用户名: 密码: 验证码:
金属有机配合物发光材料的分子设计与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于金属铱和铂等金属有机配合物发光材料制备成的有机发光二极管以及电致发光装置因其在照明及平板显示领域的巨大潜力而引起广泛的关注。但该领域还没有得到理论的充分支持,对发光机制的微观理解也只是经验性的。本论文利用密度泛函理论对一系列金属有机铱和铂配合物电致发光材料进行了系统的研究。利用现代量子化学方法分别优化和计算了其电子机构,吸收光谱和发射光谱。计算和分析了分子轨道的成分,轨道能量,电离能和电子亲合势等电荷传输性质,同时根据Marcus理论,计算了相关体系的重组能。通过以上一系列理论计算阐明了金属有机配合物发光材料的HOMO与LUMO能量并不是其发光颜色的决定因素。因此在分子设计中不能仅仅通过修饰分子的HOMO或LUMO的能量来调节材料的发光波长;取代基对分子体系的电荷分布及轨道能量的影响是局域化的;前线轨道的能量分布对分子发光的跃迁过程有着重要的影响;通过改变不同性质的辅助配体可以使平面型金属铂配合物调整成立体结构。本研究可为实验上合成和开发新型高效电致发光材料提供一定的理论线索。
Organic light-emitting diodes (OLEDs) and other electroluminescent devices based on iridium and platinum cyclometalated complexes have received much attention because of their enormous potential in the light emitting and the flat panel display. Recently experimental chemistries have done a number of researches to tune the emission color from blue to red and improve the external quantum efficiency. And the main requirement for OLEDs of the next generation is to design efficient phosphorescent dopants to emit sharp colors and improve emitting lifetime with very high phosphorescence quantum yields. At present, the scientific research workers' work has mainly been concentrated on the synthesis of high performance compounds and the researches of luminescence nature. In recent years, the researches on the phosphorescent material and apparatus based on the heavy metal complexes, especially, the iridium complexes have become the hot spot of researches in the organic electroluminescence domain. With the development of the past several decades, the application of metal complexes based on the (C^N)2Ir(LX) structure as phosphorescent material has become more and more mature. Their short phosphorescent lifetime reduces the T-T quenching and the excited state saturated effect, enhances the apparatus brightness greatly. Their luminescence color cover the entire visible wave band, resulting in that preparing the entire color apparatus becomes possible (red, green, blue for three basics true colors). Compared with metal iridium complexes in which iridium has the d6 electronic configuration, the Pt(II) complexes in which Pt(II) has the d8 electronic configuration usually present a plane molecular configuration, therefore, there are very strong intermolecular interaction in both the liquid state and the solid state, one kind of typical interaction isπ-πstacking effect; another important effect is the interaction between the metal - metal - ligand. In recent years, in order to achieve an in-depth understanding on the electroluminescence essence of the Pt(II) complexes material, the scientific research workers have investigated the metal complexes both experimentally and theoretically. But they need the sufficient support of theory which results in the empirical understanding of the mechanism of luminescence and there is no exact direction for experimental work. In this work, density functional theory was used to investigate the organic metal phosphorescent complexes. The ground-state and excited-state geometries were optimized by means of B3LYP and CIS methods, respectively. The absorption and emission spectra were calculated with the aid of TD-DFT method based on the optimized ground-state and excited-state geometries, respectively. In addition, the compositions of molecular orbitals, energy gaps, the distribution of charge, ionization potentials, electronic affinities, and reorganization energy, etc. have also been calculated and analyzed. The theoretical results show that we can design superior photoluminescent materials by modification of chemical structure. The following is our main work.
     1 The properties of electronic structure and the optical properties of a series of Ir(ppy)2(ptz) complexes have been studied by the theoretical calculation and design. The computed results show that the true reason of spectrum shift of complex 5a2 is not in agreement with the experiment conclusion. It is not because of the increases of the HOMO-LUMO gaps by the introduction of the electron-donating substituting group. In fact, this kind of energies is reduced. The true reason is that the introduction of substituting group changes the nature of transition character, more frontier molecular orbitals are concerned with the transition process. Moreover, by theory design, complex 5ax will be an extremely good blue light material because it has a good luminescence nature and charge transfer performance.
     2 The electronic structure and photoelectricity nature of a series of Ir(ppy)2(pic) complexes have been studied. The computed results indicate that the nature of the substituent at the 4-position of the pyridyl moiety of the auxiliary pic ligand can influence both the distributions of HOMO and LUMO and their energies. When an electron-donating group is introduced at this position, the distribution of LUMO on the auxiliary ligand will nearly completely shift to other phenylpyridine ligand, while an electron-withdrawing substituent is introduced at this position, the distribution of LUMO nearly have no obvious change. In addition, both the electron-donating and electron-withdrawing substituents at this position don’t change the distribution of HOMO, but they can influence the energies of the frontier molecular orbitals. At the same time, the nature of substituting group also has the very tremendous influence on the distribution of charge on the auxiliary ligand, especially when an electron-withdrawing substituent is introduced at this position, this effect is remarkable. In addition, this kind of substituting groups influencing the distribution of charge only influences the ligand which is connected to the substituent remarkably, especially, the distribution of charge of skeleton atoms at pic ligand which directly connect the substituent. And the substituents nearly have no influence on the other ligands. The above factors are the reason of complex N984 having a highly phosphorescent green emitter with high electroluminescence efficiency, which meets the need for display and illumination application. In addition, introducing the substituting group simultaneously changed the molecular charge transfer rate and balance. Especially when an electron-withdrawing group is introduced, the transfer rate of electrons will be changed remarkably.
     3 The electronic structure and illumination mechanism of a series of Ir(ppy)2(LX) complexes FIrpic, FIrmpic, FIrpca, and FIrprza have been studied. We can obtain the following main conclusion. (1) The energies and electron distribution of frontier molecular orbitals can be adjusted availably by applying some subsituent at auxiliary ligand or changing the auxiliary ligand. The energies of frontier molecular orbitals have an important influence on transition characteristics in absorption and emission processes because they determine the transition probability of electrons in frontier molecular orbitals in absorption and emission processes. Then they can impact the spectrum color and purity remarkably. (2) The charge transfer properties are also affected by the energies of frontier molecular orbitals. Therefore we can design the better performance electroluminescence material by adjusting the structure of the auxiliary ligand and the subsituent at the auxiliary ligand.
     4 Based on the most classical Pt(II) metal complex FPt, the electronic structure and the spectrum nature of a series of Pt(II) metal complexes have been studied and designed via the computation by the DFT method. Moreover, we introduced the UB3LYP method optimizing the excited-state geometry structure, and compared its accuracy with that of CIS method. The computed results indicate that the computed spectral data based on the excited-state geometry which were computed by UB3LYP method are not in agreement with the experiment values. From the computation results we can obtain the following conclusions. (1) Both the electron-withdrawing substituents at the 3- or 5-position of the phenyl moiety of ppy ligand and electron-donating group at 4-position of the pyridyl part of ppy liangd nearly unchange the distribution of HOMOs and LUMOs, but change the energies of HOMOs and LUMOs, and this kind of transition processes involves the frontier molecular orbitals HOMO-1, HOMO, LUMO and LUMO+1. Therefore introducing above substituting group will influence the molecular illumination color remarkably. (2) When auxiliary ligand acac is changed to a strong electron-withdrawing ligand pyridyltetrazole, the molecular structure does not present the plane configuration, but presents a very obvious spatial structure. This structure can reduce intermolecular interaction which affects the luminous efficiency. More importantly, this complex has extremely balanced electronic and hole transfer capacity. In summary, we may forecast NFPt could be one kind of very good phosphorescent material because it has no obvious shift compared with complex FPt but has an obvious spatial structure and a good charge transfer nature.
     These researches may provide some theory clue for the experimental synthesis of new highly efficient electroluminescence material.
引文
1. TANG C W, VANSLYK S A. Organic electroluminescent diodes [J]. Appl. Phys. Letter, 1987, 51: 913-915.
    2. BURROUGHES J H, BRADLEY D D C, BROWN A R, MARKS R N, MACKAY K, FRIEND R H, BURNS P L, HOLMES A B. Light-emitting diodes based on conjugated polymers [J]. Nature, 1990, 347: 539-541.
