用户名: 密码: 验证码:
膨胀性非饱和土的本构模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:膨胀土区域中的边坡防护、渠道开挖、建筑物基础的不均匀沉降等岩土工程和高放废物地下处置工程中都涉及到膨胀性非饱和土在外荷载和含水量变化作用下的变形、强度、渗流、持水等问题。膨胀土作为一种特殊的土的类型,其行为较为复杂,产生的机理亦异于一般的非饱和土。目前膨胀土的理论很不完善,需要进一步的研究和发展。本文的研究对象,即膨胀性非饱和土不同于一般的非饱和土。一方面,原状粘土、较低含水量的压实粘土以及由膨润土粒状体组成的土体等膨胀性非饱和土均具有明显的双孔隙结构特征。另一方面,由于膨胀土中含有蒙脱石和伊利石等强亲水性矿物,因此土中固相基质与附近液相间的物理-化学作用明显,表现出宏观的湿化膨胀的特性,并且液相的性质随孔隙的尺寸和其在孔隙中的位置的不同而变化。上述两方面导致膨胀非饱和土的力学和水力行为较一般的非饱和土的行为更加复杂。所以,需要针对膨胀性非饱和土的双孔隙结构和其膨胀性的特点,发展和完善已有的非饱和土力学的理论,并为进一步的工程应用奠定基础。
     本文针对具有双孔隙结构的膨胀性非饱和土进行了系统的研究,取得了以下主要研究成果:
     (1)基于多相孔隙介质理论和基本的物理定律,针对膨胀性非饱和土结构的特殊性,推导得到具有严格理论基础的膨胀性非饱和土外力输入功的表达式。在上述推导过程中,区分了土体内部的宏观孔隙和微观孔隙,以及孔隙中的毛细液相和吸附液相。因此,依据功的表达式可以选取多组功共轭的变量作为进一步构筑本构模型的广义应力和广义应变的变量。其中包括描述宏观和微观变形以及不同尺度的孔隙中液相含量变化的变量等。
     (2)基于膨胀性非饱和土输入功的表达式以及开放的多相热力学系统中能量-功-耗散之间的关系,建立适用于具有多尺度孔隙结构特征的非饱和土的本构模型理论框架。并且基于该理论框架,通过一些合理的假设和简化,在等向压力条件下建立了双尺度的水力滞回-力学耦合模型。文中首先根据以往研究者常采用的假设条件对上述推导而得的土体输入功的表达式进行了简化。简化后的输入功包含3项,分别为宏观孔隙变形所对应的功,宏观孔隙中毛细液相饱和度变化所对应的功,以及微观结构变化所对应的功。推导过程中,通过选取合适的内变量反映功的表达式中3项间的联系。所建立的双尺度的水力滞回.力学耦合模型可同时考虑力学和水力行为间的耦合作用,以及土中微观结构的变化对土体整体行为的影响。
     (3)建立了一个适用于膨胀性非饱和土的二元介质模型,模型中考虑基质吸力中的毛细部分和粘吸部分对膨胀土行为的不同作用和影响。以往研究中,研究者们常忽略基质吸力中粘吸部分。然而就膨胀土而言,土中固相基质与其附近液相间的物理-化学作用显著,既粘吸部分的作用不容忽视。文中根据二元介质模型的建模方法,将膨胀性非饱和土抽象为由两个理想部分组成,即理想毛细部分和理想粘吸部分,并且分别建立适用于这两者的本构关系。然后利用参与函数,反映实际情况下理想毛细部分和理想粘吸部分所占据或参与的比重。文中仿照二元介质模型的建模思路,提出了一种在已有的非饱和土本构模型的基础上,考虑土中固相基质和附近液相间的物理-化学作用,即基质吸力中粘吸部分的作用和影响的非饱和土本构模型。
     (4)基于热力学中储存塑性功的概念,对干湿循环路径下膨胀土的变形行为产生的机理进行了探讨和研究。并建立了适用于基质吸力循环路径下的膨胀性非饱和土的本构模型。文中指出由于膨胀土中集聚体的易延展性和颗粒间的相互制约作用,使得土中集聚体内存在一定的储存塑性功。因此,可将基质吸力循环引起的膨胀土的塑性变形分为两部分,其中一部分由颗粒间的重排列引起,另一部分由土中集聚体内储存的塑性能量的增加引起。为了反映上述特征,文中利用混合硬化准则建立了相应的弹塑性本构模型。
ABSTRACT:In expansive soil layer, projects of underground high-level radioactive waste disposal and geotechnical engineering, such as slope protection, channel excavation, uneven settlement of building foundation and etc., involve the deformation, strength, seepage and retention water behaviors of expansive unsaturated soil. As the object of study in this thesis, unsaturated expansive soils are other than low and moderate plasticity unsaturated soils. Many unsaturated expansive soils, such as natural and compacted clays and bentonite pellet mixtures, have a pore size distribution with at least two dominant values of porosity. Furthermore, the physiochemical effect between the solid matrix and adjacent water are obvious. Thus the property of pore water changes with pore size and location. The above two reasons lead to more complex mechanical and hydraulic behaviors of unsaturated expansive soil than that of the unsaturated soil. Thus, in terms of its specific characteristics of structure and deformation, there is a need to develop and improve the existing theory of unsaturated soil, which could also lay a theoretical foundation for engineering application.
