用户名: 密码: 验证码:
基于脉搏波阻抗谱的血液电特性无创检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阻抗谱法血液成分无创检测方法通过在体无创测量血液在不同频率下的电阻抗特性,利用不同成分与血液电特性关系检测其浓度变化,具有很广阔的发展前景。但在电阻抗谱测量时,电极与人体皮肤接触介面、电极类型、测量部位等实验条件和人体皮肤状况、血管分布、血流状况、体温等个体差异因素影响严重,测量精度难以提高。本论文提出了“脉搏波阻抗谱”的概念,可以基本上消除测量条件和被测对象个体差异对人体阻抗测量的影响,建立了基于脉搏波阻抗谱的血液电特性无创检测方法,为最终实现电阻抗法血液成分无创检测打下了基础,具有重大的临床应用价值。
     论文主要研究内容包括:
     在阻抗血流图技术原理基础上,根据人体单支血管与周围组织并联模型,提出了脉搏波阻抗谱的概念,理论推导了人体阻抗谱和脉搏波阻抗谱与血液电特性参数的关系,分析了脉搏波阻抗谱消除阻抗测量中个体差异影响的原理。研究了人体阻抗测量的原理和特点,提出了基于正交解调的脉搏阻抗谱测量方法,研究了脉搏波阻抗谱测量系统中各电路模块设计要求和实现方案,构建了实验测量系统并进行了测量精度初步测试,实现了在较宽频率范围内对人体复阻抗谱和脉搏波阻抗谱的高精度测量
     分析了脉搏波信号的特征和影响脉搏波检测精度的影响因素;以傅立叶变换理论为基础,研究了脉搏波阻抗谱频域提取的方法和脉搏波数据段的截取长度对检测精度的影响;研究了基于小波变换理论的阻抗脉搏波信号中奇异点剔除方法。
     根据人体解剖学特点,建立了手臂并联电阻抗模型和耳垂串连电阻抗模型,采用有限元方法对模型内电流和电压分布进行了计算。对实验对象进行了测量,得到了实验对象的手臂和耳垂部位的基础阻抗谱和脉搏波阻抗谱。有限元计算和实验结果证明,两个模型能够较好地描述人体手臂和耳垂的电阻抗特性。同时也表明,由于手臂各组织电阻抗的并联,测量段的脉搏波阻抗谱不能完全消除基础阻抗的影响,在此部位进行实现血液电阻抗特性的无创检测是困难的。而耳垂脉搏波阻抗谱几乎完全消除了个体差异的影响,能够实现血液电特性的无创检测。
There is a concrete relation between the electrical properties of blood and its components concentration pattern. The method of electrical impedance spectroscopy (EIS) using this relation to non-invasively measure the blood component has a broad prospect in medical research and practice. However,high accuracy of impedance measurement is rather difficult to acquire because of the serious influence of several factors to measurement process. These factors include experimental conditions, such as the skin-electrode interface, electrode type, and measurement position as well as the individual variations such as skin status, blood vessel pattern, blood flow, and body temperature. The concept of Pulse Wave Electrical Impedance Spectroscopy (PWEIS) is presented to reduce or eliminate the above-mentioned influences. And a novel method for non-invasive measurement of blood electrical properties is constructed on PWEIS. The method is of great prospect in non-invasive measurement of blood component and great value in medical applications.
     The concept of PWEIS is presented based on the model of the paralleled single blood vessel and peripheral tissue used in electrical impedance plethysmography (IPG). The relation between human impedance spectroscopy & PWEIS and blood electrical properties is theoretically deduced to analyze the principle of the influence reduction by PWEIS in impedance measurement.
     The principle and characteristics of electrical impedance measurement on human body is studied, and a method for measurement of PWEIS based on quadrature demodulation is presented. The experimental measurement system is constructed and tested after analysis of the performance demand for circuit modules needed in the system. High accuracy of the impedance spectroscopy and PWEIS is acquired at a wide frequency range.