    3. MITSCHLE U, B?UERLE P. The electroluminescence of organic materials [J]. J. Mater. Chem, 2000, 10: 1471-1507.
    4. AVILOV I, MINOOFAR P, CORNIL J, DE COLA L. Influence of Substituents on the Energy and Nature of the Lowest Excited States of Heteroleptic Phosphorescent Ir(III) Complexes: A Joint Theoretical and Experimental Study [J]. J. Am. Chem. Soc, 2007, 129: 8247-8258.
    5. MA B, DJUROVICH P I, GARON S, ALLEYNE B, THOMPSON M E. Platinum Binuclear Complexes as Phosphorescent Dopants for Monochromatic and White Organic Light-Emitting Diodes [J]. Adv. Funct. Mater, 2006, 16: 2438–2446.
    6. RATHNAYAKE H P, CIRPAN A, DELEN Z, LAHTI P M, KARASZ F E. Optimizing OLED Efficacy of 2,7-Diconjugated 9,9-Dialkylfluorenes by Variation of Periphery Substitution and Conjugation Length [J].Adv. Funct. Mater, 2007, 17: 115–122.
    7. JONDA C, MAYER A B R, THELAKKAT M, SCHMIDT H -W. SCHREIBER A, HAARER D, TERRELL D. Investigation of TDAPBs as Hole-transporting Materials for Organic Light-emitting Devices (OLEDs) [J]. Adv. Mater. Opt. Electron, 1999, 9: 117-128.
    8. COCHEREL N, PORIEL C, RAULT-BERTHELOT J, BARRIèRE F,AUDEBRAND N, SLAWIN A M Z, VIGNAU L. New 3p-2Spiro Ladder-Type Phenylene Materials: Synthesis, Physicochemical Properties and Applications in OLEDs [J]. Chem. Eur. J, 2008, 14: 11328-11342.
    9. CHEN J -L, CHANG SH -Y, CHI Y, CHEN K, CHENG Y -M, LIN CH -W, LEE G -H, CHOU P -T, WU CH -H, SHIH P -I, SHU CH -F. Pt(II) Complexes with 6-(5-Trifluoromethyl-Pyrazol-3-yl)-2,2’-Bipyridine Terdentate Chelating Ligands: Synthesis, Characterization, and Luminescent Properties [J]. Chem. Asian. J, 2008, 3: 2112-2123.
    10. LOU SH-L, YU J-SH, QIAN J-CH, JIANG Y-D, ZHANG Q, XU H-J, SUN L-M. Luminescent properties of a novel fluorine organic material [J]. Luminescence, 2008, 23: 424-428.
    11. BURN P L, LO S-C, SAMUEL I D W. The Development of Light-Emitting Dendrimers for Displays [J]. Adv. Mater, 2007, 19: 1675–1688.
    12. JUNG S, KANG Y, KIM H -S, KIM Y -H, LEE C -L, KIM J -J, LEE S -K, KWON S–K. Effect of Substitution of Methyl Groups on the Luminescence Performance of Ir(III) Complexes: Preparation, Structures, Electrochemistry, Photophysical Properties and Their Applications in Organic Light-Emitting Diodes (OLEDs) [J]. Eur. J. Inorg. Chem, 2004, 2004: 3415-3423.
    13. PARK Y-S, KANG J-W, KANG D M, PARK J-W, KIM Y-H, KWON S-K, KIM J-J. Efficient, Color Stable White Organic Light-Emitting Diode Based on High Energy Level Yellowish-Green Dopants [J]. Adv. Mater, 2008, 20: 1957–1961.
    14. CAO Y, PARKER I D, YU G, ZHANG CH, HEEGER A J. Improved quantum efficiency for electroluminescence in semiconducting polymers [J]. Nature, 1999, 397: 414-417.
    15. WOHLGENANNT M, TANDON K, MAZUMDAR S, RAMASESHA S, VARDENY Z V. Formation cross-sections of singlet and triplet excitons inπ-conjugated polymers [J]. Nature, 2001, 409: 494-497.
    16. ADACHI C, BALDO M A, FORREST S R, THOMPSON M E. High- efficiency organic electrophosphorescent devices with tris(2-phenylpyridine) iridium doped into electron-transporting materials [J]. Appl. Phys. Lett, 2000, 77: 904-906.
    17. LAMANSKY S, DJUROVICH P, MURPHY D, ABDEL-RAZZAQ F, KWONG R, TSYBA I, BORTZ M, MUI B, BAU R, THOMPSON M E. Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes [J]. Inorg. Chem, 2001, 40: 1704–1711.
    18. LAMANSKY S, DJUROVICH P, MURPHY D, ABDEL-RAZZAQ F, LEE H E, ADACHI C, BUTTOWS P E, FORREST S R, THOMPSON M E. Highly Phosphorescent Bis-Cyclometaled Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes [J]. J. Am. Chem. Soc, 2001, 123: 4304-4312.
    19. TAMAYO A B, ALLEYNE B D, DJUROVICH P I, LAMANSKY S, TSYBA I, HO N N, BAU R, THOMPSON M E. Synthesis and Characterization of Facial and Meridional Tris-cyclometalated Iridium(III) Complexes [J]. J. Am. Chem. Soc, 2003, 125: 7377–7387.
    20. GRUSHIN V V, HERRON N, LECLOUX D D, MARSHALL W J, PETROV V A, WANG Y. New, efficient electroluminescent materials based on organometallic Ir complexes [J]. Chem. Commun, 2001, 1494-1495.
    21. WANG Y, HERRON N, GRUSHIN V V, LECLOUX D, PETROV V. Highly efficient electroluminescent materials based on fluorinated organometallic iridium compounds [J]. Appl. Phys. Lett, 2001, 79: 449-451.
    22. LAMANSKY S, DJUROVICH P L, ABDEL-RAZZAQ F, GARON S, MURPHY D L, THOMPSON M E. Cyclometalated Ir complexes in polymer organic light-emitting devices [J].J. Appl. Phys, 2002, 92: 1570-1575.
    23. ADACHI C, BALDO M A, FORREST S R, LAMANSKY S, THOMPSON M E, KWONG R C. High-efficiency red electrophosphorescence devices [J]. Appl. Phys. Lett, 2001, 78: 1622-1624.
    24. CHEN F C, YANG Y, THOMPSON M E, KIDO J. High-performance polymer light-emitting diodes doped with a red phosphorescent iridium complex [J]. Appl. Phys. Lett, 2002, 80: 2308-2310.
    25. HOLMES R J, FORREST S R, TUNG Y J, KWONG R C, BROWN J J, GARON S, THOMPSON M E. Blue organic electrophosphorescence using exothermic host–guest energy transfer [J]. Appl. Phys. Lett, 2003, 82: 2422-2424.
    26. BALDO M A, LAMANSKY S, BURROWS P E, THOMPSON M E, FORREST S R. Very high-efficiency green organic light-emitting devices based on electrophosphorescence [J]. Appl. Phys. Lett, 1999, 75: 4-6.
    27. EUM M -S, CHIN C S, KIM S Y, KIM C, KANG S K, HUR N H, SEO J H, KIM G Y, KIM Y K. Ligand Effects on Luminescence of New Type Blue Light-Emitting Mono(2-phenylpyridinato)iridium(III) Complexes [J]. Inorg. Chem, 2008, 47: 6289–6295.
    28. DRAGONETTI C, FALCIOLA L, MUSSINI P, RIGHETTO S, ROBERTO D, UGO R, VALORE A, DE ANGELIS F, FANTACCI S, SGAMELLOTTI A, RAMON M, MUCCINI M. The Role of Substituents on Functionalized 1,10-Phenanthroline in Controlling the Emission Properties of Cationic Iridium(III) Complexes of Interest for Electroluminescent Devices [J]. Inorg. Chem, 2007, 46: 8533–8547.