     The paper mainly contains the following parts:
     (1) Based on the porous media theory and the essential laws of physics, the input work of unsaturated expansive soils are proposed. In the process of derivation, the pores are classified into macro-and micropores, meanwhile, the pore water is classified into capillary water and adsorbed water. Then several pairs of energy-conjugate variables could be determined, e.g. the macro-and microstructural strains, the macrostructural degree of saturations of capillary water and adsorbed water, the microstructural degree of saturation and their energy-conjugate stress variables.
     (2) According to the derived input work expression of unsaturated expansive soils and the work-energy-dissipation relations for an open multiphase thermodynamic system, a thermodynamics-based modelling framework for unsaturated expansive soils with double porosity is established. Based on the thermodynamics-based modelling framework, a double-scale constitutive model for isotropic stress state is proposed, involving coupling of hydraulic hysteresis and mechanical behaviors. The input work expression is simplified based on the some common hypothesis. There are three terms in the simplified expression, i.e. the work caused by the macrostructural deformation, the work caused by the change of macrostructural degree of saturation, the work caused by the change of microstructure. In the derivation process of the thermodynamics-based modelling framework, the internal variable is used to couple the three terms. The proposed model takes two factors into consideration:the interaction between the micro-and macro-structure of expansive soils and the fully coupled capillary hysteresis with mechanical behaviors.
     (3) A new binary-medium model for unsaturated expansive soils is proposed, involving a consideration of the effects of the capillary component and the adsorptive component of matric suction on the behaviors of unsaturated expansive soils. Most constitutive models for unsaturated soils are proposed on the basis of the capillarity mechanism, ignoring the contributions of the adsorption effect to mechanical and hydraulic behaviors. For expansive clays, however, the adsorption effect which leads to more complex behavioral characteristics than that in low plasticity clays cannot be ignored. The expansive clay is assumed as a mixture of two parts, i.e. an ideal capillarity part and an ideal adsorption part, and two ideal constitutive models are established for the ideal parts, respectively. Then a participation function is used to reflect the proportions of the ideal capillarity part and the ideal adsorption part in the actual situation. According to the thought of establishing the disturbed models, a method dealing with the physicochemical effect, i.e. the adsorptive component of matric suction, is proposed, which is extended by the existing unsaturated soil model based on the capillarity mechanism.
     (4) On the basis of the thermodynamics concept of stored energy, the mechanisms of the deformation behaviors of unsaturated expansive soils under suction cycles paths are discussed. Moreover, a new constitutive model for unsaturated expansive soil is proposed. The generation of the stored energy for soils is attributed to the deformability of the individual aggregate and mutual restrictions among the adjacent aggregates. By means of analysis, the plastic deformation can be decomposed into two parts, which are attributed to the structural rearrangements and the change of stored plastic work, respectively. And then the combined isotropic-kinematic hardening rule is used to consider the mechanism of plastic deformation. The proposed model can quantitatively predict the behaviour of unsaturated expansive soils under suction cycles.
引文
[1]刘特洪.工程建设中的膨胀土问题[M].北京:中国建筑工业出版社,1997.
    [2]Terzaghi K. The shear resistance of saturated soils [C]//Proceedings of the 1st International Conference on Soil Mechanics. Cambridge, Mass,1936:54-56.
    [3]Biot M A. General theory of three-dimensional consolidation[J]. Journal of Applied Physics,1941,12(2):155-164.
    [4]Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range[J]. Journal of the Acoustical Society of America, 1956,28(2):168-178.
    [5]Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range [J]. Journal of the Acoustical Society of America,1956,28(2):179-191.
