&Kirkbride)的遗传特性、同工酶标记及其分类地位研究.[硕士学位论文].南京:南京农业大学
    单卫星,陈守宜,康振生,李振岐.1995. DNA指纹分析在植物真菌群体遗传研究中的应用.西北农业大学学报,23(6):84~89
    单卫星.1995.小麦条锈菌DNA分子遗传标记的建立.[博士学位论文]:杨凌:西北农林科技大学
    陕西果树研究所西北农学院.1980.果树病虫及其防治.西安:陕西科学技术出版社:69~75
    史秀芹,李美娜,王金友,陈策.1981.苹果树皮真菌区系及其对苹果树腐烂病的影响初步研究I.镰刀菌110-1对苹果树腐烂病菌的拮抗作用.中国果树科技文献,17:85~87
    宋培玲.2009.棉花黄伟病菌遗传多样性的ISSR分析.[硕士学位论文].杨凌:西北农林科技大学
    宋培玲,李之钦,杨家荣.2011.棉花黄萎病菌遗传多样性的ISSR分析.西北农林科技大学学报(自然科学版).39(1):113~118
    苏春丽,唐传红,张劲松,潘迎捷.2006.基于β-微管蛋白基因部分序列探讨灵芝属菌株的亲缘关系.菌物学报,25(3):439~445
    孙广宇,张荣,彭友良.随机扩增多态性DNA的重复性和可靠性问题.植物保护,29(4):44~46
    唐建辉,王伟,王源超.2006.西瓜炭疽菌Colletotrichum orbiculare的分子检测.中国农业科学,39(10):2028~2035
    王波.2007.基于COI基因的蜻科种类分子系统学研究(蜻蜓目:差翅亚目).[硕士学位论文].西安:陕西师范大学
    王洪凯,张天宇,张猛.2001.应用5.8S rDNA及ITS区序列分析链格孢种级分类.菌物学报,20(2):168-173
    王洁.2009.我国部分家鸭品种的DNA条形码初步分析.[硕士学位论文].南京:南京农业大学
    王金友.2006.陕北地区苹果腐烂病防治建议.西北园艺,4:19~2
    王金友,李美娜,陈策.1989.苹果树腐烂病流行因素研究:果园内病原体密度与侵染发病关系.植物病理学报,19(1):6
    王金友,李美娜,陈策.1989.生物农药腐必清防治苹果树腐烂病重犯实验.中国果树,(2):22~25
    王建波.2002. ISSR分子标记及其在植物遗传学研究中的应用.遗传,24(5):613~616
    王建峰.2010a.陕西、甘肃、四川三省小麦条锈菌分子群体遗传结构研究.[硕士学位论文].杨凌:西北农林科技大学
    王建峰,陈长卿,陆宁海,彭云良,詹刚明,黄丽丽,康振生.2010b.四川省小麦条锈菌群体遗传多样性的SSR分析.菌物学报,29(2):206~213
    汪景彦,吴锡元,郭占虎.2006.西北黄土高原苹果树腐烂病应引起高度重视.西北园艺,06:27~28
    王克,赵文珊.1989.果树病虫害及其防治.北京:中国林业出版社:10~13
    王立安,张文利,王源超,王良华,郑小波.2004.大豆疫霉的ITS分子检测.南京农业大学学报,27(3):38~41
    王磊,减睿,黄丽丽.2005.陕西关中地区苹果树腐烂病调查初报.西北农林科技大学学报(自然科学版),33:98~100(增刊)
    王廷华,景强,迪比.2005. PCR理论与技术.北京:科学技术出版社.1~177.