    29. YOU Y, SEO J, KIM S H, KIM K S, AHN T K, KIM D, PARK S Y. Highly Phosphorescent Iridium Complexes with Chromophoric 2-(2-Hydroxyphenyl) oxazole-Based Ancillary Ligands: Interligand Energy-Harvesting Phosphorescence [J]. Inorg. Chem, 2008, 47: 1476–1487.
    30. KIM J I, SHIN I -S, KIM H, LEE J -K. Efficient Electrogenerated Chemiluminescence from Cyclometalated Iridium(III) Complexes [J]. J. Am. Chem. Soc, 2005, 127: 1614–1615.
    31. HEIGL F, LAM S, REGIER T, COULTHARD I, SHAM T -K. Time-Resolved X-ray Excited Optical Luminescence from Tris(2-phenyl bipyridine)iridium [J]. J. Am. Chem. Soc, 2006, 128: 3906–3907.
    32. BREU J, ST?SSEL P, SCHRADER S, STARUKHIN A, FINKENZELLER W J, YERSIN H. Crystal Structure of fac-Ir(ppy)3 and Emission Properties under Ambient Conditions and at High Pressure [J]. Chem. Mater, 2005, 17: 1745–1752.
    33. YOU Y, KIM K S, AHN T K, KIM D, PARK S Y. Direct Spectroscopic Observation of Interligand Energy Transfer in Cyclometalated Heteroleptic Iridium(III) Complexes: A Strategy for Phosphorescence Color Tuning and White Light Generation [J]. J. Phys. Chem. C, 2007, 111: 4052–4060.
    34. WILKINSON A J, PUSCHMANN H, HOWARD J A K, FOSTER C E, WILLIAMS J A G. Luminescent Complexes of Iridium(III) Containing N^C^N-Coordinating Terdentate Ligands [J]. Inorg. Chem, 2006, 45: 8685–8699.
    35. BOLINK H J, CAPPELLI L, CORONADO E, PARHAM A, ST?SSEL P. Green Light-Emitting Solid-State Electrochemical Cell Obtained from a Homoleptic Iridium(III) Complex Containing Ionically Charged Ligands [J]. Chem. Mater, 2006, 18: 2778–2780.
    36. LYU Y-Y, BYUN Y, KWON O, HAN E, JEON W S, DAS R R, CHAR K. Substituent Effect on the Luminescent Properties of a Series of Deep Blue Emitting Mixed Ligand Ir(III) Complexes [J]. J. Phys. Chem. B, 2006, 110: 10303–10314.
    37. KOIDE Y, TAKAHASHI S, VACHA M. Simultaneous Two-Photon ExcitedFluorescence and One-Photon Excited Phosphorescence from Single Molecules of an Organometallic Complex Ir(ppy)3 [J]. J. Am. Chem. Soc, 2006, 128: 10990– 10991.
    38. ZHOU ZH, FRANZ A W, HARTMANN M, SEIFERT A, MüLLER T J J, THIEL W R. Novel Organic/Inorganic Hybrid Materials by Covalent Anchoring of Phenothiazines on MCM-41 [J]. Chem. Mater, 2008, 20: 4986–4992.
    39. LOWRY M S, GOLDSMITH J I, SLINKER J D, ROHL R, PASCAL R A, JR, MALLIARAS G G, BERNHARD S. Single-Layer Electroluminescent Devices and Photoinduced Hydrogen Production from an Ionic Iridium(III) Complex [J]. Chem. Mater, 2005, 17: 5712–5719.
    40. FORESMAN J B, BROOK III C L. An ab initio study of hydrated chloride ion complexes: Evidence of polarization effects and nonadditivity [J]. J. Chem. Phys, 1987, 87: 5892-5894.
    41. LEE A S, BUTUN V, VAMVAKAKI M, ARMESS P, POPLE J A, GAST A P. Structure of pH-Dependent Block Copolymer Micelles: Charge and Ionic Strength Dependence [J]. Macromolecules, 2002, 35: 8540-8551.
    42. (a) ZHANG H, BALASUBRAMANIAN K. Electronic structure of the group Vtetramers (P4–Bi4) [J]. J. Chem. Phys, 1992, 97: 3437-3444. (b) ZHANG H, BALASUBRAMANIAN K. Spectroscopic constants and potential energy curves for 15 electronic states of Ag2 [J]. J. Chem. Phys, 1993, 98: 7092-7097.
    43. HOHENBERG P, KOHN W. Inhomogeneous electron gas [J]. J. Phys. Rev. B, 1964, 136: 864—871.
    44. SLATER J C. Quantum Theory of Molecular and Solids. Vol. 4: The Self- Consistent Field for Molecular and Solids McGraw-Hill [M]. New York, 1974.
    45. SALAHUB D E, ZERNER M C. The Challenge of d and f Electrons [M]. ACS: Washington, D. C, 1989.
    46. POPLE J A, GILL P W M, JOHNSON B G. Kohn-Sham density-functional theory within a finite basis set [J]. Chem. Phys. Lett, 1992, 199:557-560.
    47. JOHNSON B G, FRISCH M J. An implementation of analytic second derivatives of the gradient-corrected density functional energy [J]. J. Chem. Phys, 1994, 100: 7429-7442.
    48. WONG M W, FRISCH M J, WIBERG K B. Solvent effects. 1. The mediation of electrostatic effects by solvents [J]. J. Am. Chem. Soc, 1991, 113: 4776-4782.
    49. WONG M W, WIBERG K B, FRISCH M J. Solvent effects. 2. Medium effect on the structure, energy, charge density, and vibrational frequencies of sulfamic acid [J]. J. Am. Chem. Soc. 1992, 114: 523-529.
    50.(a) SCHRECKENBACH G, ZIEGLER T. Calculation of NMR shielding tensors using Gauge-including atomic orbitals and modern density functional theory [J]. J. Phys. Chem, 1995, 99: 606-611. (b) SCHRECKENBACH G, ZIEGLER T. The calculation of NMR shielding tensors based on density functional theory and the frozen-core approximation [J]. Int. J. Quantum Chem, 1996, 60: 753-766.
    51. DEB B M, CHOSH S K. Schr?dinger fluid Dynamics of many-electron systems I a time-dependent density-functional framework [J]. J. Chem. Phys, 1982, 77: 342-348.
    52. BARTOLOTTI L J. Time-dependent extension of the Hohenberg-Kohn-Levy energy-density functional [J]. Phys. Rev, 1981, A24,1661; Time-dependent Kohn-Sham density-functional theory [J]. Phys. Rev, 1982, A26, 2243; Velocity form of the Kohn-Sham frequency-dependent polarizability equation [J]. Phys. Rev, 1987, A36, 4492.
    53. SCHRECKENBACH G, ZIEGLER T. The calculation of NMR shielding tensors based on density functional theory and the frozen-core approximation [J]. Int. J. Quantum Chem, 1996, 60: 753-766.
    54. HESSLER P, PARK J , BURKE K. Several Theorems in Time-Dependent Density Functional Theory [J]. Phys. Rev. Lett, 1999, 82: 378—381.
    55. PETERSILKA M, GOSSMANN U J, GROSS E K U. Excitation Energies from Time-Dependent Density-Functional Theory [J]. Phys. Rev. Lett, 1996, 76: 1212 -1215.
    1.夏少武.简明结构化学教程(第二版) [M].北京:化学工业出版社,2001, 160-173,184-185.
    2. [英]柏廷顿(J.R.Partington)著,胡作玄译.化学简史[M].北京:商务印书馆出版社,1979.
    3. W. Heitler著,丁陈汉荪译.量子力学初步及价键理论[M].北京:中华书局,1973.
    4.孙作民.结构化学[M].西安:陕西师范大学出版社,1990.
    5. (a) HEHRE W J, RADOM L, SCHLEYER P V R. et al., Ab Initio Molecular Orbital Theory[M].John Wiley &Sons, Inc, 1986; (b) MCQUARRIE D A. Quantum Chemistry University Science Books: Mill Vally. CA. 1983.
    6. (a)唐敖庆,杨忠志,李前树.量子化学[M].北京,科学出版社, 1982. (b)徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法[M].北京,科学出版社, 1985.