    [6]Biot M A. Mechanics of deformation and acoustic propagation in porous media[J]. Journal of Applied Physics,1962,33(4):1482-1498.
    [7]Biot M A. Generalized theory of acoustic propagation in porous dissipative media[J]. The Journal of the Acoustical Society of America,1962,34(5): 1254-1264.
    [8]赵成刚,白冰.土力学原理[M].北京:清华大学出版社,北京交通大学出版社,2004.
    [9]Fillunger P. Der auftrieb in talsperren[J]. Osterreichichische Wochenschrift fur den Offentlichen Baudienst(O W O B),1913,19:532-556.
    [10]Ziegler H, Wehrli C. The derivation of constitutive relations from the free energy and the dissipation function[J]. Advances in Applied Mechanics,1987, 25:183-238.
    [11]Collins I F, Houlsby G T. Application of thermomechanical principles to the modelling of geotechnical materials [J]. Proceedings of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences,1997, 453(1964):1975-2001.
    [12]Puzrin A M, Houlsby G T. A thermomechanical framework for rate-independent dissipative materials with internal functions[J]. International Journal of Plasticity,2001,17(8):1147-1165.
    [13]Li X S. Thermodynamics-based constitutive framework for unsaturated soils.1: Theory[J]. Geotechnique,2007,57(5):411-422.
    [14]Li X S. Thermodynamics-based constitutive framework for unsaturated soils.2: A basic triaxial model[J]. Geotechnique,2007,57(5):423-435.
    [15]赵成刚,刘艳.连续孔隙介质土力学及其在非饱和土本构关系中的应用[J].岩土工程学报,2009,31(9):1324-1335.
    [16]刘艳,赵成刚,蔡国庆,黄璐.考虑气相硬化影响的非饱和土本构模型[J].科学通报,2010,55(26):2635-2642.
    [17]Delage P, Lefebvre G Study of the structure of a sensitive Champlain clay and of its evolution during consolidation[J]. Canadian Geotechnical Journal,1984, 21(1):21-35.
    [18]Juang C H, Holtz R D. Fabric, pore size distribution, and permeability of sandy soils[J]. Journal of Geotechnical Engineering,1986,112(9):855-868.
    [19]Hoffmann C. Caracterizacion hidromecanica de mezclad de pellets de bentonita. Estudio experimental y constitutive [D]. Barcelona:Polytechnic University of Catalonia,2005.
    [20]Romero E, Della Vecchia G, Jommi C. An insight into the water retention properties of compacted clayey soils[J]. Geotechnique,2011,61(4):313-328.
    [21]Collins I F. The concept of stored plastic work or frozen elastic energy in soil mechanics[J]. Geotechnique,2005,55(5):373-382.
    [22]Delage P, Tessier D, Marcel-Audiguier M. Use of the cryoscan apparatus for observation of freeze-fractured planes of a sensitive Quebec clay in scanning electron microscopy[J]. Canadian Geotechnical Journal,1982,19(1):111-114.
    [23]Sridharan A, Altschaeffl A G, Diamond S. Pore size distribution studies[J]. Journal of the Soil Mechanics and Foundations Division,1971,97(5): 771-787.
    [24]Lu N, Likos W J. Unsaturated Soil Mechanics[M]. New York:John Wiley, 2004.
    [25]Mitchell J K, Soga K. Fundamentals of soil behavior (3rd ed)[M]. New York: John Wiley,2005.
    [26]Grim R E. Clay Mineralogy (2nd ed)[M]. New York:McGraw-Hill,1968.
    [27]Chen R. Experimental study and constitutive modeling of stress-dependent coupled hydraulic hysteresis and mechanical behaviour of an unsaturated soil[D]. Hong Kong:Hong Kong University,2007.
    [28]Wayllace A. Volume change and swelling pressure of expansive clay in the crystalline swelling regime[D]. Columbia:University of Missouri,2008.
    [29]Ahmed S, Lovell C W, Diamond S. Pore sizes and strength of compacted clay[J]. Journal of the Geotechnical Engineering Division,1974,100(4): 407-425.
    [30]Mitchell J K, Hooper D R, Campanella R G. Permeability of compacted clay[J]. Journal of the Soil Mechanics and Foundations Division,1965,91(4):41-65.
    [31]Barden L, Sides G R. Engineering behavior and structure of compacted clay[J]. Journal of the Soil Mechanics and Foundations Division,1970,96(4): 1171-1200.