    王旭丽.2007.中国苹果树腐烂病菌的种类:rDNA-ITS序列和表型比较研究.[博士学位论文].杨凌:西北农林科技大学
    王源超.2000.核糖体基因ITS作为苎麻疫霉、恶疫霉分类辅助性状的研究.菌物系统,19(4):485~491
    王振军.2006.山药细菌学叶斑病病原的鉴定.[硕士学位论文]:郑州:河南农业大学
    王宗华,鲁国东.1998.对植物病原真菌群体遗传研究范畴及其意义的认识.植物病理学报,28(1):5~9
    韦洁玲.2009.苹果树腐烂病菌不同分离株致病性差异研究.[硕士学位论文].杨凌:西北农林科技大学
    韦洁玲,黄丽丽,郜左鹏,柯希望,康振生.2010.苹果树腐烂病室内快速评价方法的研究.植物病理学报,40(1):14~20
    魏久锋.2008.基于EF-1α序列的盾介亚科7属的分子系统学研究.[硕士学位论文].杨凌:西北农林科技大学
    魏兰芳,杨云亮,姬广海,白学慧.2009.云南水稻白叶枯菌的RAPD分析.湖南农业大学学报(自然科学版),35(2):123-126
    魏莉,张勇.2006.中药无公害防治苹果树腐烂病技术及效果.辽宁师范大学学报,29(2):226~228
    谢联辉.2007.植物病原病毒学.北京中国农业出版社:230
    吴小芹.2000.林木病原真菌的群体分化研究.林业科学研究,13(4):423~430
    吴小芹,熊大斌.2006.松枯梢病菌RAPD分子水平遗传距离分析.南京林业大学学报(自然科学版),30(1):13~16
    夏明月.2008.苹果黑星病菌的早期分子检测.[硕士学位论文]:杨凌:西北农林科技大学
    辛雅芬,商金杰.2005.用螺旋毛壳(Chaetomium spirale) ND35菌防治果树腐烂病的试验研究.林业研究,16(2):121~124
    邢红梅,丁平,周晓云,王克荣.2008.红掌胶孢炭疽病菌的分子检测.植物病理学报,38(2):113~119
    许志刚.1997.普通植物病理学.第二版:北京:中国农业出版社:46~57
    阎应理,荆志刚.1988.苹果树腐烂病菌分生抱子田间消长规律研究.植物病理学报,18(4):208
    杨代勤,陈芳.1993.鱼类同工酶研究的进展.湖北农学院学报,12(1):61~67
    杨可钦,马智勇,康艳玲.1997.日本砧木抗病育种概况.河北果树,1:50
    杨敏.2011.红尾副鳅线粒体基因组序列测定和鲤亚目系统发育分析.[硕士学位论文].西安:陕西师范大学
    杨伟东,郑耘,章桂明,陈枝楠,李明福,余道坚,张永江.2006.烟草环斑病毒IC-RT-Realtime PCR检测方法研究.中国病毒学,21(3):277~280
    姚艳萍.2008.中国蚱总科部分种类16S rRNA和18S rRNA基因序列的分子进化与系统学研究.[硕士学位论文].西安:陕西师范大学
    叶明.庄文颖.2002.粒毛盘菌属种间关系的分子系统学初探.菌物系统,21(3):340~345
    叶维萍.2004.中国斑翅蝗科部分种类线粒体12S rRNA基因的分子进化与系统学研究.[硕士学位论文].西安:陕西师范大学
    尹六喜,斯钦巴特尔,孟显光,赵瑞哗,张惠忠,田自华.2012.甜菜雄性不育基因的SRAP标记.华北农学报,27(1):106~109
    余仲东.2001.溃疡病菌真菌类群群体分化的研究.[硕士学位论文].杨凌:西北农林科技大学
    余仲东,张刚龙,曹之敏.2002.病原真菌群体内群体遗传分化研究现状与技术.西北林学院学报,17(4):66~72
    臧睿.2006.陕西省苹果树腐烂病菌不同分离株的生物学特性及致病性研究.[硕士学位论文].杨凌:西北农林科技大学
    臧睿.2012.陕西省苹果树腐烂病菌基因多态性的ISSR分析.植物保护学报,39(1):51~57
    臧睿,黄丽丽.2007.苹果树腐烂病菌分生孢子的萌发条及其影响条件研究.西北农业学报,16(1):64~67