    7. Jensen F. Introduction to Computational Chemistry[M]. John Wiley and Sons, 1999, 65– 69, 81– 92.
    8. POPLE J A, SEEGER R, KRISHNAN R. Variational Configuration Interaction Methods and Comparison with Perturbation Theory [J]. Int. J. Quant. Chem. Symp. 1977, 11: 149-163.
    9. FORESMAN J B, HEAD-GORDON M, POPLE J A, FRISCH M J. Toward a systematic molecular orbital theory for excited states [J]. J. Phys. Chem, 1992, 96: 135-149.
    10. KRISHNAN R, SCHLEGEL H B, POPLE J A. Derivate Studies in Configuration Interaction Theory [J]. J. Chem. Phys, 1980, 72: 4654-4655.
    11. BROOKS B R, LAIDIG W D, SAXE P, GODDARD J D, YAMAGUCHI Y, SCHAEFER H F. Analytic Gradient from Correlated Wave Functions via the Two-Particle Density Matrix and the Unitary Group Approach [J]. J. Chem.Phys, 1980, 72: 4652-4653.
    12. SALTER E A, TRUCKS G W, BARTLETT R J. Analytic Energy Derivatives in Many-Body Methods .I. First Derivatives [J]. J. Chem. Phys, 1989, 90: 1752-1766.
    13. KOTHEKAR V. Specificity and molecular mechanism of abortificient action of prostaglandins [J]. Int. J. Quant. Chem, 1981, 20: 167-168.
    14. POPLE J A, HEAD-GORDON M, RAGHAVACHARI K. Quadratic Configuration Interaction. A General Technique for Determining Electron Correlation Energies[J]. J. Chem. Phys, 1987, 87: 5968-5975.
    15.李廷钧.发射光谱分析[M].北京,原子能出版社, 1983,第1版
    16. [加]G.赫兹堡著,王鼎昌译.分子光谱与分子结构-双原子分子光谱[M].北京:科学出版社,1983,第1版.
    17.周公度,段连运编著,结构化学基础[M].北京:北京大学出版社, 1995,第1版.
    18.梁映秋,赵文运编,分子振动和振动光谱[M].北京:北京大学出版社, 1990,第1版.
    19.吴国祯编著,分子振动光谱学原理与研究[M].北京:清华大学出版社, 2001,第1版.
    20.HOHENBERG P, KOHN W. Inhomogeneous electron gas [J]. J. Phys. Rev. B, 1964, 136: 864—871.
    21. KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects [J]. Phys. Rev. A, 1965, 140: 1133—1138.
    22. SLATER J C. Quantum Theory of Molecular and Solids. Vol. 4: The Self- Consistent Field for Molecular and Solids McGraw-Hill [M]. New York, 1974.
    23. SALAHUB D E, ZERNER M C. The Challenge of d and f Electrons [M]. ACS: Washington, D. C, 1989.
    24. PARR R G, YANG W. Density-functional theory of atoms and molecules [M]. Oxford Univ. Press: Oxford, 1989.
    25. POPLE J A, GILL P W M, JOHNSON B G. Kohn-Sham density-functional theory within a finite basis set [J].Chem. Phys. Lett, 1992, 199:557-560.
    26. JOHNSON B G, FRISCH M J. An implementation of analytic second derivatives of the gradient-corrected density functional energy [J]. J. Chem. Phys, 1994, 100: 7429-7442.
    27. LABANOWSKI J K, ANDZELM J W. Density Functional Methods in Chemistry, Springer-Verlag [M]. New York, 1991.
    28.维基百科-密度泛函理论. http://en.wikipedia.org/wiki/Density_functional_ theory.
    29. DEB B M, CHOSH S K. Schr?dinger fluid Dynamics of many-electron systems I a time-dependent density-functional framework [J]. J. Chem. Phys, 1982, 77: 342-348.
    30. BARTOLOTTI L J. Time-dependent extension of the Hohenberg-Kohn-Levy energy-density functional [J]. Phys. Rev, 1981, A24,1661; Time-dependent Kohn-Sham density-functional theory [J]. Phys. Rev, 1982, A26, 2243; Velocity form of the Kohn-Sham frequency-dependent polarizability equation [J]. Phys. Rev, 1987, A36, 4492.
    31. SCHRECKENBACH G, ZIEGLER T. The calculation of NMR shielding tensors based on density functional theory and the frozen-core approximation [J]. Int. J. Quantum Chem, 1996, 60: 753-766.
    32. HESSLER P, PARK J , BURKE K. Several Theorems in Time-Dependent Density Functional Theory [J]. Phys. Rev. Lett, 1999, 82: 378 -381.
    33. PETERSILKA M, GOSSMANN U J, GROSS E K U. Excitation Energies from Time-Dependent Density-Functional Theory [J]. Phys. Rev. Lett, 1996, 76: 1212 -1215.
    34.李震宇,贺伟,杨金龙,密度泛函理论及其数值方法新进展,化学进展[J]. 2005,17:192-202.
    35.维基百科-含时密度泛函理论。http://en.wikipedia.org/wiki/Time-dependent _density_functional_theory
    36. MULLIKEN R S. Electronic Population Analysis on LCAO MO Molecular Wave Functions. I [J]. J. Chem. Phys, 1955, 23: 1833-1840.
    37. J.巴尔特洛甫等著,宋心琦等译,光化学原理[M].北京:清华大学出版社,1983.
    38.曾谨言,量子力学第一版[M].北京:科学出版社.1981.264-602。
    39. PYYKK? P. Relativistic effects in structural chemistry [J]. Chem. Rev, 1988, 88: 563-594.
    40. a) HAY P J, WADT W R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg [J]. J. Chem. Phys, 1985, 82: 270-283. b). WADT W R, HAY P J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi [J]. J. Chem. Phys, 1985, 82: 284-298. c). HAY P J, WADT W R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals [J]. J. Chem. Phys, 1985, 82: 299-310.
    1. MITSCHLE U, B?UERLE P. The electroluminescence of organic materials [J]. J. Mater. Chem, 2000, 10: 1471-1507.
    2. AVILOV I, MINOOFAR P, CORNIL J, DE COLA L. Influence of Substituents on the Energy and Nature of the Lowest Excited States of Heteroleptic Phosphorescent Ir(III) Complexes: A Joint Theoretical and Experimental Study [J]. J. Am. Chem. Soc, 2007, 129: 8247-8258.
    3. MA B, DJUROVICH P I, GARON S, ALLEYNE B, THOMPSON M E. Platinum Binuclear Complexes as Phosphorescent Dopants for Monochromatic and White Organic Light-Emitting Diodes [J]. Adv. Funct. Mater, 2006, 16: 2438–2446.
    4. RATHNAYAKE H P, CIRPAN A, DELEN Z, LAHTI P M, KARASZ F E. Optimizing OLED Efficacy of 2,7-Diconjugated 9,9-Dialkylfluorenes by Variation of Periphery Substitution and Conjugation Length [J].Adv. Funct. Mater, 2007, 17: 115–122.
    5. JONDA C, MAYER A B R, THELAKKAT M, SCHMIDT H -W. SCHREIBER A, HAARER D, TERRELL D. Investigation of TDAPBs as Hole-transporting Materials for Organic Light-emitting Devices (OLEDs) [J]. Adv. Mater. Opt. Electron, 1999, 9: 117-128.
    6. COCHEREL N, PORIEL C, RAULT-BERTHELOT J, BARRIèRE F, AUDEBRAND N, SLAWIN A M Z, VIGNAU L. New 3p-2Spiro Ladder-Type Phenylene Materials: Synthesis, Physicochemical Properties and Applications in OLEDs [J]. Chem. Eur. J, 2008, 14: 11328-11342.
    7. CHEN J -L, CHANG SH -Y, CHI Y, CHEN K, CHENG Y -M, LIN CH -W, LEE G -H, CHOU P -T, WU CH -H, SHIH P -I, SHU CH -F. Pt(II) Complexes with 6-(5-Trifluoromethyl-Pyrazol-3-yl)-2,2’-Bipyridine Terdentate ChelatingLigands: Synthesis, Characterization, and Luminescent Properties [J]. Chem. Asian. J, 2008, 3: 2112-2123.