    [32]Alonso E E, Gens A, Hight D W. General report:special problem soils[C]// Proceedings of the 9th European Conference on Soil Mechanics and Foundation Engineering. Dublin, Ireland,1987:1087-1146.
    [33]Barenblatt G I, Zheltov I P, Kochina I N. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks[J]. Journal of Applied Mathematic and Mechanics,1960,24(5):1286-1303.
    [34]Derjaguin B V, Churaev N V, Muller V M. Surface Forces[M]. New York: Plenum Press,1987.
    [35]Tuller M, Or D, Dudley L M. Adsorption and capillary condensation in porous media:Liquid retention and interfacial configurations in angular pores[J]. Water Resources Research,1999,35(7):1949-1964.
    [36]Gens A. Soil-environment interactions in geotechnical engineering[J]. Geotechnique,2010,60(1):3-74.
    [37]Baker R, Frydman S. Unsaturated soil mechanics:Critical review of physical foundations[J]. Engineering Geology,2009,106(1-2):26-39.
    [38]Gallipoli D, Gens A, Sharma R, Vaunat J. An elasto-plastic model for unsaturated soil incorporating the effect of saturated degree on mechanical behaviour[J]. Geotechnique,2003,53(1):123-135.
    [39]Lu N. Is matric suction stress variable?[J]. Journal of Geotechnical and Geoenvironmental Engineering,2008,134(7):899-905.
    [40]Lu N, Godt J W, Wu D T. A closed-form equation for effective stress in unsaturated soil[J]. Water Resources Research,2010,46(5):W05515.
    [41]Delage P, Audiguier M, Cui Y J, Howat M D. Microstructure of a compacted silt[J]. Canadian Geotechnical Journal,1996,33(1):150-158.
    [42]Romero E, Gens A, Lloret A. Water permeability, water retention and microstructure of unsaturated compacted Boom clay[J]. Engineering Geology, 1999,54(1-2):117-127.
    [43]Simms P H, Yanful E K. Measurement and estimation of pore shrinkage and pore distribution in a clayey till during soil-water characteristic curve tests [J]. Canadian Geotechnical Journal,2001,38(4):741-754.
    [44]Cui Y J, Loiseau C, Delage P. Microstructure changes of a confined swelling soil due to suction controlled hydration[C]//Proceedings of the 3rd International Conference on Unsaturated Soils. Recife, Brazil,2002:593-598.
    [45]Simms P H, Yanful E K. A pore-network model for hydromechanical coupling in unsaturated compacted clayey soils[J]. Canadian Geotechnical Journal,2005, 42(2):499-514.
    [46]Koliji A, Laloui L, Cusinier O, Vulliet L. Suction induced effects on the fabric of a structured soil[J]. Transport in Porous Media,2006,64(2):261-278.
    [47]Delage P, Marcial D, Cui Y J, Ruiz X. Ageing effects in a compacted bentonite: a microstructure approach[J]. Geotechnique,2006,56(5):291-304.
    [48]Monroy R, Zdravkovic L, Ridley A. Evolution of microstructure in compacted London Clay during wetting and loading[J]. Geotechnique,2010,60(2): 105-119.
    [49]Alonso E E, Romero E, Hoffmann C. Hydromechanical behaviour of compacted granular expansive mixtures:experimental and constitutive study[J]. Geotechnique,2011,61(4):329-344.
    [50]Kassif G, Baker R, Ovadia Y. Swell-pressure relationships at constant suction changes[C]//Proceedings of the 3rd International Conference on Expansive Soils. Haifa,1973:201-208.
    [51]Escario V, Saez J. Measurement of the properties of swelling and collapsing soils under controlled suction[C]//Proceedings of the 3rd International Conference on Expansive Soils. Haifa,1973:195-200.
    [52]Brackley I J A. Swell under load[C]//The 6th Regional Conference for Africa on Soil Mechanics & Foundation Engineering. Durban, South Africa,1975: 65-70.
    [53]Richards B G, Peter P, Martin R. The determination of volume change properties in expansive soil[C]//Proceedings of the 5th International Conference on Expansive Soils. Adelaide, Australia,1984:179-186.
    [54]Justo J L, Delgado A, Ruiz J. The influence of stress-path in the collapse-swelling of soils at the laboratory[C]//Proceedings of the 5th International Conference on Expansive Soils. Adelaide, Australia,1984:67-71.
    [55]Brackley I J A. Swell pressure and free swell in compacted clay[C]// Proceedings of the 3rd International Conference on Expansive Soils. Haifa, 1973:169-176.