    臧睿,黄丽丽,康振生,王旭丽.2007.陕西苹果树腐烂病菌(Cytospora spp)不同分离株的生物学特性与致病性研究.植物病理学报,37(4):343~351
    翟衡,史大川,束怀瑞.2007.我国苹果产业发展现状与趋势.果树学报,24(3):355~360
    翟中和,王喜忠,丁明孝.2003.细胞生物学.北京:高等教育出版社:328
    张海峰,任众,刘翔,张正光,王源超,吴新华,郑小波.2008.冬生疫霉的快速分子检测.植物病理学报,38(3):231~237
    张平.2009.不同鲤群体的形态差异比较及RAPD扩增分析.[硕士学位论文].南京:南京农业大学
    张强.2008.苹果M26自根砧树的生产效应分析.[硕士学位论文].杨凌:西北农林科技大学
    张王斌.2005.陕西苹果腐烂病发生危害及无公害防治技术研究.[硕士学位论文].杨凌:西北农林科技大学
    张小静.2009.基于28SrDNA和COI基因序列的蝗总科部分种类分子系统学研究.[硕士学位论文].西安:陕西师范大学
    张祥林,伍永明,王翀,李碧佳.2007.西瓜细菌性果斑病菌的16S rRNA序列分析及特异性引物的设计.植物病理学报,37(3):225~231
    赵国芳.2003. ISSR对梨属栽培品种(Pyrus L.)基因组的指纹分析.[硕士学位论文]:保定:河北农业大学
    赵国屏.2002.生物信息学.科学出版社:北京:113~114
    赵书华,翟玉洛,唐治红,赵江波.2008.苹果树腐烂病发生较重的原因调查及分析.中国果树,(4):60~62
    赵忠仁,王元珪.1991.落叶果树病虫害及其防治.南京:江苏科学技术出版社:28~33
    浙江大学,四川农业大学,河北农业大学,山东农业大学.1992.果树病理学.北京:农业出版社:93~97
    郑小波,王源超,胡白石,刘凤权,郭坚华,徐建华,林茂松.2005.外来有害生物检疫及防除技术学术研讨会论文汇编.57~59
    中国农业科学院果树研究所,中国农业科学院柑橘研究所.1996.中国果树病虫志.第二版:北京:中国农业出版社:1~6
    中国农业科学院植物保护研究所.1996.中国农作物病虫害.第二版:北京:中国农业出版社:pp
    周冰,曹诚,刘传暄.2007.翻译延伸因子1A的研究进展.生物技术通讯,18(2):281~284
    周杰.2009.关于中国菊花起源问题的若干实验研究.[博士学位论文].北京:北京林业大学
    周宇爝.2009.分子标记发展简史.现代农业科技,11:264~270
    宗兆锋,康振生.2002.植物病理学原理.北京:中国农业出版社:73~74
    邹亚飞.2001.棉花黄萎病菌(Verticillium dahliae)致病类型的AFLP分析与分子鉴定研究.[硕士学位论文]:重庆:西南农业大学
    小林享夫.1972.日本ディボノレテ菌科菌类の分类学的研究.日植病报,38:170~173
    Abe K, Kotoda N, Kato H, Soejima J.2007. Resistance sources to Valsa canker (Valsa ceratosperma) in agermplasm collection of diverse Malus species. Plant Breeding,126:449~453
    Adams G C, Surve-Iyer R S.2002. Ribosomal DNA sequence divergence and group I introns within theLeucostoma species L. cinctum, L. persoonii, and L. parapersoonii sp. nov., ascomycetes that causeCytospora canker of fruit trees. Mycologia,94(6):947~967.