    8. LOU SH-L, YU J-SH, QIAN J-CH, JIANG Y-D, ZHANG Q, XU H-J, SUN L-M. Luminescent properties of a novel fluorine organic material [J]. Luminescence, 2008, 23: 424-428.
    9. BURN P L, LO S-C, SAMUEL I D W. The Development of Light-Emitting Dendrimers for Displays [J]. Adv. Mater, 2007, 19: 1675-1688.
    10. JUNG S, KANG Y, KIM H -S, KIM Y -H, LEE C -L, KIM J -J, LEE S -K, KWON S–K. Effect of Substitution of Methyl Groups on the Luminescence Performance of Ir(III) Complexes: Preparation, Structures, Electrochemistry, Photophysical Properties and Their Applications in Organic Light-Emitting Diodes (OLEDs) [J]. Eur. J. Inorg. Chem, 2004, 2004: 3415-3423.
    11. PARK Y-S, KANG J-W, KANG D M, PARK J-W, KIM Y-H, KWON S-K, KIM J-J. Efficient, Color Stable White Organic Light-Emitting Diode Based on High Energy Level Yellowish-Green Dopants [J]. Adv. Mater, 2008, 20: 1957–1961.
    12. ADACHI C, BALDO M A, THOMPSON M E, FORREST S R. Nearly 100% internal phosphorescence efficiency in an organic light emitting device [J]. J. Appl. Phys, 2001, 90: 5048-5051.
    13. ADACHI C, BALDO M A, FORREST S R, THOMPSON M E. High-efficiency organic electrophosphorescent devices with tris.2-phenylpyridine.iridium doped into electron-transporting materials [J]. Appl. Phys. Lett, 2000, 77: 904-906.
    14. (a) DEDEIAN K, SHI J, SHEPHERD N, FORSYTHE E, MORTON D C. Photophysical and Electrochemical Properties of Heteroleptic Tris- Cyclometalated Iridium(III) Complexes [J]. Inorg. Chem. 2005, 44: 4445-4447.(b) SAJOTO T, DJUROVICH P I, TAMAYO A, YOUSUFUDDIN M, THOMPSON M E. Blue and Near-UV Phosphorescence from Iridium Complexes with Cyclometalated Pyrazolyl or N-Heterocyclic Carbene Ligands [J]. Inorg. Chem. 2005, 44: 7992-8003.
    15. MAK CH S K, HAYER A, PASCU S I, WATKINS S E, HOLMES A B, K?OHLER A, FRIEND R H. Blue-to-green electrophosphorescence of iridium-based cyclometallated materials [J]. Chem. Commun, 2005, 4708-4710.
    16. KWON T -H, CHO H S, KIM M K, KIM J -W, KIM J -J, LEE K H, PARK S J, SHIN I -S, KIM H, SHIN D M, CHUNG Y K, HONG J–I. Color Tuning of Cyclometalated Iridium Complexes through Modification of Phenylpyrazole Derivatives and Ancillary Ligand Based on ab Initio Calculations [J]. Organometallics, 2005, 24: 1578-1585.
    17. HWANG F -M, CHEN H -Y, CHEN P -S, LIU C -S, CHI Y, SHU C -F, WU F -I, CHOU P–T, PENG S -M, LEE G–H. Iridium(III) Complexes with Orthometalated Quinoxaline Ligands: Subtle Tuning of Emission to the Saturated Red Color [J]. Inorg. Chem, 2005, 44: 1344-1353.
    18. YANG C -H, LI S -W, CHI Y, CHENG Y -M, YEH Y -S, CHOU P -T, LEE G -H, WANG C -H, SHU C–F. Heteroleptic Cyclometalated Iridium(III) Complexes Displaying Blue Phosphorescence in Solution and Solid State at Room Temperature [J]. Inorg. Chem, 2005, 44: 7770-7780.
    19. COPPO P, PLUMMER E A, DE COLA I. Tuning iridium(III) phenylpyridine complexes in the“almost blue”region [J]. Chem. Commun, 2004, 1774-1775.
    20. GRUSHIN V V, HERRON N, LECLOUX D D, MARSHALL W J, PETROV V A, WANG Y. New, efficient electroluminescent materials based on organometallic Ir complexes [J]. Chem. Commun, 2001, 1494-1495.
    21. LASKAR I R, HSU S -F, CHEN T–M. Syntheses, photoluminescence and electroluminescence of some new blue-emitting phosphorescent iridium(III)- based materials [J]. Polyhedron, 2005, 24: 189–200.
    22. WU L -L, YANG C -H, SUN I -W, CHU S -Y, KAO P -C, HUANG H–H. Photophysical and Electrochemical Properties of Blue Phosphorescent Iridium(III) Complexes, Organometallics [J]. 2007, 26: 2017-2023.
    23. YEH S -J, WU M -F, CHEN C -T, SONG Y -H, CHI Y, HO M -H, HSU S -F, CHEN C H. New Dopant and Host Materials for Blue-Light-Emitting Phosphorescent Organic Electroluminescent Devices [J]. Adv. Mater, 2005, 17: 285-289.
    24. RUNGE E, GROSS E K U. Density-Functional Theory for Time-Dependent Systems [J].Phys. Rev. lett, 1984, 52: 997-1000.
    25. HAY P J, WADT W R. Ab inition effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals [J]. J. Chem. Phys, 1985, 82: 299-310.
    26. Foresman J B, Head-Gordon M, Pople J A, Frisch M J. Toward a systematic molecular orbital theory for excited states, J. Phys. Chem, 1992, 96: 135-149.
    27. BECKE A D. Density-functional thermochemistry.Ш.The role of exact exchange [J]. J. Chem. Phys, 1993, 98: 5648-5652.
    28. (a) STRATMANN R E, SCUSERIA G E. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules [J]. J. Chem. Phys, 1998, 109: 8218-8224. (b) MATSUZAWA N N, ISHITANI A. Time-Dependent Density Functional Theory Calculations of Photoabsorption Spectra in the Vacuum Ultraviolet Region [J]. J. Phys. Chem. A, 2001, 105: 4953-4962.
    29. FRISCH M J, TRUCKS G W, SCHLEGEL H B, SCUSERIA G E, ROBB M A, CHEESEMAN J R, MONTGOMERY J A, JR, VREVEN T, KUDIN K N,BURANT J C, MILLAM J M, IYENGAR S S, TOMASI J, BARONE V, MENNUCCI B, COSSI M, SCALMANI G, REGA N, PETERSSON G A, NAKATSUJI H, HADA M, EHARA M, TOYOTA K, FUKUDA R, HASEGAWA J, ISHIDA M, NAKAJIMA T, HONDA Y, KITAO O, NAKAI H, KLENE M, LI X, KNOX J E, HRATCHIAN H P, CROSS J B, ADAMO C, JARAMILLO J, GOMPERTS R, STRATMANN R E, YAZYEV O, AUSTIN A J, CAMMI R, POMELLI C, OCHTERSKI J W, AYALA P Y, MOROKUMA K, VOTH G A, SALVADOR P, DANNENBERG J J, ZAKRZEWSKI V G, DAPPRICH S, DANIELS A D, STRAIN M C, FARKAS O, MALICK D K, RABUCK A D, RAGHAVACHARI K, FORESMAN J B, ORTIZ J V, CUI Q, BABOUL A G, CLIFFORD S, CIOSLOWSKI J, STEFANOV B B, LIU G, LIASHENKO A, PISKORZ P, KOMAROMI I, MARTIN R L, FOX D J, KEITH T, AL-LAHAM M A, PENG C Y, NANAYAKKARA A, CHALLACOMBE M, GILL P M W, JOHNSON B, CHEN W, WONG M W, GONZALEZ C, POPLE J A, Gaussian 03, Revision B.04; Gaussian, Inc.:Pittsburgh, PA, 2003.
    30. WANG I, ESTELLE B A, OLIVIER S, ALAIN I, BALDECK P L. Absorption and fluorescence properties of bifluorene crystal and microcrystals [J]. J. Opt. A: Pure Appl. Opt, 2002, 4: S258–S260.
