用户名: 密码: 验证码:
北京砂卵石地层大直径泥水加压平衡盾构适应性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对北京砂卵石地层大直径泥水加压平衡盾构适应性这一重要课题,采用颗粒离散元模拟、理论分析、室内试验及现场实测相结合的研究方法,对砂卵石地层中的盾构选型、盾构开挖面失稳破坏特征及影响因素、泥浆特性及其作用、盾构施工对周边环境的影响和盾构刀盘刀具的适应性等关键问题进行了系统研究,取得的主要成果如下:
     (1)采用PFC2D双轴数值试验及室内土工三轴试验得到了颗粒流细观参数与砂卵石土体宏观参数c、φ的关系,进而通过颗粒离散元模拟分析,揭示了盾构隧道开挖面及地层土体滑移和破坏的渐进性变化特征,描述了土颗粒的位移场演化规律,给出了土颗粒摩擦系数与地层变形之间的动态关系,在此基础上,系统阐述了泥水加压平衡盾构开挖面稳定性的基本原理。
     (2)在开挖面上形成良好的泥膜,对于维持开挖面稳定具有重要的作用,其中,泥膜厚度与强度对开挖面稳定影响最大,一定厚度和强度的泥膜是保证开挖面稳定的重要条件。基于泥浆作用原理,通过大量的泥浆试验,提出了适于北京砂卵石地层大直径泥水盾构的泥浆相对密度、粘度等特性参数;从渗透距离、极限渗流量、孔隙水压力以及泥膜抗渗性4个方面对3种类型泥浆的作用效果进行了分析评价,并对其适应性进行了分析。
     (3)现场实测数据表明,科学的刀盘刀具配置、合适的泥浆特性参数及合理的掘进参数条件下,泥水盾构对北京砂卵石地层具有良好的适应性,盾构施工引起的地层变形能够满足安全和环境影响控制的要求;基于实测数据和理论分析,建立了盾构掘进参数与地层变形之间的关系,论证了带压进仓换刀的安全性及其对周边环境的影响程度。
     (4)为了使大直径泥水盾构对北京砂卵石地层具有更好的适应性,提出了滚刀、撕裂刀、切刀等长短刀具的合理化及立体化配置方案,对致密砂卵石地层的刀盘刀具配置方案进行了专门设计;基于实测数据,比较分析了单刃滚刀与双刃滚刀的平均磨损系数,进而提出了砂卵石地层掘进过程中的刀具更换原则:每100-120m进行一次带压进仓检查并对磨损较大的刀具进行更换,每230-300m设置一个停机加固点进行刀具更换。
In this paper, the adaptability of large-diameter slurry shield to Beijing sand and gravel soils was studied systematically and exhaustively through DEM simulation, theoretical analysis, laboratory test and field measurement. Based on this project, features and influenc factors of tunnel face instability, parameters determination of mud fluid properties, influences of shield tunnelling on neighboring environment, and adaptability of cutterhead were systematically studied, respectively. The main results are as follows:
     (1)The relationships between micro-parameters of PFC2D and macro-parameters c and φ of sand and gravel soils were obtained by means of PFC2D biaxial numerical tests and soil tri-axial tests indoor. Then the PFC numerical simulations (DEM) were conducted to obtain progressivity variation features of slide and failure in tunnel face and surrounding soils. The evolution laws of displacement field and dynamic relationships between friction coefficient of soils and ground deformation were also obtained. And on this basis, the fundamental principles of stability of tunnel face were stated systematically.
     (2) Forming fine filter cake on the excavation face is significantly important to maintain stability of the shield tunnel face. Thickness and adhesive strength of the filter cake are the most important factors. Filter cake with certain thickness and adhesive strength on the excavation face is vital to ensure stability of the excavation face. Through numerous slurry tests, based on action principle, the characteristic parameter which is applicable to large-diameter slurry shield to Beijing sand and gravel soils were proposed such as relative density and viscosity. In this paper, the effect and adaptability of3types of slurry were analyzed and evaluated from4aspects, including penetration distance, limit seepage flow, pore-water pressure and mud film impermeability.
     (3) According to field data, the slurry shield was of fine adaptability to Beijing sand and gravel soils, on the conditions of scientific configuration of cutter head, appropriate slurry parametersand reasonable tunneling parameters. Ground deformation caused by shield tunnelling can meet the safety and control requirements of environmental impact. Based on the field data and theoretical analysis, the relationship between the shield tunneling parameters and ground deformation were established. Moreover, the safety of change tools under compressed air condition and the impact on the surrounding environment were demonstrated.