    Adams G C, Wingfield M J, Common R, Roux J.2005. Phylogenetic relationships and morphology ofCytospora species and related teleomorphs (Ascomycota, Diapporthales, Valsaceae) from Eucalyptus.Studies in Mycology,52:1~144
    Ahmad R, Potter D, Southwick S M.2004. Genotyping of peach and nectarine cultivars with SSR andSRAP molecular marker. Journal of American Society for Horticultural Science,129(2):204~210
    Aparicio F, Sanchen-pina M A, Sanchez-navarro J A.1999. Location of Prunus necrotic ringspot ilarviruswithin pollen grains of infected nectarine trees: evidence from RT-PCR, Dot-blot and in situHybridisation. European Journal of Plant Pathology,105:623~627
    Baldwin B G.1992. Phylogenetic utility of the internal transcribed spacer of nuclear ribosomal DNA inplants:an example from the compositate. Molecular Phylogenetics and Evolution,1:3~16
    Bateman D F, and Beer S V.1965. Simultaneous production and synergistic action of oxalic acid andpolygalacturonase during pathogenesis by Sclerotium rolfsii. Phytopathology,55:204~211
    Bennani B, Mendes C, Zemzami M, Azeddoug H, Nolasco G.2002. Citrus variegation virus: MolecularVariability of a Portion of the RNA3Containing the Coat Protein Gene and Design of Primers forRT-PCR Detection. European Journal of Plant Pathology,108:155~162
    Bessho H, Tsuchiya S, Soejima J.1994. Screening methods of apple trees for resistance to Valsa canker.Euphytica,77:15~18
    Bettucci L, Saravay M.1993. Endophytic fungi in Eucalyptus globulus: a preliminary sutdy. MycologicalResearch,97:679~682
    Bills G F.1996. Isolation and analysis of endophytic fungal communities from woody plants. In Redlin S C,Carris L M. Endophytic fungi in grasses and woody plants: systematic, ecology, and evolution. APSPress, St Paul, Minnesota, U.S.A:31-65
    Boddy L, Rayner A D M.1983. Origins of decay in living deciduous trees: the role of moisture content anda reappraisal of the expanded concept of tree decay. New Phytologist,94:623~641
    Burgess T, Wingdield M J, Wingfield B W.2001. Simple sequence repeat markers distinguish amongmorphotypes of Sphaeropsis sapinea. Applied and Environmental Microbiology,1:354~362
    Bruns T D, Szaro T M.1992. Rate and mode differences between nuclear and mitochondrial small-subunitrRNA genes in mushrooms. Molecular Biology and Evolution,9:836~855
    Bruns T D, White T J, Taylor J W.1991. Fungal molecular systematic. Annual review of Ecology andSystematics,22:525~564
    Canaday C H, Schmitthenner A F.1982. Isolating Phytophthora megasperma f. sp. glycinea from soil witha baiting method that minimizes Pythium contamination. Soil Biology and Biochemistry,(14)1:67~68
    Caterino M S, Cho S, Sperling F A H.2000. The current state of insect molecular systematic: A thrivingtower of babel. Annu.Rev.Entomol.45:1~54
    Chapela I H.1989. Fungi in healthy stems and branches of American beech and aspen: a comparative study.New Phytologist,113:65~75
    Chapela I H, Boddy L.1988. Fungal colonization of attached beech branches. Ⅱ. Spatial and temporalorganization of communities arising from latent invaders in bark and functional sapwood underdifferent moisture regimes. New Phytologist,110:47~57
    Chatterjee A K, Gibbins L N.1969. Metabolism of Phloridzin by Erwinia herbicola: Nature of theDegradation Products, and the Purification and Properties of Phloretin Hydrolase. J Bacteriol,100:594~600
    Cheng J, Shoffner M A, Hvichia G E, Kricka L J, Wilding P.1996. Chip PCR. Ⅱ. Investigationsystems inmicrofabricated silicon-glass chips. Nucleic Acids Research.24(2):380~385
    Christensen C M.1940. Studies on the biology of Valsa sordida and Cytospora chrysosperma.Phytopathology,30:459-475
    Colinet D, Kummert J, Lepoivre P,1994. Identification of distinct potyviruses in mixedly-infectedsweetpotato by thepolymerase chain reaction with degenerate primers. Phytopathology,84(1):65~69
    de Jong S N, Lévesque C A, Verkley G J M, Abeln E S A, Rahe J E, Braun P G.2001. Phylogeneticrelationships among Neofabraea species causing tree cankers and bull’s-eye rot of apple based onDNA sequencing of ITS nuclear rDNA, mitochondrial rDNA, and the β-tubulin gene. Mycol. Res.105(6):658~669
    Diers B W, Mansur L, Imsande J, Shoemaker R C.1992. Mapping Phytophthora resistance loci in soybeanwith restriction fragment length polymorphism markers. Crop Sci,32(2):377~382
    Dhancantari B N.1978. Cold predisposition of dormant peach twigs to nodal cankers caused byLeucostoma spp. Phytopathology,68:1779~1783
    Ehrenberg C G.1818. Sylvae Mycologicae Berolinenses. Formis Theophili Bruschcke, Berlin, Germany
    Ellis J B, Everhart B M.1892. The north American Pyrenomycetes. Ellis and Everhart, USA
    Endert E.1985. Pathogenic and competitive capabilities of Cytospora cincta. Proceedings of the StoneFruit Decline Workshop. Appalachian Fruit research Station, United States Department of agriculture,Kearneysville, WV.