     Characteristics of pulse wave and the adverse factors in pulse wave detection are analyzed, and the calculation method of PWEIS in frequency domain is studied. The optimal length of pulse wave data is investigated using DFT. Outliers in the pulse wave signal is diminished using wavelet method.
     Parallel electrical impedance model of forearm and serial electrical impedance model of earlobe is built up according to their anatomy and the current and voltage distributions in the models are calculated using finite element method (FEM). Experimental measurement is conducted on several subjects and the impedance spectroscopy and PWEIS is acquired. The results show that the models comprehensively describe the electrical prosperities of the forearm and the earlobe. The individual variations cannot be completely eliminated by the PWEIS of forearm because of its parallel impedance of the tissues in forearm. And Earlobe PWEIS can reduce the individual variation influences to a rather low level and makes non-invasive measurement of blood electrical properties practically possible.
引文
[1] 李缉熙,牛中奇,生物电磁学概论. 1990, 西安: 西安电子科技大学出版社.
    [2] Malmivuo, J. and R. Plonsey, Bioelectromagnetism--Principles and Applications of Bioelectric and Biomagnetic Fields 1999, Oxford: Oxford University Press.
    [3] 任超世,医学电阻抗技术与临床. 世界医疗器械, 2003. 9(2): 50-53.
    [4] 董秀珍,生物电阻抗技术研究进展. 中国医学物理学杂志, 2004. 21(6): 311-320.
    [5] 任超世,生物电阻抗技术与人体功能信息. 电子科技导报, 1998(11): 17-19.
    [6] NOWAKOWSKI, A., T. PALKO, and J. WTOREK, Advances in electrical impedance methods in medical diagnostics. BULLETIN OF THE POLISH ACADEMY OF SCIENCES,TECHNICAL SCIENCES, 2005. 53(3): 231-243.
    [7] 张建福, 人体生理学. 2003, 上海: 第二军医大学出版社.
    [8] 鲁勇军, 余珏, 生物组织介电谱. 国外医学生物医学工程分册, 1992. 15(3): 125-131.
    [9] 刘锐岗, 多频电阻抗扫描的Cole-Cole模型分析. 航天医学与医学工程, 2006. 19(6): 438-441.
    [10] 王慧艳,任超世, 多频率阻抗法研究血液电特性. 中国生物医学工程学报, 1997. 16(3): 223-227.
    [11] 马青, 渡边牧夫,洲崎敏伸, 应用 Cole.Cole 公式分析蛙血液细胞介电谱. 中国生物医学工程学报, 2003-8. 22(4): 309-312.
    [12] 张芳涛,王锐, 陈安宇, 血液阻抗的测量与研究. 医疗设备信息, 2003. 18(10): 10-14.
    [13] 胡茂清,血液组成交流电特性的研究. 生物医学工程杂志, 2006. 23(1): 36-40.
    [14] 黄海滨,任超世, 阻抗谱分析法测量红细胞聚集特性实验研究. 医学研究杂志, 2006. 35(2): 36-38.
    [15] Pethig, R., Dielectric properties of body tissues. Clin. Phys. Physiol. Meas., 1987. 8(Suppl. A): 5-12.
    [16] T.Chelidze, Dielectric spectroscopy of blood. Journal of Non-Crystalline Solids, 2002. 30(5): 285-294.
    [17] Jaspard, F., M. Nadi, and A. Rouane, Dielectric properties of blood: an investigation of haematocrit depedance. Physiological Measurement, 2003. 2003(24): 134-147.
    [18] Jaspard, F. and M. Nadi, Dielectric properties of blood: an investigation of temperature dependence. Physiological Measurement, 2002. 2002(23): 547-554.
    [19] Gabriel, C., S. Gabriel, and E. Corthout, The dielectric properties of biological tissues: I. LIturature Survey. Phys. Med. Biol., 1996. 41: 2231-2249.