     (4) In order to make large-diameter slurry shield has better adaptability to Beijing sand and gravel soils, the configuration of cutter head and cutter tool was designed specially. And a scheme in which disc cutters, ripper, scrape and other tools of different size were configurated rationally and three-dimensionally was put forward. Based on the field data, a comparative analysis about average wear coefficient between single-edged disc cutter and double-edged disc cutter was made, and then the principles of tool replacement during tunneling process for sand and gravel soils were put forward, which contain check inside the chamber under compressed air condition once every100~120m and replace badly worn tools; set a reinforced stop point every230~300m to change cutting tools.
引文
[1]王梦恕.21世纪是隧道及地下空间大发展的年代[J].岩土工程界,2000,3(6):3-15.
    [2]王梦恕.我国地下铁道施工方法综述与展望地下空间[J].地下空间与工程学报,1998,18(2):98-103.
    [3]张凤祥,朱合华,傅德明.盾构隧道[M].北京:人民交通出版社,2005.
    [4]张凤祥.选择盾构工法的一些考虑[J].岩石力学与工程学报,1997,16(1):85-90.
    [5]宋克志,王梦恕.无水砂卵石地层盾构机的选型[J].铁道标准设计,2004, 1l:51-55.
    [6]乐贵平,苏艺.三论北京地区地铁施工用盾构机选型[J].都市快轨交通,2008,21(2):44-48.
    [7]邓忠义.泥水平衡开挖面稳定性研究[D].同济大学硕士学位论文,2005.
    [8]高立群.大直径盾构正面稳定性研究[D].上海:同济大学,2006.
    [9]曾慎聪, 郦伯贤, 胡胜利译.机械化盾构隧道掘进[M].杭州:浙江大学出版社,2002.
    [10]尹旅超, 朱振宏, 李玉珍等编译.日本隧道盾构新技术[M].武汉:华中理工大学出版社,1999.
    [11]杨国祥,吴惠明,林家祥等.长距离超大直径盾构隧道关键施工技术探讨[J].现代隧道技术,2006,增:13-23.
    [12]傅德明,周文波.超大直径盾构隧道关键工程技术的发展[C].地下交通工程与工程安全学术会议,2006:53-61.
    [13]秦建设.盾构施工开挖面变形与破坏机理研究[D].南京:河海大学博士学位论文,2005.
    [14]H. Muller-Kirchenbauer. Stability of sluny trenches in inhomogeneous subsoil[A]. In:Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering[C]. Tokyo:The Japanese Soeiety of Soil Mechanics and Foundation Engineering,1977:125-132.
    [15]M. Kilchert. J Karstedt. Schlitzwande als Trag-und Dichtungwande. Band 2, Stand Sicherheitberechnung von Schlitzwanden, DIN, Berlin,1984:28-34
    [16]Broms B B, Bennennark H. Stability of clay at vertical openings[J]. Journal of the soil Mechanics and Foundations Division,1967,96(1):71-94.
    [17]Attewe P B, Boden J B. Development of stability ratios for tunnels driven in clay[J]. Tunnels and tunneling, 1971, (3):195-198.
    [18]Atkinson J H, Potts D M. Stability of a shallow eircular tunnel in cohesionless soil[J]. Geotechnique,1977,27(2):203-215.
    [19]Peck R.B. Deep excavations and tunneling in soft ground[A]. In:Proceedings of the 7th International Conference on Soil Mechanics and Foundation EngineeringfC]. Mexico city:Sociedad Mexicana de Mecanica de Suelos,1969:225-290.
    [20]Peck R.B., Hendron A. J. et al. State of the art of soft ground tunneling[C]. Proc.1972 RETC. (Chicago).1: 259-280.
    [21]Kimura T, Mair J.R.. Centrifugal testing of mordel tunnels in soft day[A]. Proc.10th Int. Conf. Mechanical and Foundation Engineering[C]. (Stocklom).2,1981:319-322.
    [22]Conejo L. Instability at the face:its repercussions for tunneling technology[J]. tunnels and Tunneling,1989(21):
    [23]Ellstein, A.R.. Heading failure of lined tunnels in soft soils[J]. Tunnels and tunneling,1986(18):51-54.
    [24]Egger P.. Deformation at the face of the leading and determination of the cohesion of the rock mass[J]. Tunneling and Underground Space Technology,1980(4):313-318.