    31. LIN B C, CHENG C P, LAO Z P M. Reorganization Energies in the Transports of Holes and Electrons in Organic Amines in Organic Electroluminescence Studied by Density Functional Theory [J]. J. Phys. Chem. A, 2003, 107: 5241-5251.
    32. CURIONI A, BOERO M, ANDREONI W. Alq3:ab initio calculations of its structural and electronic properties in neutral and charged states [J]. Chem. Phys. Lett, 1998, 294: 263-271.
    33. GEOFFREY R H, RATNER M A, MARKS T J. Hopping Transport inConductive Heterocyclic Oligomers: Reorganization Energies and Substituent Effects [J]. J. Am. Chem. Soc. 2005, 127: 2339-2350.
    34. MOTT N F, DAVIS E A. Electronic Processes in Non-Crystalline Materials (2nd ed) [M]. Oxford University Press: Oxford, 1979.
    35. REEDIJK J A, MARKS H C F, VAN BOHEMEN S M C, HILT O, BROM H B, MICHELS M A J. Charge transport in doped polythiophene [J]. Synth. Met, 1999, 101: 475-476.
    36. EPSTEIN A J, LEE W P, PRIGODIN V N. Low-dimensional variable range hopping in conducting polymers [J]. Synth. Met, 2001, 117: 9-13.
    37. MARCUS R A, EYRING H, Chemical and Electrochemical Electron-Transfer Theory [J]. Annu. Rev. Phys. Chem, 1964, 15: 155-196.
    38. MARCUS R A. On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer.? [J].J. Chem. Phys, 1956, 24: 966-978.
    39. MARCUS R A. Electron transfer reactions in chemistry. Theory and experiment [J]. Rev. Mod. Phys, 1993, 65: 599-610.
    1. BALDO M A, LAMANSKY S, BURROWS P E, THOMPSON M E, FORREST S R. Very high-efficiency green organic light-emitting devices based on electrophos- phorescence [J]. Appl. Phys. Lett, 1999, 75: 4-6.
    2. ADACHI C, BALDO M A, FORREST S R, THOMPSON M E. High- efficiency organic electrophosphorescent devices with tris(2-phenylpyridine) iridium doped into electron-transporting materials [J]. Appl. Phys. Lett, 2000, 77: 904-906.
    3. LAMANSKY S, DJUROVICH P, MURPHY D, ABDEL-RAZZAQ F, KWONG R, TSYBA I, BORTZ M, MUI B, BAU R, THOMPSON M E. Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes [J]. Inorg. Chem, 2001, 40: 1704–1711.
    4. LAMANSKY S, DJUROVICH P, MURPHY D, ABDEL-RAZZAQ F, LEE H E, ADACHI C, BUTTOWS P E, FORREST S R, THOMPSON M E. Highly Phosphorescent Bis-Cyclometaled Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes [J]. J. Am. Chem. Soc, 2001, 123: 4304-4312.
    5. TAMAYO A B, ALLEYNE B D, DJUROVICH P I, LAMANSKY S, TSYBA I, HO N N, BAU R, THOMPSON M E. Synthesis and Characterization of Facial and Meridional Tris-cyclometalated Iridium(III) Complexes [J]. J. Am. Chem. Soc, 2003, 125: 7377–7387.
    6. GRUSHIN V V, HERRON N, LECLOUX D D, MARSHALL W J, PETROV V A, WANG Y. New, efficient electroluminescent materials based on organometallic Ir complexes [J]. Chem. Commun, 2001, 1494-1495.
    7. WANG Y, HERRON N, GRUSHIN V V, LECLOUX D, PETROV V. Highly efficient electroluminescent materials based on fluorinated organometalliciridium compounds [J]. Appl. Phys. Lett, 2001, 79: 449-451.
    8. LAMANSKY S, DJUROVICH P L, ABDEL-RAZZAQ F, GARON S, MURPHY D L, THOMPSON M E. Cyclometalated Ir complexes in polymer organic light-emitting devices [J].J. Appl. Phys, 2002, 92: 1570-1575.
    9. ADACHI C, BALDO M A, FORREST S R, LAMANSKY S, THOMPSON M E, KWONG R C. High-efficiency red electrophosphorescence devices [J]. Appl. Phys. Lett, 2001, 78: 1622-1624.
    10. CHEN F C, YANG Y, THOMPSON M E, KIDO J. High-performance polymer light-emitting diodes doped with a red phosphorescent iridium complex [J]. Appl. Phys. Lett, 2002, 80: 2308-2310.
    11. HOLMES R J, FORREST S R, TUNG Y J, KWONG R C, BROWN J J, GARON S, THOMPSON M E. Blue organic electrophosphorescence using exothermic host–guest energy transfer [J]. Appl. Phys. Lett, 2003, 82: 2422-2424.
    12. BALDO M A, O 'BRIEN D F, YOU Y, SHOUSTIKOV A, SIBLEY S, THOMPSON M E, FORREST S R. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature, 1998, 395: 151-154.
    13. CHEN X -W, LIAO J -L, LIANG Y -M, AHMED M O, TSENG H -E, CHEN S–A. High-Efficiency Red-Light Emission from Polyfluorenes Grafted with Cyclometalated Iridium Complexes and Charge Transport Moiety [J].J. Am. Chem. Soc, 2003, 125: 636–637.
    14. NAZEERUDDIN M K, HUMPHRY-BAKER R, BERNER D, RIVIER S, ZUPPIROLI L, GRAETZEL M. Highly Phosphorescence Iridium Complexes and Their Application in Organic Light-Emitting Devices [J]. J. Am. Chem. Soc, 2003, 125: 8790-8797.
    15. LOWRY M S, HUDSON W R, PASCAL R A, BERNHARD S. Accelerated Luminophore Discovery through Combinatorial Synthesis [J]. J. Am. Chem.Soc, 2004, 126: 14129-14135.
    16. HOLDER E, LANGEVELD B M W, SCHUBERT U S. New Trends in the Use of Transition Metal-Ligand Complexes for Applications in Electroluminescent Devices [J]. Adv. Mater, 2005, 17: 1109-1121.
    18. SUN Y, GIEBINK N C, KANNO H, MA B, THOMPSON M E, FORREST S R. Management of singlet and triplet excitons for efficient white organic light-emitting devices [J].Nature, 2006, 440: 908-912.
    19. DE ANGELIS F, FANTACCI S, EVANS N, KLEIN C, ZAKEERUDDIN S M, MOSER J -E, KALYANASUNDARAM K, BOLINK, H J GR?TZEL M, NAZEERUDDIN M K. Controlling Phosphorescence Color and Quantum Yields in Cationic Iridium Complexes: A Combined Experimental and Theoretical Study [J]. Inorg. Chem, 2007, 46: 5989–6001.
    20. SLINKER J D, GORODETSKY A A, LOWRY M S, WANG J -J, PARKER S, ROHL R, BERNHARD S, MALLIARAS G. G.. Efficient Yellow Electroluminescence from a Single Layer of a Cyclometalated Iridium Complex [J]. J. Am. Chem. Soc, 2004, 126: 2763-2767.
    21. YU X -M, KWOK H S, WONG W -Y, ZHOU G J. High-Efficiency White Organic Light-Emitting Devices Based on a Highly Amorphous Iridium(III) Orange Phosphor [J]. Chem. Mater, 2006, 18: 5097-5103.
    21. TANG K–CH, LIU K L, CHEN I–CH. Rapid intersystem crossing in highly phosphorescent iridium complexes [J]. Chem. Phys. Lett, 2004, 386: 437-441.
    22. KWON T–H, CHO H S, KIM M K, KIM J–W, KIM J–J, LEE K H, PARK S J, SHIN I–S, KIM H, SHIN D M, CHUNG Y K, KONG J–I. Color Tuning of Cyclometalated Iridium Complexes through Modification of Phenylpyrazole Derivatives and Ancillary Ligand Based on ab Initio Calculations [J].Organometallics, 2005, 24: 1578–1585.
    23. TSUZUKI T, SHIRASAWA N, SUZUKI T, TOKITO S. Color Tunable rganic Light-Emitting Diodes Using Pentafluorophenyl-Substituted Iridium Complexes [J]. Adv. Mater, 2003, 15, 1455-1458.