    [56]Chen F H. The basic physical property of expansive soils[C]//Proceedings of the 3rd International Conference on Expansive Soils. Haifa,1973:17-25.
    [57]Gens A, Alonso E E. A framework for the behaviour of unsaturated expansive clays[J]. Canadian Geotechnical Journal,1992,29(6):1013-1032.
    [58]Al-Homoud A, Basma A, Husein Malkawi A, Al Bashabsheh M. Cyclic swelling behavior of clays[J]. Journal of Geotechnical Engineering,1995, 121(7):562-565.
    [59]Alonso E E, Romero E, Hoffmann C, Garcia-Escudero E. Expansive bentonite-sand mixtures in cyclic controlled suction drying and wetting[J]. Engineering Geology,2005,81(3):213-226.
    [60]Chu T Y, Mou C H. Volume change characteristics of expansive soils determined by controlled suction tests[C]//Proceedings of the 3rd International Conference on Expansive Soils. Haifa,1973:177-185.
    [61]Dif A E, Blumel W F. Expansive soils under cyclic drying and wetting[J]. Geotechnical Testing Journal,1991,14(1):96-102.
    [62]Pousada E. Deformabilidad de arcillas expansivas bajo succion controlada[D]. Spain:Universidad Politecnica de Madrid,1982.
    [63]Hossein Nowamooz, Farimah Masrouri. Shrinkage/swelling of compacted clayey loose and dense soils[J]. Comptes Rendus Mecanique,2009,337(11-12): 781-790.
    [64]张雪东.土水特征曲线及其在非饱和土力学中应用的基本问题研究[D].北京:北京交通大学,2010.
    [65]孙德安.非饱和土的水力和力学特性及其弹塑性描述[J].岩土力学,2009,30(11):3217-3231.
    [66]Klausner Y. Fundamentals of continuum mechanics of soils [M].-New York: Springer-Verlag,1991.
    [67]Fredlund D G The 1999 R.M. Hardy Lecture:The implementation of unsaturated soil mechanics into geotechnical engineering[J]. Canadian Geotechnical Journal,2000,37(5):963-986.
    [68]Nowamooz H. Retrait/gonflement des sols argileux compactes et naturels[D]. Nancy:Institut National Polytechnique de Lorraine,2007.
    [69]Wan A W L, Gray M N, Graham J. On the relations of suction, moisture content and soil structure in compacted clays[C]//Proceedings of the 1st International Conference On Unsaturated Soil. France, Paris,1995:215-222.
    [70]Delage P, Cui Y J, Yahia-Aisa M, De Laure E. On the saturated hydraulic conductivity of a dense compacted bentonite[C]//Proceedings of the 2nd International Conference on Unsaturated Soils. Beijing,1998:344-349.
    [71]赵成刚,李舰,刘艳,蔡国庆,Asreazad Saman.非饱和土力学中几个基本问题的探讨[J].岩土力学,2013,34(7):1825-1831.
    [72]Bishop A W. The principle of effective stress[J]. Teknisk Ukeblad,1959, 106(39):859-863.
    [73]Aitchison G D. Relationships of moisture stress and effective stress functions in unsaturated soils[C]//Conference on Pore Pressure and Suction in Soils. London, Butterworth,1961:47-52.
    [74]Jennings J E B. A revised effective stress law for use in the prediction of the behaviour of unsaturated soils[C]//Conference on Pore Pressure and Suction in Soils. London, Butterworth,1961:26-30.
    [75]Bishop A W, Donald I B. The experimental study of partly saturated soils in triaxial apparatus[C]//Proceedings of the 5th International Conference on Soil Mechanics and Foundation Engineering. Paris, Dunod,1961:13-21.
    [76]Khalili N, Khabbaz M H. A unique relationship for X for the determination of shear strength of unsaturated soils[J]. Geotechnique,1998,48(5):681-687.
    [77]Jennings J E B, Burland J B. Limitations to the use of effective stresses in partly saturated soils[J]. Geotechnique,1962,12(2):125-144.
    [78]Coleman J D. Stress/strain relations for partly saturated soils[J]. Geotechnique, 1962,12(4):348-350.
    [79]Bishop A W, Blight G E. Some aspects of the effective stress in saturated and partially saturated soils[J]. Geotechnique,1963,13(3):177-197.
    [80]Blight G E. Effective stress evaluation for unsaturated soils[J]. Journal of Soil Mechanics and Foundation Engineering,1967,93(2):125-148.