    [25]Davis E.H., Gunn M. J., Mair R.J., et al. The stability of shallow tunnels and underground openings in cohesive material[J]. Geotechnique,1980,30(4):397-416.
    [26]Leca E., Dormieux L.. Upper and lower bound solutions for the face stability of shallow circulartunnels in firctional material[J]. Geotechnique,1990,40(4):581-606.
    [27]Abadul-Hamid Soubral. Three-dimensional faces tability analysis of shallow circular tunnel[A]. In:International Conference on Geotechnical and Geological Engineering[C]. Melbourne, Australlia,2000.
    [28]Lee I.M., Nam S.W.. The study of seepage forces acting on the tunnel lining and tunnel face in shallow tunnels[J]. Tunnels and Underground Space Technology,2001,16(1):31-40.
    [29]Lee I.M., Nam S.W., Jae H.A.. Effect of seepage force on tunnel face stability[J]. Canadian Geotechnical Journal,2003,40:342-350.
    [30]Lee I.M., Lee J.S., Nam S. W.. Effect of seepage force on tunnel face stability reinforced with muti-step pipe grouting[J]. Tunnels and Underground SpaceTechnology.2004.19:551-565.
    [31]Janssen, H.A., "Versuche uber Getreidedruck in Silozellen Abschlussflachen von Tunneln deutscher Ingenieure. XXXIX,1895-35:1045-1049.(in German)
    [32]Horn, M.. Horizontaler Erddruck auf senkrechte Abschlussflachen von Tunneln, Landeskonferenz der ungarischen Tiefbauindustrie, Budapest,1961.(in German)
    [33]Jancsecz S., Steiner W.. Face support for a large mix-shield in heterogeneous ground conditions[A]. In: Conference Proceeding Institute of Mining and Metallurgy and British Tunneling Society[C]. Lodon,1994: 531-549.
    [34]Monnet J., Chaffois S. Chapeau C.. Theoretical and experimental studies of a tunnel face in gravel site[A]. In: Pietruszczak S., Pande G.N.. Numerical Models in Geomechanics[M]. Numog Ⅲ,1989:497-514.
    [35]Anagnostou G., Kovari K.. The face stability of slurry-shield-driven tunnels[J]. Tunnels and Under ground Space Technology,1994,9(2):165-174.
    [36]Anagnostou G., Kovari K... Face stalbility in slurry and EPB shield tunneling[A]. In:Mair, R.J., Taylor, R.N.. Proeeeding of Geotechnical Aspects of Underground Construction in Soft ground[C]. Balkema,1996: 35-42.
    [37]Anagnostou G., Kovari K.. Face stability conditions with earth-pressure-balanced shields[J]. Tunnels and Underground space Technology,1996,11(2):165-173.
    [38]Broere W.. Face stability calculations for a sluny shield in heterogeneous soft soils[A]. In:Nego, Jr.& Ferreira. Tunnels and Metropolises[C]. Sao Paolo, Brazil,1998,215-218.
    [39]Broere W. and A.F. van Tol.. Influence of infiltration and groundwater flow on tunnel face stability[A]. In: Kusakabe O., Fujita K., Miyazaki Y.. Geotecnical Aspects of Underground Construction in Soft Ground[C]. Balkema,2000:339-344.
    [40]Broere W. and A.F. van Tol.. Time-dependant in filtration and groundwater flow in a face stability analysis[A]. In: Adachi A., Tateyama K., Kimura M.. Modern Tunneling Scienece and technology[C]. Balkema,2001: 629-634.
    [41]Broere W.. Tunnel face stability new CPT Application[D]. Delft:Delft University of Techaology,2001.
    [42]魏纲.顶管工程土与结构的性状及理论研究[D].杭州:浙江大学博士学位论文,2005.
    [43]Fujita K., Kusakabe. Underground construction in soft ground[M]. Rotterdam, Balkema,1995.
    [44]李昀,张了新.泥浆渗透对盾构开挖面稳定性的影响研究[J].岩十力学,2006,27(Supp.2):464-468.
    [45]Chambon P., Corte J.E.. Shallow tunnels in cohesionless soil:Stability of tunnel faee[J]. Journal of Geotechnical Engineering,1994,120(7):1148-1165.
    [46]Mair R.J.. Centrifuge modeling of tunnel construction in soft clay[D]. London:Cambridge University,1979.
    [47]Mair R.J., Taylor R.N.. Theme lecture:Bored tunneling in the urban environment A]. In:Proeeedings of the 14th International Conference on soil Mechanics and Foundation Engineering[C]. Rotterdam,1997: 2353-2385.