    [20] Gabriel, S., R.W. Lau, and C. Gabriel, The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol., 1996. 41: 2251-2269.
    [21] Gabriel, S., R.W. Lau, and C. Gabriel, The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol., 1996. 41: 2271-2293.
    [22] 李践,无创血糖测试仪的研究和发展. 医疗设备, 2004. 17(8): 10-11.
    [23] 李明菊,沙宪政,王秀章,无创性血糖的光谱检测及临床研究状况. 国外医学生物医学工程分册, 2000. 23(5): 291-299.
    [24] Tura, A., A. Maran, and G. Pacini, Non-invasive glucose monitoring: Assessment of technologies and devices according to quantitative criteria. Diabetes Research and Clinical Practice, 2007. 77(2007): 16-40.
    [25] 孙颖,非损伤性血糖检测的研究进展. 自然科学进展, 2002. 12(8): 806-810.
    [26] 刘庆珍,徐可欣,蒋诚志, 近红外光谱技术无创测量人体血糖. 激光生物学报, 2004. 13(2): 129-135.
    [27] Wickramasinghe, Y., Y. Yang, and S.A. Spencer, Current Problems and Potential Techniques in In Vivo Glucose Monitoring. Journal of Fluorescence, 2004. 14(5).
    [28] Maruo, K., et al., Noninvasive Blood Glucose Assay Using a Newly Developed Near-Infrared System. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2003. 9(2): 322-330.
    [29] 刘玉良,动态光谱法血液成分无创检测初步研究,[博士学位论文], 天津大学,2006
    [30] 王焱,近红外无创血液成分测量——动态光谱检测理论及信号提取方法研究,[博士学位论文], 天津大学,2006
    [31] Hiller, T.A., R.D. Abbott, and B. Eugene J, Hyponatremia: Evaluating the Correction Factor for Hyperglycemia. THE AMERICAN JOURNAL OF MEDICINE, 1999. 106: 399-403.
    [32] Ermolina, I., Y. Polevaya, and Y. Feldman, Analysis of dielectric spectra of eukaryotic cells by computer modeling. Eur. Biophysics, J., 2000. 29(2000): 141-145.
    [33] Park, J.-H., et al., The correlation of the complex dielectric constant and blood glucose at low frequency. Biosensors and Bioelectronics, 2003. 19(2003): 321-624.
    [34] Nikawa, Y. and D. Someya. Application of millimeter waves to measure blood sugar level. in Proceedings of APMC2001. 2001. Taiwan.
    [35] Meriakri, V.V., et al., Dielectric properties of glucose solutions in the millimeter-wave range and control of glucose content in blood. Measurement Science and Technology, 2007. 18(2007): 977-982.
    [36] Caduff, A., et al., Non-invasive glucose monitoring in patients with diabetes: A novel system based on impedance spectroscopy. Biosensors and Bioelectronics, 2006. 22(5): 598-604.
    [37] Caduff, A., et al., First human experiments with a novel non-invasive, non-optical continuous glucose monitoring system. Biosensors and bioelectronics, 2003. 19(2003): 209-217.
    [38] Caduff, A., et al., Cell Membrane Response on D-Glucose studied by Dielectric Spectroscopy: Erythrocyte and Gost Suspensions. J. Phys. Chem., 2004. 108(2004 B): 13827-13830.
    [39] Elden, H.R., R.R. Wicket, and S. Ollmar, Method and Apparatus for noninvasive determination of glucose in body fluids No.US006517482, U.S. Patent., Editor. 2003, Dermal Therapy(Barbados) Inc: USA.
    [40] Gourzi, M., et al., Non-invasive glycaemia blood measurements by electromagnetic sensor: Study in static and dynamic blood circulation Journal of Medical Engineering & Technology, 2005. 29(1): 22-26.
