用户名: 密码: 验证码:
复杂地层水下盾构隧道地震响应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着地下工程技术的日臻完善,盾构法施工被越来越多地应用到水下越江隧道的建设中,而我国地处于环太平洋地震带上,地震活动非常频繁,因此对盾构隧道进行抗减震分析研究具有重要的意义。本文依托铁道部科技研究开发计划课题——狮子洋水下隧道结构静动力学特征及关键技术参数试验研究,以广深港客运专线狮子洋隧道为工程背景,采用有限差分法,对各典型计算工况进行了抗减震分析研究,主要完成了以下几方面的工作:
     1、建立二维数值计算模型,对典型饱和砂层断面及软土层断面在不同地震波作用下结构及周边地层的动力响应进行了分析。结果表明:不同地震波作用下各计算断面结构的内力和位移均满足安全运营要求,位于隧道上方粉细砂层会发生液化现象,但对结构稳定性不构成威胁;
     2、针对饱和砂层断面,讨论了地震波不同入射方向作用下结构及周边地层的震动特性,并研究了不同地基参数对结构抗减震性能的影响。分析结果表明:横向入射的地震波对结构及土体孔隙水压力影响更大,地基加固范围越大、地基强度参数提高倍数越高,土体抗液化能力越强、衬砌结构内力降低越多、变形越小;
     3、建立三维数值计算模型,分析了典型联络通道与隧道结构连接处在不同地震波及地震波不同入射方向作用下,结构及周边地层的响应特性。计算表明:不同地震波作用下,结构的变形与应力均满足抗震设防要求,位于隧道上方的粉细砂层会发生液化现象,但不影响结构安全,横向入射的地震波对交叉结构的影响更大;
     4、采用三维数值计算方法,对进口段工作竖井与隧道结构连接处进行了不同地震波入射方向作用下结构的动力响应分析。研究结果表明:地震作用过程中,竖井与隧道结构连接处个别部位出现了较大拉应力,已超过结构抗拉强度设计值,具有一定的震害风险,横向入射的地震波对结构的危害性更大。
With the underground engineering technology is improving daily, Shield method of construction are increasingly being applied to the underwater cross-river tunnel construction. However, our country, China land in the circum-Pacific seismic belt, seismic activity is very frequent, therefore, focusing on the research and improvement of seismic response analysis methods of shield tunnel has great significance. This paper rely on issue that Structural statics-kinetics feature and key technical parameters research of Shiziyang underwater tunnel, which is scientific research and development program topic of the Ministry of Railways, with Shiziyang tunnel in Guangzhou-Shenzhen-HongKong passenger dedicated line for engineering background, use finite difference method, analyse shock absorption measures of typical working conditions. The main contents are as following:
     1. Establish two-dimensional numerical model, choose two typical corss-sections of the saturated sand and soft soil, analyse the earthquake response of the structure and the surrounding strata under different seismic waves of these corss-sections. The resules show that the internal forces and displacements under different seismic waves are required to meet the safe operation of the structure. And the fine sand layer at the top of the tunnel will liquefy, but does not pose a threat to the stability of the structure.
     2. For the saturated sand section, discussed the dynamic response of the structure and the surrounding strata under different incidence directions of seismic wave, and research shock absorption effects of different parameters of oundation. Results show that horizontal incident seismic wave has greater impact on the structure and the soil pore water pressure. And the greater the scope of foundation reinforcement and the higher foundation strength parameters improvement, the stronger of the ability of soil to resistant liquefy, more internal forces and deformation to reduce.
     3. Establish three-dimensional numerical model, analyse the dynamic response feature of the structure and the surrounding strata under different seismic waves and different incidence directions of the intersection structure of main tunnel and connected aisle. Calculation show that the structure deformation and stress under different seismic waves are required to meet the require of seismic fortification, the fine sand layer at the top of the tunnel will liquefy, but does not affect the safety of the structural. And horizontal incident seismic wave has greater impact on the intersection structure.