    24. FINKENZELLER W J, HOFBECK T, THOMPSON M E, YERSIN H. Triplet State Properties of the OLED Emitter Ir(btp)2(acac): Characterization by Site-Selective Spectroscopy and Application of High Magnetic Fields [J]. Inorg. Chem, 2007, 46: 5076-5083.
    25. BOLINK H J, CORONADO E, SANTAMARIA S G, SESSOLO M, EVANS N, KLEIN C, BARANOFF E, KALYANASUNDARAM K, GRAETZEL M, NAZEERUDDIN MD K. Highly phosphorescent perfect green emitting iridium(III) complex for application in OLEDs [J]. Chem. Commun, 2007, 3276-3278.
    26. (a) BARONE V, COSSI M. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model [J]. J. Chem. Phys, 1997, 107: 3210-3221. (b) COSSI M, SCALMANI G, REGAR N, BARONE V. New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution [J]. J. Chem. Phys, 2002, 117: 43-54.
    1. LAMANSKY S, DJUROVICH P, MURPHY D, ABDEL-RAZZAQ F, KWONG R, TSYBA I, BORTZ M, MUI B, BAU R, THOMPSON M E. Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes [J]. Inorg. Chem, 2001, 40: 1704–1711.
    2. ANTHOPOULOS T D, FRAMPTON M J, NAMDAS E B, BURN P L, SAMUEL I D W. Solution-Processable Red Phosphorescent Dendrimers for Light-Emitting Device Applications [J].Adv. Mater, 2004, 16: 557-560.
    3. YEH S -J, WU M -F, CHEN C -T, SONG Y -H, CHI Y, HO M -H, HSU S -F, CHEN C H. New Dopant and Host Materials for Blue-Light-Emitting Phosphorescent Organic Electroluminescent Devices [J]. Adv. Mater, 2005, 17: 285-289.
    4. LI J, DJUROVICH P I, ALLEYNE B D, TSYBA I, HO N N, BAU R, THOMPSON M E. Synthesis and characterization of cyclometalated Ir(III) complexes with pyrazolyl ancillary ligands [J]. Polyhedron, 2004, 23: 419-428.
    5. NAZEERUDDIN M K, HUMPHRY-BAKER R, BERNER D, RIVIER S, ZUPPIROLI L, GRAETZEL M. Highly Phosphorescence Iridium Complexes and Their Application in Organic Light-Emitting Devices [J]. J. Am. Chem. Soc, 2003, 125: 8790-8797.
    6. LAMANSKY S, KWONG R C, NUGENT M, DJUROVICH P I, THOMPSON M E. Molecularly doped polymer light emitting diodes utilizing phosphorescent Pt(II) and Ir(III) dopants [J]. Org. Electron, 2001, 2: 53-62.
    7. ANTHOPOULOS T D, MARKHAM J P J, NAMDAS E B, LAWRENCE J R,SAMUEL I D W, LO S -CH, BURN P L. Influence of molecular structure on the properties of dendrimer light-emitting diodes[J]. Org. Electron, 2003, 4: 71-76.
    8. TANG K–CH, LIU K L, CHEN I–CH. Rapid intersystem crossing in highly phosphorescent iridium complexes [J]. Chem. Phys. Lett, 2004, 386: 437-441.
    9. LEI G T, WANG L D, DUAN L, WANG J H, QIU Y. Highly efficient blue electrophosphorescent devices with a novel host material [J]. Synth. Met, 2004, 144: 249-252.
    10.TSUBOYAMA A, IWAWAKI H, FURUGORI M, MUKAIDE T, KAMATANI J, IGAWA S, MORIYAMA T, MIURA S, TAKIGUCHI T, OKADA S, HOSHINO M, UENO K. Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to Organic Light-Emitting Diode [J].J. Am. Chem. Soc, 2003, 125: 12971-12979.
    11. YOU Y, PARK S Y. Inter-Ligand Energy Transfer and Related Emission Change in the Cyclometalated Heteroleptic Iridium Complex: Facile and Efficient Color Tuning over the Whole Visible Range by the Ancillary Ligand Structure [J]. J. Am. Chem. Soc, 2005, 127: 12438-12439.
    12. CHEN L, YANG CH -L, QIN J -G, GAO J, MA D–G. Luminescent iridium(III) complexes with mixed 2-phenylpyridinato-C2, N and dithionate ligands for dopant emitter in OLEDs[J]. Synth. Met, 2005, 152: 225-228.
    13. SUN P-P, LI CH-X, PAN Y, TAO Y. Synthesis of novel Ir complexes and their application in organic light emitting diodes [J]. Synth. Met, 2006, 156: 525-528.
    14. XU M-L, LI M-T, HONG Z-R, LI W-L, AN ZH-W, ZHOU Q. Highly efficient red electrophosphorescent device based on a new iridium complex with trifluoromethyl-substituted 2-benzo[b]thiophen-2-yl-pyridine ligand [J]. Opt. Mater, 2006, 28:1025-1028.
    15. CHEN L-Q, YANG CH-L, QIN J-G, GAO J, MA D-G. Tuning of emission: Synthesis, structure and photophysical properties of imidazole, oxazole and thiazole-based iridium (III) complexes [J]. Inorg. Chem. Acta, 2006, 359: 4207-4214.
    16. SONG Y -H, YEH S -J, CHEN C -T, CHI Y, LIU C -S, YU J -K, HU Y -H, CHOU P -T, PENG S-M, LEE G-H. Bright and Efficient, Non-Doped, Phosphorescent Organic Red-Light-Emitting Diodes [J]. Adv. Funct. Mater, 2004, 14: 1221-1226.
    17. WONG W-Y, ZHOU G-J, YU X-M, KWOK H-S, TANG B-Z. Amorphous Diphenylaminofluorene-Functionalized Iridium Complexes for High- Efficiency Electrophosphorescent Light-Emitting Diodes [J]. Adv. Funct. Mater, 2006, 16: 838-846.
    18. PARK G Y, KIM Y S, HA Y. Phosphorescent iridium(III) complexes with hetero (C ?N) ligands [J]. Curr. Appl. Phys, 2007, 7: 390-395.
    19. PARK G Y, KIM Y S, HA Y K. Efficient red-emitting phosphorescent iridium(III) complexes of fluorinated 2,4-diphenylquinolines [J]. Thin Solid Films, 2007, 515: 5090-5094.
    20. GU X, FEI T, et al. Theoretical studies of blue-emitting iridium complexes with different ancillary ligands [J]. J. Phys. Chem. A, 2008, 112:8387-8393.
    21. POLOSAN S, CHOW T J, TSUBOI T. Density functional theory analysis of a mixed-ligand iridium compound for multi-color organic light-emittingdiodes [J]. J. Phys. Org. Chem, 2008, 21: 315-320.
    22. JANSSON E, MINAEV B, SCHRADER S, ?GREN H. Time-dependent density functional calculations of phosphorescence parameters for fac- tris(2-phenylpyridine) iridium [J]. Chem. Phys, 2007, 333: 157-167.
    23. LEE Y H, KIM Y S. Theoretical study of Ir(III) complexes with cyclometalated alkenylquinoline ligands [J]. Curr. Appl. Phys, 2007, 7: 504-508.
    24. WU L-L, SUN I-W, YANG CH-H. Photophysical and electrochemical properties of heteroleptic tris-cyclometallated Ir(III) complexes [J]. Polyhedron, 2007, 26: 2679-2685.
    25. JUNG S O, KIM Y -H, KWON S -K, OH H -Y, YANG J–H. New hole blocking material for green-emitting phosphorescent organic electroluminescent devices [J]. Org. Electron, 2007, 8: 349-356.
    26. STAMPOR W, M??YK J. Electromodulation of photoluminescence in vacuum-evaporated films of fac-tris(2-phenylpyridine)iridium(III) [J].Chem. Phys, 2007, 337: 151-160.