    [41] Gourzi, M., et al., Study of a new electromagnetic sensor for glycaemia measurement: in vitro results on blood pig. J. Med. Eng. Technol. , 2003. 27(2003): 276-281.
    [42] 鲁昌珍,肺循环电阻抗学与心脏病的鉴别诊断. 1995, 武汉: 湖北科学技术出版社.
    [43] 任超世,沙洪,王妍,阻抗血流图测量方法的发展与提高. 中国医学装备, 2005. 2(4): 37-40.
    [44] 任超世,生物电阻抗测量技术. 中国医疗器械信息, 2004. 10(1): 21-25.
    [45] 张美超,朱代谟,心阻抗血流图的弹性腔-边值问题新理论模型的临床应用研究. 中国医学物理学杂志, 2001. 18(3).
    [46] 朱代谟,雷国华,肖贵遐, 心阻抗图的弹性腔-边值问题理论模型. 生物物理学报, 1998. 14(4): 649-656.
    [47] Agilent Technologies, Agilent 4294A Precision Impedance Analyzer 40 Hz to 110 MHz Technical Overview. 2003, Agilent Technologies.
    [48] 董艳阳,自动阻抗测量仪工作原理及阻抗测量方法. 现代电子技术, 2002(5): 24-26.
    [49] 周生景,高精度 LCR 测量系统的设计研究. 电子测量与仪器学报( JOURAL OF ELECTRONIC MEASUREMENT AND INSTRULENT, 2003. 17(3): 1-5.
    [50] LA, G. and B. LE, Principles of applied biomedical instrumentation. 3rd ed. 1989, New York: A Wiley Interscience Publication.
    [51] MH, and S. MA, Low-frequency 4-probe impedance measuring system. Medical & biological Engineering and computation, 1979. 1979(15): 573.
    [52] Huang, Z. and E. Zheng. Four-ring-electrode system for impedance measurement. in IEEE Ninth Annual Conference of the Engineering in Medical and Biology Society. 1987.
    [53] 刘汉名,刘大仁,实用盆腔阻抗血流图. 第一版 ed. 1991, 南昌: 江西科学技术出版社. 23-33.
    [54] Technologies, A., Impedance Measurement Handbook. 2003, Agilent Technologies.
    [55] 顾海,I-V 法阻抗测试技术研究. 2003, 电子科技大学: 西安.
    [56] 王超,医学电阻抗断层成像的研究, [博士学位论文] 2001, 天津大学
    [57] 高晋占,微弱信号检测. 2004, 北京: 清华大学出版社.
    [58] 尤富生,生物电阻抗模拟解调技术的研究. 北京生物医学工程, 2004. 23(1): 21-23.
    [59] 王化祥,曲志刚,魏娟, 人体复阻抗断层成像系统. 医疗卫生装备, 2004. 2004(3): 16-19.
    [60] 迟忠君,徐云,常飞,频率合成技术发展概述. 现代科学仪器, 2006. 2006(3): 21-24.
    [61] 万天才,频率合成器技术发展动态. 微电子学, 2004. 34(4): 366-370.
    [62] 陈建春,一种基于 DDS 技术实现的雷达信号模拟器. 系统工程与电子技术, 2000. 22(2): 50-52.
    [63] 李青鹏,路军,李俊杰, 基于单片机和 DDS 的高精度频率信号实现. 电子工程师, 2002. 28(9): 51-52.
    [64] 丁茹,李刚,内嵌闪存 MCU 高性能多通道 24 位采集系统 ADuC845. 国外电子元器件, 2004. 2004(12): 40—45.
    [65] Bertemes-Filho, P., B.H. Brown, and A.J. Wilson, A comparison of modified Howland circuits as current generators with current mirror type circuits. Physiological Measurement, 2000. 2000(21): 1-6.
    [66] 王超,用于生物阻抗测量的双反馈电流源研究. 生物医学工程杂志, 2006. 23(4): 704-707.