    [48]Takehiro ohta, Hideo kiya, Tetsuro Esaki and Yujing Jiang. Experimental study and numerical analysis on the stability of tunnel face in sandy gorund[J]. Quarterly Report of RTRI,2001,42(3):156-160.
    [49]周小文,蹼家骝,包承钢.砂土中隧洞开挖稳定机理及松动十压力研究[J].长江科学院院报,1999,16(4):9-14.
    [50]周小文,蹼家骝.砂土中隧洞开挖引起的地面沉降试验研究[J].岩土力学,2002,23(5):559-563.
    [51]程展林,吴忠明 徐言勇.砂基中泥浆盾构法隧道施工开挖面稳定性试验研究[J].长江科学院院报,2001,18(5):53-55.
    [52]李昀,张子新,张冠军.泥浆平衡盾构开挖面稳定模型试验研究[J].岩土工程学报,2007,29(7):1074-1079.
    [53]DeBuhan P., Cuvillier A., Donmieux L., Maghous S.. Face stability of shallow circular tunnels driven under the water table:A numerical analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1999 (23):79-95.
    [54]王敏强, 陈宏胜.盾构推进隧道结构三维非线性有限元仿真[J1.岩石力学及工程学报,2002,21(2):228-32.
    [55]鄢捷年主编.钻井液工艺学[M].北京:石油大学出版社,2001.
    [56]张春光,徐同台,侯万国等.正电胶钻井液[M].北京:石油工业出版社,1998.
    [57]张孝华,罗兴树.现代泥浆实验技[M].东营:石油大学出版社,1999.
    [58]刘惠珊, 徐牧.地基基础工程283问[M].北京:中国计划出版社,2002.
    [59]王立平, 王一新.浅谈泥浆主要特性及在岩土工程施工中的重要作用[J].桩基研究与地基,2007, (1):51-52.
    [60]刘仁鹏, 刘方京.泥水加压盾构技术综述[J].世界隧道,2000, (6):1-5,41.
    [61]韦良文, 张庆贺, 邓忠义等.泥水盾构隧道聚合物正电胶泥浆研究及应用[J].建筑材料学报,2007,1 0(1):66-70.
    [62]李昀, 张子新.泥浆渗透对盾构开挖面稳定性的影响研究[J].地下空间与工程学报,2007,3(4):720-726.
    [63]韩晓瑞,朱伟,刘泉维.泥浆性质对泥水盾构开挖面泥膜形成质量影响[J].岩土力学,2008,29(增):288-292.
    [64]Cundall P. A. PFC2D Users'Manual(version2.0). Minnesota:Itasca Consulting Group Inc.1999.
    [65]Cundall P.A.& Straek ODL. A Diserete numerical model for granular assemblies [J]. Geotechniqe,1979. 29(1):47-65.
    [66]T SaKakibara, M Ujihira & K Suzuki. Numerical study on the cause of a slope failure at a gravel pit using pfc and flac[A]. in:Numerical Modeling in Micromechnies Via Particle Methods[C]. Londont 2004:51-55.
    [67]Koyama, Yukinori.Present status and technology of shield tunneling method in Japan[J]. Tuunelling and Underground Space Technology,2003,18(2-3):145-159.
    [68]Manuel J. Melis Maynar, Luis E. Medina Rodriguez. Diserete Numerical Model for Analysis of Earth Pressure Balance Tunnel Exeavation, Journal of Geotechnical and Geoenvironmental Engineering,2005,31(10): 1234-1242.
    [69]T.Funatsu, T.Hoshino, H.Sawae, N.Shimizu. Numerical and alysis to better understand the mechanism of the effects of ground supports and reinforeements on the stability of tunnels using the distinetele mentmethod.Tunnelling and Underground SpaceTechnology.2008, (23):561-573.
    [70]周健, 池永等.砂土双轴试验的颗粒流模拟[J].岩土工程学报,2000,22(6):701-704.
    [71]周健, 廖雄华, 池永等.土的室内平面应变试验试验的颗粒流模拟[J].同济大学学报,2002,30(9):1044-050.
    [72]曾远.土体破坏细观机理及颗粒流数值模拟[D].上海:同济大学博士论文,2006.
    [73]尹小涛.岩土材料工程性质数值试验研究[D].武汉:中国科学院研究生院博士学位论文,2008.
    [74]罗勇.土工问题的颗粒流数值模拟及应用研究[D].浙江大学博士论文,2007.