    [81]Fredlund D G, Morgenstern N R. Stress state variables for unsaturated soils[J]. Journal of the Geotechanical Engineering Division,1977,103(5):447-466.
    [82]Houlsby G T. The work input to an unsaturated granular material [J]. Geotechnique,1997,47(1):193-196.
    [83]Jommi C. Remarks on the constitutive modelling of unsaturated soils[C]// Proceedings of an international workshop on unsaturated soils. Trento, Italy, 2000:139-154.
    [84]Vaunat J, Romero E, Jommi C. An elastoplastic hydro-mechanical model for unsaturated soils[C]//Proceedings of an international workshop on unsaturated soils. Trento, Italy,2000:121-138.
    [85]赵成刚,张雪东.非饱和土中功的表述以及有效应力与相分离原理的讨论[J].中国科学:E辑,2008,38(9):1453-1463.
    [86]Alonso E E, Pereira J-M, Vaunat J, Olivella S. A microstructurally based effective stress for unsaturated soils[J]. Geotechnique,2010,60(12):913-925.
    [87]Wheeler S J. An alternative framework for unsaturated soil behaviour[J]. Geotechnique,1991,41(2):257-261.
    [88]Lu N, Likos W J. Suction stress characteristic curve for unsaturated soils[J]. Journal of Geotechnical and Geoenvironmental Engineering,2006,132(2): 131-142.
    [89]van Olphen H. Clay colloid chemistry (2nd ed)[M]. Krieger, Boca Raton, Fla, 1991.
    [90]Lambe T W, Whitman R V. Soil mechanics[M]. Wiley, New York,1969.
    [91]Ingles O G A theory of tensile strength for stabilized and naturally coherent soils[C]//Proceedings of the 1 st Conference of the Australian Road Research Board.1962:1025-1047.
    [92]Cho G C, Santamarina, J C. Unsaturated particulate materials—Particle-level studies[J]. Journal of Geotechnical and Geoenvironmental Engineering,2001, 127(1):84-96.
    [93]Likos W J, Lu N. Hysteresis of capillary stress in unsaturated granular soil[J]. Journal of Engineering Mechanics,2004,130(6):646-655.
    [94]Khalili N, Witt R, Laloui L, Vulliet L, Koliji A. Effective stress in double porous media with two immiscible fluids[J]. Geophysical Research Letters, 2005,32(15):L15309.
    [95]Wheeler S J, Sivakumar V. An elasto-plastic critical state framework for unsaturated soil[J]. Geotechnique,1995,45(1):35-53.
    [96]Fredlund D Q, Morgenstern N R. Stress state variables for unsaturated soils[J]. Journal of Geotechnical and Geoenvironmental Engineering,1977,103(GT5): 447-466.
    [97]Bagherieh A R, Khalili N, Habibagahi G, Ghahramani A. Drying response and effective stress in a double porosity aggregated soil[J]. Engineering Geology, 2009,105(1-2):44-50.
    [98]Khalili N, Valliappan S. Unified theory of flow and deformation in double porous media[J]. European journal of mechanics. A. Solids,1996,15(2): 321-336.
    [99]Borja R I, Koliji A. On the effective stress in unsaturated porous continua with double porosity[J]. Journal of the Mechanics and Physics of Solids,2009,57(8): 1182-1193.
    [100]Alonso E E, Vaunat J, Gens A. Modelling the mechanical behaviour of expansive clays[J]. Engineering Geology,1999,54(1-2):173-183.
    [101]Alonso E E, Gens A, Josa A. A constitutive model for partially saturated soils[J]. Geotechnique,1990,40(3):405-430.
    [102]Josa A, Balmaceda A, Gens A, Alonso E E. An elasto-plastic model for partially saturated soils exhibiting a maximum of collapse[C]//Proceedings of the 3rd International Conference on Computational Plasticity. Barcelona,1992: 815-826.
    [103]Gallipoli D, Gens A, Sharma R, Vaunat J. An elasto-plastic model for unsaturated soil incorporating the effects of suction and degree of saturation on mechanical behaviour[J]. Geotechnique,2003,53(1):123-136.
    [104]Wheeler S J, Sharma R S, Buisson M S R. Coupling of hydraulic hysteresis and stress-strain behaviour in unsaturated soils[J]. Geotechnique,2003,53(1): 41-54.
    [105]Sheng D, Sloan S W, Gens A. A constitutive model for unsaturated soils: thermomechanical and computational aspects[J]. Computational Mechanics, 2004,33(6):453-465.