    [67] Bragos, R., J. Rosell, and Riu, A wide-band AC-coupled current source for electrical impedance tomography. Physiol. Meas., 1994. 15: A91-A99.
    [68] Birkett, A., Bipolar current source maintains high output impedance at high frequencies. EDN, 2005. 2005(5).
    [69] Ramon, Pallas-Areny, and J.G. Webster, AC instrumentation amplifier for bioimpedance measurements. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1993. 40(8): 830-833.
    [70] 钱晓进,郑如冰,王传林, 高性能肌电检测前置放大器的设计. 现代科学仪器, 2003. 2003(3): 50-52.
    [71] Devices, A., High Performance, 145 MHz FastFET? Op Amps AD8065/AD8066. 2004, Analog Devices.
    [72] 赵媛媛,赵书俊,刘洋, 四象限乘法器/除法器 AD734 在伽玛相机中的应用. 现代电子技术, 2005. 2005(193): 7-10.
    [73] Analog Devices (2004) 10MHz,4-Quadrant Multiplier/Divider AD734. Analog Devices Datasheet Volume,
    [74] Kim, D.W., et al., Oringins of the Impedance Change in Impedance Cardiography by a Three-Dimensional Finite Element Model. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1988. 35(12): 993-1000.
    [75] Papezova, S., Signal Processing of Bioimpedance Equipment. Sensors and Actuators, 2003. 2003(B95): 328-335.
    [76] 黄世林,中医脉象研究. 1986, 北京: 人民卫生出版社.
    [77] 姚泰,生理学. 2006, 北京: 人民卫生出版社.
    [78] 杨光友,脉搏特征点的自动识别方法. 华中理工大学学报, 1991. 19(Sup.(II)): 142-144.
    [79] 宁新宝,12 导同步心电图波形检测与识别的研究. 南京大学学报(自然科学), 2004. 40 (1): 130-136.
    [80] 常昌远,脉搏波的函数叠加逼近分析方法的研究. 应用科学学报, 2000. 18(2): 135-138.
    [81] 李刚,卢宗武,石燕丽, 频域提取法提高动态阻抗谱测量精度. 纳米技术与精密工程, 2006. 4(3): 195-198.
    [82] 戴逸松,测量低信噪比电压的数字相敏解调算法及性能分析. 计量学报, 1996. 18(2): 126-132.
    [83] 朱虹,林君,吴忠杰等,近红外光谱仪中的数字锁相技术研究,. 仪器仪表学报, 2006. 27(10): 1258-1261.
    [84] Gerritsma, G.J., W.J. Weezep, and J.A. Overweg, An on-line digital phase sensitive detector in the 2mHz~2kHz,. Phys E: Sci Instrum, 1983. 1983(16): 270-277.
    [85] 杨福生,小波变换的工程分析与应用. 1999, 北京: 科学出版社.
    [86] 李建平,小波分析与信号处理-理论、应用及软件实现. 1997, 重庆: 重庆出版社.
    [87] 飞思科技产品研发中心,小波分析理论与 MATLAB 7 实现. 2005, 北京: 电子工业出版社.
    [88] 胡昌华,张军波,夏军等, 基于 MATLAB 的系统分析与设计-小波分析.1999, 西安: 西安电子科技大学出版社.
    [89] Mallat, S., Multiresolution approximation and wavelet orthonormal bases of L 2. Trans American Math Soc., 1989. 31(5): 69-87.
    [90] 李水根,吴纪桃,分形与小波. 2002, 科学出版社: 北京. 208-318.
    [91] 李广新,电磁学生物应用概论. 1997,中国农业出版社:北京
    [92] Ida, N. and J.P.A. Bastos, Electromagnetics and Calculation of Fields. 2nd ed. 1997, New York: Springer-Verlag New York Inc.
    [93] 王建琪,一种用于求解人体胸腔三维恒定电场有限元方程组的解法. 北京生物医学工程, 2000. 19(1): 28-32.