    [75]朱伟, 钟小春, 加瑞.盾构隧道垂直土压力松动效应的颗粒流模拟[J].岩土工程学报,2008,30(5):750-75.
    [76]田桥.上拔桩—桶基础的土体细观结构分析[D].上海海事大学硕士论文,2006.
    [77]孟云伟,肖世洪,柴贺军.隧道开挖中破碎带支护的颗粒离散元模拟研究[J].地下空间与工程学报,2007,3(4):673-677.
    [78]魏龙海.基于颗粒离散元法的卵石层中成都地铁施工力学研究[D].成都:西南交通大学博士学位论文,
    [79]魏龙海,王明年.碎石十隧道自稳性的三维离散元分析[J].岩土力学.2008,29(7):1853-1860.
    [80]魏龙海,王明年,陈春光.三维离散元模型及计算参数选取研究[J].重庆交通大学学报,2008,27(4):615-612.
    [81]Mair R J. Tunnelling and geotechnics:new horizons[J]. Geotechnique,2008,58(9):695-736.
    [82]Shirlaw J N, Ong J C W, Rosser H B, et al. Local settlements and sinkholes due to EPB tunnelling[C]// Proceedings of the ICE-Geotechnical Engineering,2003:193-211.
    [83]Liao S M Liu J H, Wang R L, et al. Shield tunneling and environment protection in Shanghai soft ground [J]. Tunnelling and Underground Space Technology,2009,24(4):454-465.
    [84]Finno R J. Clough G W. Evaluation of soil response to EPB shield tunneling [J]. Journal of Geotechnical Engineering,1985,111(2):155-173.
    [85]Selby A R. Tunnelling in soils-ground movements, and damage to buildings in Workington, UK[J]. Geotechnical and Geological Engineering,1999,17(3):351-371.
    [86]Chou W I, Bobet A. Predictions of ground deformations in shallow tunnels in clay[J]. Tunnelling and Underground Space Technology,2002,17(1):3-19.
    [87]Sugiyama T, Hagiwara T, Nomoto T, et al. Observation of ground movements during tunnel construction by slurry shield method at the Docklands light railway Lewisham extension-east London [J]. Soils and Foundations, 1999,39(3):99-112.
    [88]Phienwej N, Sirivachiraporn A, Timpong S, et al. Characteristics of ground movements from shield tunnelling of the first Bangkok subway line [C]// International Symposium on Underground Excavation and Tunnelling. Bangkok, Thailand,2006:319-330.
    [89]Mohammad J V, Ghodrat H, Firouzian S, et al. Analysis of an underground structure settlement risk due to tunneling:a case study from Tabriz, Iran[J]. Songklanakarin Journal of Science and Technology,2010,32(2): 145-152.
    [90]Guglielmetti V, Grasso P, Mahtab A, et al. Mechanized tunnelling in urban areas design methodology and construction control [M]. London:Taylor & Francis,2008:125-152.
    [91]袁大军, 尹凡, 王华伟.超大直径泥水盾构掘进对土体的扰动研究[J].岩石力学与工程学报,2009,28(10):2074-2080.
    [92]林存刚,张忠苗,吴世明,等.泥水盾构掘进参数对地面沉降影响实例研究[J].土木工程学报,2012,45(4):116-126.
    [93]乐贵平,赵宏伟,周秀普,等.穿越全断面砾石层的盾构施工[J].现代隧道技术,2001,38(5):9-12.
    [94]周秀普.盾构法施工技术在无水砂砾石地层中的应用[J].市政技术,2003,21(4):195-203.
    [95]宋克志,汪波,孔恒,等.无水砂卵石地层土压盾构施工泡沫技术研究[J].岩石力学与工程学报,2005,24(13):2327-2332.
    [96]管会生, 高波.盾构切削刀具寿命的计算[J].工程机械,2006,37(1):25-28.
    [97]张明富, 袁大军, 黄清飞, 等.砂卵石地层盾构刀具动态磨损分析[J].岩石力学与工程学报,20098,22(2):397-402.
    [98]张国京.北京地区土压式盾构刀具的适应性分析[J].市政技术,2005,23(1):9-13.
    [99]邹积波.盾构刀具磨损原因探析[J].建筑机械化,2003,11:57-58.
    [100]索晓明,张继清,杨毅秋.北京地下直径线大直径盾构隧道技术研究[J].中国工程科学,2010,12(12):11-17.
    [101]韩亚丽,吕传田,张宁川.北京铁路地下直径线盾构选型及功能设计[J].中国工程科学,2010,12(12):29-34.