    [106]Tamagnini R. An extended Cam-clay model for unsaturated soils with hydraulic hysteresis[J]. Geotechnique,2004,54(3):223-228.
    [107]Sun D A, Sheng D, Xiang L, Sloan S W. Elastoplastic prediction of hydro-mechanical behaviour of unsaturated soils under undrained conditions[J]. Computers and Geotechnics,2008,35(6):845-852.
    [108]Liu Y, Zhao C G, Cai G Q, Huang L. Constitutive modeling for unsaturated soils considering gas hardening effect[J]. Chinese Science Bulletin,2011, 56(16):1739-1745.
    [109]Cai G Q, Zhao C G, Liu Y, Li J. Volume change behaviour of unsaturated soils under non-isothermal conditions [J]. Chinese Science Bulletin,2011,56(23): 2495-2504.
    [110]马田田,韦昌富,李幻,陈盼,魏厚振.考虑毛细滞回效应的非饱和多孔介质渗流与变形耦合本构模型[J].岩土力学,2011,32(增1):198-204.
    [111]赵成刚,刘艳,周贵荣,杜修力.非饱和土本构模型研究进展[J].北京工业大学学报,2008,34(8):820-829.
    [112]包承纲,詹良通.非饱和土性状及其与工程问题的联系[J].岩土工程学报,2006,28(2):129-136.
    [113]陈正汉,孙树国,方祥位,周海清,谢云.非饱和土与特殊土测试技术新进展[J].岩土工程学报,2006,28(2):147-169.
    [114]殷宗泽,周建,赵仲辉,袁俊平,张坤勇.非饱和土本构关系及变形计算[J].岩土工程学报,2006,28(2):137-146.
    [115]孙德安,孙文静,孟德林.膨胀性非饱和土水力和力学性质的弹塑性模拟[J].岩土工程学报,2010,32(10):1505-1512.
    [116]卢再华,王权民,陈正汉.非饱和膨胀土本构模型的试验研究及分析[J].地下空间,2001,21(5):379-385.
    [117]曹雪山.非饱和膨胀土的弹塑性本构模型研究[J].岩土工程学报,2005,27(7):832-836.
    [118]Sanchez M, Gens A, Guimaraes L do N, Olivellal S. A double structure generalized plasticity model for expansive materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2005,29(8): 751-787.
    [119]Gens A, Vallejan B, Sanchez M, Imbert C, Villar M V, van Geet M. Hydromechanical behaviour of a heterogeneous compacted soil:experimental observations and modelling[J]. Geotechnique,2011,61(5):367-386.
    [120]Romero E, Vaunat J. Retention curves of deformable clays[C]//Proceedings of an international workshop on unsaturated soils. Italy, Trento,2000:91-106.
    [121]van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soil[J]. Soil Science Society of America Journal, 1980,44(5):892-898.
    [122]赵成刚.土力学的现状及其数值分析方法中某些问题的讨论[J].岩土力学,2006,27(8):1361-1364.
    [123]Zhao C G, Liu Y, Gao F P. Work and energy equations and the principle of generalized effective stress for unsaturated soils [J]. International Journal for Numerical and Analytical Methods in Geomechanics,2010,34(9):920-936.
    [124]Houlsby G T. The work input to a granular material[J]. Geotechnique,1979, 29(3):354-358.
    [125]Dean E T, Houlsby G T. Editorial[J], Geotechnique,2005,55(5):415-417.
    [126]Or D, Tuller M. Cavitation during desaturation of porous media under tension[J]. Water Resources Research,2002,38(5):(19-1H19-4).
    [127]Or D, Tuller M. Liquid retention and interfacial area in variably saturated porous media:Upscaling from single-pore to sample-scale model [J]. Water Resources Research,1999,35(12),3591-3605.
    [128]Cai G Q, Zhao C G, Liu Y, Li J. A nonlinear multi-field coupled model for soils[J]. Science China Technological Sciences,2011,54(5):1300-1314.
    [129]刘艳.非饱和土的广义有效应力原理及其本构模型研究[D].北京:北京交通大学,2010.
    [130]Rice J R. Inelastic constitutive relations for solids:An internal-variable theory and its application to metal plasticity [J]. Journal of the Mechanics and Physics of Solids,1971,19(6):433-455
    [131]龚避卫,周小文,周武华.干-湿循环过程中吸力与强度的关系研究[J].岩土工程学报,2006,28(2):207-209.