     4. Use three-dimensional numerical method, analyse the dynamic response of the structure under different incidence directions of seismic wave of space crossing structure by which working shaft is connected with shield tunnel and open cut tunnel. Results show that individual parts of the working shaft and tunnel junction structure occurs a greater tensile stress during earthquake, exceeds the structural design value of tensile strength, with a certain degree of risk of earthquake damage. And horizontal incident seismic wave has greater danger on the intersection structure.
引文
[1]Y. M. A. Hashash, J.H.Jeffrey. Seismic design and analysis of underground structures[J]. Tunnelling and Underground Space Techonology,2001,16:274-293.
    [2]张玉娥,百宝鸿等.地铁区间隧道震害特点、震害分析方法及减震措施的探讨[J].震动与冲击,2003,22(1):70-74.
    [3]王秀英,刘维宁,张弥.地下结构震害类型与机理研究[J].中国安全科学学报,2003,13(11):55-58.
    [4]Hamada M, Isoyama R, Wakamatsu K. Liquefaction induced ground displacement and its related damage to lifeline facilities[J]. Soils and Foundations,1996, Vol.36 (1):81-97.
    [5]Iwatatte T., Domon T., Nakamura S.. Earthquake damage and seismic response analysis of subway station and tunnels during the great hanshin-Awaji earthquake[J]. Tunnel for People, Golser, Hinkel & Schubert (eds),1997.
    [6]马险峰.地下结构的震害研究:[博士学位论文].上海:同济大学土木工程学院,2000.
    [7]郑永来,杨林德,李文艺.地下结构抗震[M].上海:同济大学出版社,2005.
    [8]胡聿贤.地震工程学[M].北京:地震出版社,1988.
    [9]严松宏.隧道总体地震反应分析方法研究[J].甘肃科学学报,2000,12(1):38-42.
    [10]潘昌实.隧道及地下结构物抗震问题的研究概况[J].世界隧道,1996,(5):7-16.
    [11]吕春英,刘维宁.铁路隧道抗震设计方法[J].世界隧道,2000年增刊,359-364.
    [12]St John C M, Zahrah T F. Aseismic design of underground structures. Tunnelling and Underground Space Technology,1987.
    [13]周健,董鹏.软土地下结构的抗震土压力分析研究[J].岩土力学,2004,Vol.25(4):554-559.
    [14]林皋.地下结构抗震分析综述(上)[J].世界地震工程,1990,6(2):1-9.
    [15]林皋.地下结构抗震分析综述(下)[J].世界地震工程,1990,6(3):1-10.
    [16]沈世杰.城市轻轨地下隧道结构抗震分析探讨[J].特种结构,2003,Vol.20(3):1-3.
    [17]Kiyomiya O. Earthquake-resistant Design Features of Immersed Tunnels in Japan. Tunnelling and Underground Space Technology,1995, Vol.10 (4):453-475.
    [18]Tamaka T, Oshitari M, Earthquake resistant design of an immerged tunnel considered the effects of traveling waves. Proceedings of the 8th WCEE,1980.
    [19]骆文海.日本铁路隧道抗震设计和加固(访日考察报告).铁道工程学报,1998年增刊,584-592.
    [20]孙海涛,徐迎武.软土地层中隧道地震响应反应分析[J].勘察科学技术,2000,(1):10-14.
    [21]林皋.地下结构抗震问题[R].第四届全国地震工程会议,1994.
    [22]A. Stamos and D. E. Beskos.3-D seismis response analysis of long lined tunnels in half-space[J]. Soil Dynamics and Earthquake Engineering, 1996,24 (26):23-26.
    [23]A. Bobet. Effect of pore water pressure on tunnel support during static and seismic loading[J]. Tunnelling and Underground Space Technology,2005,15 (3):2115-2118.
    [24]福季耶娃著,许显毅译.地震区地下结构支护的计算[M].北京:煤炭出版社,1986.
    [25]高峰.地下结构抗震分析中的若干问题的探讨[J].西南交通大学学报,1993,23(3):55-59.