    Faostat.2012. Food and Agricultural commodities production. http://faostat.fao.org/site/339/default.aspx[2012-05-02].
    Feau N, Weiland J E, Stanosz G R, Bernier L.2005. Specific and sensitive PCR-based detection of Septoriamusiva, S. populicola and S. populi, the causes of leaf spot and stem canker on poplars. Mycol. Res.109:1015~1028
    Fish P J, Petrini O, Sutton B C.1993. A comparative stdy of fungal endophytes from leaves, xylem andbark of Eucalyptus nitens in Australia and England. Sydowia,45:338~345
    Fries E M.1849. Summa vegetalilium scandinaciae. Section posterior. Uppsala, Sweden:259~572
    Gairolla G, Power D.1971. Extracellular enzymes and pathogenesis by peach Cytosporas. Phytopath Z,72:305~314
    Geiser D M, Jimenez G M, Kang S.2004. Furarium-ID v.1.0: A DNA sequence database for identifyingFusarium. European Journal of Plant Pathology,38:207~239
    Grisoni M, Moles M, Farreyrol K, Rassaby L, Davisand R, Pearson M.2006. Identification of potyvirusesinfecting vanilla direct sequencing of a short RT-PCR amplicon. Plant pathology,55:523~529
    Grodzicker T, Williams J, Sharp P, Sambrook J.1974. Physical mapping of temperature-sensitive mutationsof adenoviruses. Cold Spring Harbor Symp. Quant. Biol.39;439~446
    Holmes K A, Schroers H J, Thomas S E, Evns H C, Samuels G J.2004. Taxonomy and biocontrol potentialof a new species of Trichoderma. Mycological Progress,3(2):199~210
    Kanehira T, Kameoka Y, Shinohara M.1991. Electrophoretic patterns of the enzymes from Valsaceratosperma. Transction of the Mycological Society of Japan,32:199~205
    Kantety R V, Zeng X P, Bennetzen J L, Zehr B E.1995. Assessment of genetic diversity in dent andpopcorn (Zea mays L.) inbred lines using inter-simple sequence repeat (ISSR) amplification. MolBreeding,1:365~3731
    Kepley J B.2009.Colorado Cytospora canker complex on Populus tremuloides Michx.[DoctorDissertation]. Fort Collins: Colorado State Univerisity.203
    Kepley J B, Jacobi W R.2000. Pathogenicity of Cytospora fungi on six hardwood species. Journal ofArboriculture,26(6):326-332
    Kirk P M, Cannon P F, Dacid J C, Stalpers J A.2001. Dictionar of the fungi.9th edtion. CAB InternationalApress. UK
    Koganezawa H, Sakuma T.1982. Possible role of breaklow products of phloridzin in symptomdevelopment by Valsa ceratosperma. Ann Phytopath Soc Japan,48:521~528
    Kullnig-Gradinger C M, Szakacs G, Kubicek C P.2002. Phylogen and evolution of the genus Trichoderma:
    a multigene approach. Mycol. Res.106:757~767
    Jayasankar N P, Bandoni R J, Towers G H N.1969. Fungal degradation of phloridzin. Phytochemistry,8:379~383
    Li G, Quiros C F.2001. Sequence related amplified polymorphism (SRAP), A new marker system based ona simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet,103:455~4611
    Liu Genqi, Fan Yongshan, Zhu Shihong, Li Sheyong, Wang Hongqi, Liu Chunguang.2001. Study on thegenetic variation of Physalospore piricola in apple by using RAPD technique. Developmental&reproductive biology,10(2):61~67
    Marshall A, Hodgson J.1998. DNA-chips: An array of possibilities. Nature Biotechnology,16:27~31
    Mccarroll D R, Thor E.1985. Pectolytic, cellulolytic and proteolytic acticities expressed by cultures ofEndothia parasitica, and inhibition of these acticities by components extracted from Chinese andAmerican chestnut inner bark. Physiol Plant Pathol,26:367~378