    [132]Fredlund D G, Xing A. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal,1994,31(4):521-532.
    [133]Feng M, Fredlund D G Hysteretic influence associated with thermal conductivity sensor Measurements[C]//Proceedings from Theory to the Practice of Unsaturated Soil Mechanics, in association with the 52nd Canadian Geotechnical Conference and the Unsaturated Soil Group. Regina,1999, 14(2):14-20.
    [134]Li X S. Modelling of hysteresis response for arbitrary wetting/drying paths[J]. Computers and Geotechnics,2005,32(2):133-137.
    [135]盛岱超,杨超.关于非饱和土本构研究的几个基本规律的探讨[J].岩土工程学报,2012,34(3):438-456.
    [136]Zhou A N, Sheng D, Sloan S W, Gens A. Interpretation of unsaturated soil behaviour in the stress-Saturation space. I:Volume change and water retention behaviour[J]. Computers and Geotechnics,2012,43:178-187.
    [137]Zhou A N, Sheng D, Sloan S W, Gens A. Interpretation of unsaturated soil behaviour in the stress-Saturation space. II:Constitutive relationships and validations[J]. Computers and Geotechnics,2012,43:111-123.
    [138]Nowamooz H, Masrouri F. Relationships between soil fabric and suction cycles in compacted swelling soils[J]. Engineering Geology,2010,114(3-4):444-455.
    [139]Fredlund D G, Rahardjo H. Soil Mechanics for Unsaturated Soils[M]. New York:John Wiley & Sons,1993.
    [140]Desai C S, Ma Y. Modelling of joints and interfaces using the disturbed-state concept[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1992,16(9):623-653.
    [141]吴刚.工程材料的扰动状态本构模型(Ⅰ)—扰动状态概念及其理论基础[J].岩石力学与工程学报,2002,21(6):759-765.
    [142]卢再华,陈正汉.非饱和原状膨胀土的弹塑性损伤本构模型研究[J].岩土工程学报,2003,25(4):422-426.
    [143]熊传祥,龚晓南.一种改进的软土结构性弹塑性损伤模型[J].岩土力学,2006,27(3):395-403.
    [144]沈珠江,邓刚.超固结粘土的二元介质模型[J].岩土力学,2003,24(4):495-499.
    [145]金旭.非饱和原状土土-水特征曲线及本构模型的研究[D].北京:北京交通大学,2010.
    [146]Desai C S. Mechanics of materials and interfaces:the disturbed state concept[M]. Boca Raton:CRC Press LLC,2001.
    [147]Nowamooz H, Masrouri F. Hydromechanical behaviour of an expansive bentonite/silt mixture in cyclic suction-controlled drying and wetting tests[J]. Engineering Geology,2008,101(3-4):154-164.
    [148]缪林昌,刘松玉.南阳膨胀土的水分特征和强度特性研究[J].水利学报,2002,(7):87-92.
    [149]詹良通,吴宏伟.非饱和膨胀土变形和强度特性的三轴试验研究[J].岩土工程学报,2006,28(2):196-201.
    [150]Alonso E E, Lloret A, Gens A, Yang D Q. Experimental behaviour of highly expansive double-structure clay[C]//Proceedings of the 1st International Conference on Unsaturated Soils. Rotterdam,1995:11-16.
    [151]Mroz Z. Mathematical models of inelastic material behaviour[M]. Waterloo: University of Waterloo Press,1973.
    [152]Maugin G A. The thermomechanics of plasticity and fracture[M]. Cambridge: Cambridge University Press,1992.
    [153]Ulm F-J和Coussy O. Mechanics and durability of solids, Vol.1[M]. Upper Saddle River, NJ:Prentice Hall,2003.
    [154]Palmer A C. Stress-strain relations for clays:an energy theory[J]. Geotechnique,1967,17(4):348-358.
    [155]Houlsby G T. A study of plasticity theories and their application to soils[D]. University of Cambridge,1981.
    [156]Jefferies M. Plastic work and isotropic hardening in unloading[J]. Geotechnique,1997,47(5):1037-1042.
    [157]Nova R. A constitutive model for soil under monotonic and cyclic loading[C]// Soil Under Cyclic and Transient Loading. Swansea,1982:343-373.
    [158]Coussy O. Mechanics of porous continua[M]. Chichester:Wiley,1995.
    [159]Nowamooz H, Masrouri F. Density-dependent hydromechanical behaviour of a compacted expansive soil[J]. Engineering Geology,2009,106(3-4):105-115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700