    [26]高峰,李德武.隧道三维地震反应分析若干问题的研究[J].岩土工程学报,1998,20(4):68-72.
    [27]李育枢.山岭隧道地震动力响应及减震措施研究:[博士学位论文].上海:同济大学土木工程学院,2006.
    [28]Hamada H, Kitahara M. Earthquake observation and BIE analysis on dynamic behavior of rock cavern[C]. Proceedings of the Fifth International Conference on Numerical Methods in Geomechanics. Nagoya,1985, Vol.3:1525-1532.
    [29]Dowding C H, Rozen A. Damage to rock tunnels from earthquake shaking[J]. J. Geotech. Eng. Div.,ASCE.1978,Vol.104(GT2):175-191.
    [30]Sharma S, Judd W R. Undergroud opening damage from earthquakes[J]. ENG. Geol.1991, Vol.30 (3,4):263-276.
    [31]Goto Y, Matsuda Y, Ejiri J, et al. Influence of distance between juxtaposed shield tunnel on their seismic responses[C]. Proc.9th World Conf. On Erathq. Eng. Tokyo-Kyoto, Japan,1988:569-574.
    [32]铁道部第二勘察设计院,西南交通大学.南昆铁路8,9度地震区隧道洞口及浅埋大跨段重新结构设计试验研究[R],1996.
    [33]周德培.强震区隧道洞口段的动力特性研究[J].地震工程与工程振动,1998,18(1):124-130.
    [34]杨林德,季倩倩,郑永来等.软土地铁车站结构的振动台模型试验[J].现代隧道技术,2003,40(1):7-11.
    [35]陈国兴,庄海洋,杜修力等.土一地铁车站结构动力相互作用大型振动台模型试验研究[J].地震工程与工程振动,2007,27(2):171-176.
    [36]于翔,陈启亮,赵跃堂等.地下结构抗震研究方法及现状[J].解放军理工大学学报,2000,1(5):63-69.
    [37]Thomas R X. Earthquake design criteria for subway [J]. Journal of the Structural Division Proceedings of ASCE,1969, Vol. (6):1213-1231.
    [38]黄先锋.地下结构抗震计算[J].铁道建筑,1999,(6):3-6.
    [39]Shukla DK, Rizzo PC, Stephenson DE. Earthquake load analysis of tunnels and shafts [J]. Proceeding of the 7th World Conference on Earthquake Engineering,1980, (8):20-28.
    [40]川岛一彦.地下结构物的耐震设计[M].日本:鹿岛出版社,1994.
    [41]Dasgupta G A. A finite element formulation for unbounded homogeneous continua[J]. J. of Appl. Mech. ASME.1982, Vol.49:136-140.
    [42]Wolf J P, Song C M. Dynamic-stiffness matrix of unbounded soil by finite element multi-cell cloning[J]. Earthquake Eng.Struct. Dyn.1994, Vol.23 (3):232-250.
    [43]Song C M, Wolf J P. Dynamic stiffness of unbounded medium based on damping-solvent extraction[J]. EESD.1994, Vol.23 (2):169-181.
    [44]Song C M, Wolf J P. The scaled boundary finite element method-a primer solution procedures[J]. Computers and Structures.2000, Vol.78 (3):211-225.
    [45]Jun Seong Cboi, Jong She Lee, Member ASCE, et al. Nonlinear earthquake response analysis of 2-D underground structures with soil-structure interaction including separation and sliding at interface[A].15th ASCE Engineering Mechanics Conference[C]. June 2-5.2002. Columbia University. NY. P1-8.
    [46]Hongbin Huo, Antonio Bobet. Seismic design of cut and cover rectangular tunnels-evaluation of observed behavior fo Dakai station during Kobe earthquake.1995[A]. Proceedings of 1st World Forum of Chinese Scholars in Geoteclmical Engineering. August 20-22.2003[C]. Tongji University, Shanghai,456-466.
    [47]Jiang T, Su L. Elasto-plastic stress analysis in the longitudinal direction of shield tunnels during earthquakes. Proc of Third China Japan US Trilateral Symposium on Lifeline Earthquake Engineering. Kunming, China,1998.