    [102]叶康慨.北京铁路直径线大断面地下隧道盾构机选型研究[J].隧道建设,2006,26(6):20-23.
    [103]赵成刚等编.土力学原理[M].北京:清华大学出版社, 北京交通大学出版社,2004.
    [104]李广信编.高等土力学[M].北京:清华大学出版社,2004.
    [105]郭培玺,俞缙,林绍忠,等.颗粒材料力学特性的数值模拟[J].河海大学学报,2008,36(6):806-809.
    [106]孙其诚,王光谦著.颗粒物质力学导论[M].北京:科学出版社,2009.
    [107]颜海滨, 蒋明镜.理想胶结颗粒微观接触本构关系的试验研究装置[C].第六届全国青年岩土力学与工程会议暨岩土工程系列学术研讨会, 岩土力学与工程新进展,2007:49-52.
    [108](日)松岡元著,罗汀,姚仰平编译.土力学[M].北京:水利水电出版社,2001.
    [109]刘斯宏, 卢廷浩.用离散单元法分析单剪试验中粒状体的剪切机理[J].岩土工程学报,2000,22(5):608-611.
    [110]王泳嘉, 邢纪波.离散单元法同拉格朗日元法及其在岩土力学中的应用[J].岩土力学, 1995,16(2):1-14.
    [111]刘凯欣, 高凌天.离散元研究的评述[J].力学进展,2003,33(4):483-490.
    [112]徐泳, 孙其诚, 张凌, 等.颗粒离散元法研究进展[J].力学进展,2003,33(2):251-260.
    [113]Itasca Consulting Group. PFC2D user's manual(version3.1)[M]. Minneapolis, Minnesota:Itasca Consulting Group, Inc.2004.
    [114]Itasca Consulting Group. PFC2D theory an d back-ground[M]. Minnesota, Minneapolis:Itasca Consulting Group,2004.
    [115]Cundall P. A., O. D. L. Strack. A discrete numerical method for granular assemblies[J]. Geotechnique,1979, 29(1):47-65.
    [116]Cundall P. A.. BALL-A Program to model granular media using the distinct element method[R]. Dames & Moore Advanced Technology Group, London,1978.
    [117]Strack O. D. L., Cundall P. A.. The distinct element method as a tool for research in granular media[R]. Part I.Report to the National Science Foundation, Minnesota:University of Minnseota,1978.
    [118]Jiang M.J.(蒋明镜),Yu H-S., Harris D.. Bond rolling resistance and its effect on yielding of bonded granulates by DEM analyses[J]. Int. Journal for Numerical and Analytical Methods in Geomechanics,2006, 30(7):723-761.
    [119]Jiang M.J.(蒋明镜),Yu H-S., Harris D.. A novel discrete model for granular material incorporating rolling resistance[J]. Computers and Geotechnics,2005,32(5):340-357.
    [120]周健,池永.土的工程力学性质的颗粒流模拟[J].固体力学学报,2004,25(4):377-382.
    [121]周健, 池毓蔚, 池永, 等.砂土双轴试验的颗粒流模拟[J].岩土工程学报,2000,22(6):701-704.
    [122]周健, 廖雄华, 池永, 等.土的室内平面应变试验的颗粒流模拟[J].同济大学学报,2002,30(9):1044-1050.
    [123]周健,廖雄华,徐建平,等.粘性土室内平面应变试验的颗粒流模拟[J].水利学报,2002,(12):11-17.
    [124]南京水利科学研究院土工研究所编著.土工试验技术手册[M].北京:人们交通出版社,2003.
    [125]邢建营.士工离心模型试验技术的研究和应用[D].西北农林科技大学硕士学位论文,2005.
    [126]中国水利水电科学研究院.土工离心模型试验规程(DL/T 5102-1999)[S]中国电力出版社,2000.
    [127]徐光明, 章为民.离心模型中的粒径效应和边界效应研究[J].岩土工程学报,1996,18(3):80-86.
    [128]唐志成.土工离心模型试验原理及误差问题[J].重庆交通学院学报,1989,8(4):103-112.
    [129]赵锡宏等编著.土的剪切带试验与数值分析[M].北京:机械工业出版社,2003.
    [130]池永.土的工程力学性质的细观研究—应力应变关系剪切带的颗粒流模拟[D].同济大学博士学位论文,2002.
    [131]钟邑桅.上海软粘土平面应变条件下剪切带形成的试验研究[D].同济大学硕士学位论文,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700