    Mehrabi M, Mohammadi G E, Fotouhifar K B.2011. Studies on Cytospora canker disease of apple trees inSemirom region of Iran. Journal of Agricultural Technology,7(4):967-982
    Msnulis S, Kogan N, Reuven M.1994. Use of RAPD technique for identification of Fusarium oxysporumfrom carnation. Phytopathology,84:98
    Natsume H, Seto H, Otake N.1982. Studies on apple canker disease the necrotic toxins produced by Valsaceratosperma. Agric Biol Chem,46:2101~2106
    Nolasco G, Blas D C, Torres V.1993. A method combinding immunocapture and PCR amplification in amicrotititerplate for the detection of plant viruses and subviral pathogens. Virol Methods,45(2):201~208
    Nyguard S L, Elliott C K, Cannon S J, Maxwell D P.1989. Isozyme varaiability among isolates ofPhytophthora megasperma. Phytopathology,79:773~780
    O’Donnell, Cigelnik E, Nirenberg H I,1998. Molecular systematics and phylogeography of the Gibberellafujikuroi species complex. Mycologia,90:465~493
    Okuno T, Oikawa S, Goto T, Sawai K, Shirahama H, Matsumoto T.1986. Structures and phytotoxicity ofmetabolites from Valsa ceratosperma. Agric Biol Chem,50(4):997~1001
    Petrini O.1991. Fungal endophytes of tree leaves. In Andrews J H, Hirano S S. Microbial ecology of leaces.Springer Verlag, New York, U.S.A.179~197
    Punja Z K, Jenkins S F.1984. Light and scanning electron microscopic observations of calcium oxalatecrystals produced during growth of Sclerotium rolfsii in culture and in infected tissue. Can J Bot,62:2028~2032
    Ramsay G.1998. DNA-chips: state-of-the art. Nature Biotechnology,16:40~44
    Rozsnyay D S, Barna B.1974. Apolexy of apricots IV. Studies on the toxin production of Cytospora (Valsa)cincta Sacc. Acta Phytopathol Acad Sci Hung,9:301~310
    Rubinoff D, Sperling F A H.2002. Evolution of ecological traits and wing morphology in Hemileuca(Saturniidae) based on a two-gene phylogeny. Molecular Phylogenetics and Evolution,25:70~86
    Shoffner M A, Cheng J, Hvichia G E, Kricka L J, Wilding P.1996. Chip PCR. Ⅰ.Surface passivation ofmicrofabricated silicon-glass chips for PCR. Nucleic Acids Research.24(2):375~379
    Slippers B, Fourie G, Crous P W, Coutinho T A, Wingfield B D, Wingfield, M J.2004. Multiple genesequences delimit Botryosphaeria australis sp. nov. from B. lutea. Mycologia,96(5):1030-1041.
    Stanova M,1978. Changes of oligosaccharides and polysaccharides caused by the fungus Cytospora cinctasacc cultivated in laboratory conditions. Biologia,33(1):43~53
    Surve-Iyer R S, Adams G C, Iezzoni A F, Jones A L.1995. Isozyme detection and variation in Leucostomaspecies from Prunus and Malus. Mycologia,87(4):471~482
    Rider C C, Taylor C B.1980. Outline studies in biology isoenzymes.1stVersion. Translated by Peichang,Fan.1987. Beijing: Science Press:18-19.
    Suzaki K.2008. Population structure of Valsa ceratosperma, causal fungus of Valsa canker, in apple andpear orchards. J. Gen. Plant Pathol.74:128~132
    Suzaki K, Youshida K. Comparison of ribosomal DNA ITS region sequence between causal fungus ofapple valsa canker and Valsa ceratosperma. http://www.bspp.org.uk/icpp98/2.2/25.html [2012-3-4].