    [48]苏亮.盾构法隧道的弹塑性地震反应分析:[硕士学位论文].上海:同济大学,1998.
    [49]姜忻良,宋丽梅.软土地层中地下隧道结构地震反应分析[J].地震工程与工程振动,1999,19(1):65-69.
    [50]国胜兵,赵毅,赵跃堂等.地下结构在竖向和水平地震荷载作用下的动力分析[J].地下空间,2002,122(4):314-319.
    [51]刘晶波,李彬,谷音等.地铁盾构隧道地震反应特性研究[J].现代隧道技术,2004(增):251-257.
    [52]祝彦知,仲政.考虑各向异性的层土—盾构隧道地震反应数值模拟[J].地震工程与工程振动,2004,24,4:90-98.
    [53]祝彦知,冯紫良,方志.地震动下考虑各向异性土体—盾构隧道数值模拟[J].岩土力学,2005,26(5):710-716.
    [54]周健,孔戈,秦天.盾构隧道动力有效应力分析方法研究[J].岩石力学与工程学报,2007,26(7):1416-1425.
    [55]周健,秦天,孔戈.武汉长江隧道横断面地震响应分析[J].工程抗震与加固改造,2007,29(2):84-94.
    [56]刘学山.盾构隧道的纵向抗震分析研究[J].地下空间,2003,23(2):166-172.
    [57]吴晓峰,周健,董鹏.到软土地层中双圆盾构法隧道的抗震分析[J].工程抗震,2004,4:27-31.
    [58]蒋建群,卢慈荣,沈林冲等.盾构法隧道纵向地震响应特性[J].中国铁道科学,2005,26(6):84-88.
    [59]耿萍,何川,晏启祥.盾构隧道纵向地震响应分析[J].西南交通大学学报, 2007,42(3):283-287.
    [60]李海波,马行东,邵蔚等.地震波参数对地下岩体洞室位移特性的影响分析[J].岩石力学与工程学报,2005,24(supp.1):4627-4634.
    [61]G. Swoboda, A. Abukrisha. Three-dimensional numerical modeling for TBM tunneling in consolidated clay,1998.
    [62]Youssef M. A. H, Jeffrey J. H, Birger S., et al. Seismie design and analysis of underground struetures. Tunnelling and Underground Spaee Teehnology,2001,16 (4):247-293.
    [63]邓爽.长江隧道衬砌结构地震响应的三维数值:[硕士学位论文].武汉:武汉理工大学,2006.
    [64]王优龙,魏琏,李康祺等.隔震技术的研究与应用[M].北京:地震出版社,1991.
    [65]邵根大,骆文海.强地震作用下铁路隧道衬砌耐震性的研究[R].北京:铁道部科学研究院,1990:92-109.
    [66]王志杰.地震区隧道洞口段减震模式研究:[硕士学位论文].成都:西南交通大学,1996.
    [67]王明年.高地震区地下结构减震技术原理的研究:[硕士学位论文].成都:西南交通大学,1999.
    [68]周德培.高烈度地震区浅埋大跨隧道施工技术及抗震材料[J].现代隧道技术,2001,38(2):1-4.
    [69]高峰.地下结构动力分析若干问题研究[J].岩石力学与工程学报,2003,22(11):1802.
    [70]王以军.国道318线黄草坪隧道地震动力响应及减震措施研究:[硕士学位论文].成都:成都理工大学,2005.
    [71]李丽.基于ABAQUS的高速公路隧道地震动力响应研究:[硕士学位论文].成都:西南交通大学,2006.
    [72]刘洋.近断层地铁隧道地震作用下动力响应数值模拟研究:[硕士学位论文].北京:北京交通大学,2009.
    [73]Itasca Consulting Group, Inc. FLAC3D, Fast Lagrangian Analysis of Continua, version 3.00, user's manual, USA:Itasca Consulting Group, Inc.,2005.
    [74]刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.