    [94] Jiansheng, Y. and T. Zhonghng, Finite-Element Simulation of Human Brain Electric Activity. IEEE TRANSACTIONS ON MAGNETICS, 2003. 39(3): 1539-1542.
    [95] XU, G., 3-D Electrical Impedance Tomography Forward Problem With Finite Element Method. IEEE TRANSACTIONS ON MAGNETICS, 2005. 41(5): 1832-1835.
    [96] Renhart, W., Modeling and Calculating of Influences of RF-Fields on the Human Body Using the Finite Element Method IEEE TRANSACTIONS ON MAGNETICS, 1994. 30(5): 3092-3095.
    [97] Scorretti, R., et al., Computation of the Induced Current Density Into the Human Body Due to Relative LF Magnetic Field Generated by Realistic Devices. IEEE TRANSACTIONS ON MAGNETICS, 2004. 40(2): 643-646.
    [98] 王怀经,赵玲辉,局部解剖学. 2005, 北京: 人民卫生出版社. 300-306of 402.
    [99] 刘文庆,人体解剖学. 2003, 北京: 人民卫生出版社.
    [100] 帅万均,一种具有真实人脑外形的脑有限元模型的建立方法. 生物医学工程杂志, 2005. 22(4): 663-667.
    [101] Tawhai, M.H., CT-Based geometry analysis and finite element models of the human and ovine bronchial tree. J. Appl. Physiol, 2004. 2004(97): 2310-2321.
    [102] 颜威利,李颖,郭鸿涌, 生物医学电磁场若干问题的研究. 河北工业大学学报, 2004. 33(2): 9-15.
    [103] 李明利,多层螺旋 CT 血管成像技术临床应用进展. 国外医学临床放射学分册, 2003. 26(4): 255-258.
    [104] 丁洁,血管成像技术在脑血管病中的应用现状. 国外医学神经病学神经外科学分册, 2005. 32(1): 27-30.
    [105] Glidewell, M.E. and K.T. Ng, Anatomically Constrained electrical impedance tomography for three-dimensional anisotropic bodies. IEEE TRANSACTIONS ON MEDICAL IMAGING, 197. 16(5): 572-580.
    [106] 王海滨,Kubicek 每搏心输出量计算公式的三维有限元仿真研究. 生物医学工程杂志, 2002. 19(1): 89-92.
    [107] Tarvainen, M., et al., Boundary element method and internal electrodes in electrical impedance tomography. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2001. 2001(50): 809-824.
    [108] 王保义,电磁场在生物医学中的应用. 1990, 北京: 国防工业出版社.
    [109] 牛中奇,电磁场理论基础. 2001, 北京: 电子工业出版社.
    [110] 焦其祥,王道东, 电磁场理论. 1994, 北京: 北京邮电学院出版社.
    [111] 刘国强,医学电磁成像. 2006, 科学出版社: 北京. 11-15.
    [112] 马信山,张济世,王平, 电磁场基础. 1995, 北京: 清华大学出版社.
    [113] 曾余庚,电磁场有限单元法. 1992, 北京: 科学出版社.
    [114] 刘圣民,电磁场的数值方法. 1991, 武汉: 华中理工大学出版社.
    [115] 吕英华,计算电磁学的数值方法. 2006, 北京: 清华大学出版社.
    [116] 金建铭,电磁场有限元方法. 1998, 西安: 西安电子科技大学出版社.
    [117] Baker, L.E., Principles of impedance technique. IEEE Engineering in medicine and biology magazine, 1989. march: 11-15.
    [118] 姜泗长,耳解剖学于颞骨组织病理学. 1999, 北京: 人民军医出版社.
    [119] 杨晓惠,李健宁, 实用整容外科手术学. 人民卫生出版社. 1991.
    [120] Technologies, A., Solutions for Measuring Permittivity and Permeability with LCR Meters and Impedance Analyzers. 1996, Agilent Technologies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700