    Suzaki K, Yoshida K, Ito T.1997. Pathogenicity to apple branch and phloridzin degrading activity of Valsaceratosperma isolated from some broad leaf trees including apple Tree. Annual Report of the Societyof Plant Protection of North Japan,48:145~147
    Tanaka.1919. New Japanese fungi notes and translations. Mycologia,11:148-154
    Tamura O, Saito I.1982. Histopathological changes aof apple bark infected by Valsa ceratosperma (Todeex Fr.) Maire during dormant and growing periods. Ann Phytopath Soc Japan,48:490~498
    Tanksley S D, Young N D, Paterson A H.1989. RFLP mapping in plant breeding: new tools for an oldscience. Biotechnology,7:257~264
    Tekauz A, Patrick Z A.1974. The role of twig infection in the incidence of perennial canker of peach.Phytopathology,64:683~688
    Thon, M R, Royse D J.1999. Evidence for two independent lineages of shiitake of the Americas (Lentinulaboryana) based on rDNA and b-tubulin gene sequences. Mol. Phylogenet. Evol.13:520-524.
    Traquair J A.1987. Oxalic acid and calcium oxalte produced by Leucostoma cincta and L. persoonii inculture and in peach bark tissue. Canadian Journal of Botany,65:1952~1956
    Tulasne L R, Tulasne C.1863. Selecta fungorum carpologia, xylariei, Valsei, Sphaeriei. volume2. TheImperial Press, France
    Vos P,Hogers R, Bleeker M, Reijans M, Lee T V D, Hornes M, Friters A, Pot J, Paleman J, Kuiper M,Zabeau M.1995. A FL P: a new technique for DNA fingerprinting. Nucleic Acids Research,23(21):4407~4414
    Wang S B, Miao X X, Zhao W G, Huang B, Fan M Z, Li Z Z.2005.Genetic diversity and populationstructure among strains of the entomopathogenic fungus, Beauveria bassiana, as revealed byinter-simple sequence repeats (ISSR). Mycol.Res.109(12):1364~1372
    Wang X L, Wei J, Huang L L, Kang Z S.2011. Re-evaluation of pathogens causing Valsa canker on applein China. Mycologia,103(2):317~324
    Welsh J.1990. Fingerprinting genomes using PCR with arbitrary primers. Nuc Aci Res,18:7213~7218
    White T J, Bruns T, Lee S.1990. Amplification and direct sequencing of fungal ribosomal RNA genes forphyogenetics. In Innis M A, Gelfand D H, Sninsky J J, White T J. PCR protocols a guide to methodand applications. San Diego: Academic Press,315~322
    Williamas J G K.1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic marker.Nuc Aci Res,18:6531~6535
    Wycoff K L, Aters A R.1991. Localization of carbohydrate antigens in the walls of Phytophthoramegasperma f. sp. glycinea by monoclonal antibodies. Physiological and Molecular Plant Pathology,39(2):95~109
    Zhou S G, Smith D R, Stanosz G R.2001. Differentiation of Botryosphaeria species and related anamorphicfungi using inter simple or short sequence repeat (ISSR) fingerprinting. Mycol. Res,105(8):919~926
    Zhu Y Y, Chen H R, Fan J H, Wang Y Y, Li Y, Chen J B, Fan J X, Yang S S, Hu L P, Leungk H, Mewk T W,Tengk P S, Wangk Z H, Mund C C.2000.Genetic diversity and disease control in rice. Nature,406(6797):718~722
    Zietkiewicz E, Rafalski A, Labuda D.1994. Genome fingerprinting by simple sequence repeat(SSR)-anchored polymerase chain reaction amplification. Genomics,20:176~183
    Saccardo P A.1882-1931. Sylloge fungorum, volume1-25. Typis Seminarii, Italy(意大利)
    Winter G.1887. Die pilze: Ascomyceten; Gymnoascacen und Pyrenomyceten. In Rabenhorst G L.Kryptogamen-Flora von Deutschland, oesterreich und der schweiz zweit auflage. Leipzig,Austria:1~928(德文)
    H hnel F V1928a.über Cytospora melanodiscus(Otth.) H hn. Mitteilungen aus dem botanischenlaboratorium der technischen hochschule in wein,5:16~18(德文)
    H hnel F V1928b. über die Cytospora-Arten auf acer. Mitteilungen der botanischen institute technischehochschule wein,5:70~75(德文)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700