    [75]高峰,关宝树.沉管隧道三维地震反应分析[J].兰州铁道学院学报,2003, 22(1):6-10.
    [76]熊良宵,李天斌,刘勇.隧道地震响应数值模拟研究[J].地质力学学报,2007,13(3):255-260.
    [77]吴育才.单层厂房震例及其应用[M].山东:山东科学技术出版社,1991,61-68.
    [78]铁道第四勘察设计院.广深港客运专线广州至深圳段狮子洋隧道定测工程地质勘察报告[R].2006.
    [79]中华人民共和国建设部.GB 50011-2001建筑抗震设计规范[S].北京:中国建筑工业出版社,31-34.
    [80]肖诗云.混凝土率型本构模型及其在拱坝动力分析中的应用:[博士学位论文].大连:大连理工大学,2002年.
    [81]Bazant Z P, Oh B H. Strain-rate effect in rapid triaxial loading of concrete[J]. Journal of the Engineering Mechanics Division, ASCE, 1982,108 (5):764-782.
    [82]Watstein D. Effect of straining rate on the compressive strength and elastic properties of concrete. ACIJ.,1953,49:729-744.
    [83]Atchley B L, Furr H L. Strength and energy absorption capabilities of plain concrete under dynamic and static loading[J]. ACI J.1967, 64:745-756.
    [84]Hughes B P, Gregory R. Concrete subjected to high rates of loading in compression[J]. Magazine of Concrete Research,1972,24 (78): 25-36.
    [85]Dhir R K, Sangha C M. A study of relationships between time, strength, deformation and fracture of plain concrete. Magazine of Concrete Research,1972,24 (81):197-208.
    [86]杜荣强.混凝土静动弹塑性损伤模型及在大坝分析中的应用:[博士学位论文].大连:大连理工大学,2006年.
    [87]Raphael J M. tensile strength of concrete [J]. A C I Journal,1984, 81 (17):158-165.
    [88]中华人民共和国水利部.水工建筑物抗震设计规范[S].北京:中国电力出版社,2001年.
    [89]尹旅超,朱振宏等.日本隧道盾构新技术[M].武汉:华中理工大学出版社,1999:76-79.
    [90]黄正荣.基于壳一弹簧模型的盾构衬砌管片受力特性研究:[博士学位论文]. 南京:河海大学,2006.
    [91]黄建明.盾构管片计算模型的选择[J].铁道建筑,2004,6:29-31.
    [92]黄正荣,朱伟,梁精华.修正惯用法管片环弯曲刚度有效率η和弯矩提高率ξ的研究[J].地下空间,2003,23(4):44-49.
    [93]张海波.地铁隧道盾构法施工对周围环境影响的数值模拟:[博士学位论文].南京:河海大学.
    [94]张海波,殷宗泽,朱俊高.盾构法隧道衬砌施工阶段受力特性的三维有限元模拟[J].岩土力学,2005,26(6):990-994.
    [95]Charlie W A, Paul J, Jacobs, Doehring D 0. Blast-induced liquefaction of an alluvial sand deposit [J]. Geotechnical Testing Journal,1992, 15 (1):14-23.
    [96]Charlie W A, Veyera George E, Durnford Deanna S, et al.Porewater pressure increases in soil and rock from underground chemical and nuclear explosion[J]. Engineering Geology,1996,43 (2):225-236.
    [97]国胜兵,王明洋,钱七虎.饱和砂土爆炸液化特性研究[J].岩土力学,2007,28(3):427-435.
    [98]叶耀东.软土地区运营地铁盾构隧道结构变形及健康诊断方法研究:[博士学位论文].上海:同济大学,2007年.
    [99]中华人民共和国铁道部.TB10002.3-2005铁路桥涵钢筋混凝土和预应力混凝土结构设计规范[S].北京:中国铁道出版社,2005.
    [100]中华人民共和国建设部.GB50111-2006铁路工程抗震设计规范[S].北京:中国计划出版社,2006.
    [101]彭立敏,刘小兵.隧道工程[M].长沙:中南大学出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700