    27. BRUNNER K, VAN DIJKEN A, B?RNER H, BASTIAANSEN J J A M, KIGGEN N M M, LANGEVELD B M W. Carbazole Compounds as Host Materials for Triplet Emitters in Organic Light-Emitting Diodes: Tuning the HOMO Level without Influencing the Triplet Energy in Small Molecules [J]. J. Am. Chem. Soc, 2004, 126: 6035–6042.
    28. MATSUSHITA T, ASADA T, KOSEKI S. Relativistic Study on Emission Mechanism in Tris(2-phenylpyridine)iridium[J]. J. Phys. Chem. C, 2007, 111: 6897–6903.
    29. NOZAKI K, TAKAMORI K, NAKATSUGAWA, OHNO Y T. Theoretical Studies of Phosphorescence Spectra of Tris(2, 2‘-bipyridine) Transition Metal Compounds [J].Inorg. Chem, 2006, 45: 6161–6178.
    30. YANG CHE-H, SU W-L, FANG K-H, WANG SH-P, SUN I-W. Studies of the 5‘-Substituted Phenylisoquinoline-Based Iridium Complexes Using Density Functional Theory [J]. Organometallics, 2006, 25: 4514–4519.
    1. BUSS C E, MANN C R. Synthesis and Characterization of Pt(CN-p-(C2H5)C6H4)2(CN)2, a Crystalline Vapoluminescent Compound That Detects Vapor-Phase Aromatic HydrocarbonsJ. Am. Chem. Soc [J]. 2002, 124 : 1031–1039.
    2. EXSTROM C L, SOWA J R, JR,DWAS C A, JANZEN D, MANN K R. Inclusion of Organic Vapors by Crystalline, Solvatochromic [Pt(aryl isonitrile)4][Pd(CN)4] Compounds. "Vapochromic" Environmental Sensors [J]. Chem. Mater, 1995, 7:15–17.
    3. DAWS C A, EXSTROM C L, SOWA J R, JR, MANN K R.“Vapochromic”Compounds as Environmental Sensors .2. Synthesis and Near-Infrared and Infrared Spectroscopy Studies of [Pt(arylisocyanide)4][Pt(CN)4] upon Exposure to Volatile Organic Compound Vapors [J]. Chem. Mater, 1997, 9: 363–368.
    4. DREW S M, JANZEN D E, BUSS C E, MACEWAN D I, DUBLIN K M, MANN K R. An Electronic Nose Transducer Array of Vapoluminescent Platinum(II) Double Salts [J]. J. Am. Chem. Soc, 2001, 123: 8414–8415.
    5. EXSTROM C L, POMIJE M K, MANN, K R.Infrared Spectroscopy Studies of Platinum Salts Containing Tetracyanoplatinate(II). Evidence for Strong Hydrogen-Bonding Interactions in“Vapochromic”Environmental Sensor Materials [J]. Chem. Mater, 1998, 10: 942–945.
    6. DREW S M,JANZEN D E, MANN K R. Characterization of a Cross-Reactive Electronic Nose with Vapoluminescent Array Elements [J]. Anal. Chem, 74: 2547–2555
    7. BLANTON T N, EISENBERG R. Vapochromism and Its Structural Basis in a Luminescent Pt(II) Terpyridine-Nicotinamide Complex [J]. J. Am. Chem. Soc, 2004, 126: 16841-16849.
    8. SCAFFIDI-DOMIANELLO Y Y, NAZAROVA A, HAUKKA M, GALANSKI M, KEPPLER B K, SCHNEIDER J, EISENBERG P D R, KUKUSHKIN V Y. First Example of the Solid-State Thermal Cyclometalation of Ligated Benzophenone Imine Giving Novel Luminescent Platinum(II) Species [J]. Inorg. Chem, 2007, 46: 4469-4482.
    9. KUI S C F, CHUI S S Y, CHE C M, ZHU N. Structures, Photoluminescence, and Reversible Vapoluminescence Properties of Neutral Platinum(II) Complexes Containing Extendedπ-Conjugated Cyclometalated Ligands [J]. J. Am. Chem. Soc, 2006, 128: 8297-8309.
    10. YAM V W-W, CHAN K H Y, WONG K M C, CHU B W K. Luminescent Dinuclear Platinum(II) Terpyridine Complexes with a Flexible Bridge and Sticky Ends [J].Angew. Chem, Int. Ed, 2006, 45: 6169-6173.
    11. LU W, ROY V A L, CHE C M. Self-assembled nanostructures with tridentate cyclometalated platinum(II) complexes [J]. Chem. Commun, 2006, 3972- 3974.
    12. LU W, CHAN M C W, ZHU N, CHE C M, LI C, HUI Z. Structural and Spectroscopic Studies on Pt···Pt andπ?πInteractions in Luminescent Multinuclear Cyclometalated Platinum(II) Homologues Tethered by Oligophosphine Auxiliaries [J]. J. Am. Chem. Soc, 2004, 126: 7639-7651.
    13. MINAEV B, ?GREN H. Theoretical DFT study of phosphorescence from porphyrins [J]. Chem. Phys. 2005, 315: 215-239.
    14. JANSSON E, MINAEV B, SCHRADER S, ?GREN H. Time-dependent density functional calculations of phosphorescence parameters for fac- tris(2-phenylpyridine) iridium[J]. Chem. Phys, 2007, 333: 157-167.
    15. MCKAY T J, BOLGER J A. Staromlynska J, Davy J R, Linear and nonlinear optical properties of platinum-ethynyl [J]. J. Chem. Phys, 1998, 108: 5537 -5541.
    16. MCKAY T J, STAROMLYNSKA J, DAVY J R, BOLGER J A. Cross sections for excited-state absorption in a Pt:ethynyl complex [J]. J. Opt. Soc. Am. B, 2001, 18: 358-362.
    17. MINAEV B, JANSSON E, LINDGREN M. Application of density functional theory for studies of excited states and phosphorescence of platinum(II) acetylides [J]. J. Chem. Phys, 2006, 125: 094306-1- 094306-11.
    18. LINDGREN M, MINAEV B, GLIMSDAL E, VESTBERG R, WESTLUND R, MALMSTR?M E. Electronic states and phosphorescence of dendron functionalized platinum(II) acetylides [J]. J. Lumin. 2007, 124: 302-310.
    19. TUNG Y L, LEE S W, CHI Y, CHEN L S, SHU C F, WU F I, CARTY A J, CHOU P T, PENG S M, LEE G H. Organic Light-Emitting Diodes based on Charge-Neutral RuII Phosphorescent Emitters, Adv. Mater. 2005, 17: 1059- 1064.
    20.TSUBOYAMA A, IWAWAKI H, FURUGORI M, MUKAIDE T, KAMATANI J, IGAWA S, MORIYAMA T, MIURA S, TAKIGUCHI T, OKADA S, HOSHINO M, UENO K. Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to Organic Light-Emitting Diode [J]. J. Am. Chem. Soc, 2003, 125: 12971- 12979.
    21. CARLSON B, PHELAN G D, KAMINSKY W, DALTON L, JIANG X, LIU S, JEN A K Y. Divalent Osmium Complexes: Synthesis, Characterization, Strong Red Phosphorescence, and Electrophosphorescence [J]. J. Am. Chem. Soc, 2002, 124: 14162-14172.
    22. WONG W-Y, HE Z, SO S-K, TONG K-L, LIN Z–Y. A Multifunctional Platinum-Based Triplet Emitter for OLED Applications [J]. Organometallics, 2005, 24: 4079–4082.
    23. LU W, MI B-X, CHAN M C W, HUI ZH, CHE C-M, ZHU N-Y, LEE, S-T.Light-Emitting Tridentate Cyclometalated Platinum(II) Complexes Containingσ-Alkynyl Auxiliaries: Tuning of Photo- and Electrophosphorescence [J]. J. Am. Chem. Soc, 2004, 126: 4958–4971.
    24. BATEMA G D, LUTZ M, SPEK A L, VAN WALREE C A, DONEGáC D M, MEIJERINK A, HAVENITH R W A, PéREZ-MORENO J, CLAYS K, BüCHEL M, VAN DIJKEN A, BRYCE D L, VAN KLINK G P M, VAN KOTEN G. Substituted 4, 4′-Stilbenoid NCN-Pincer Platinum(II) Complexes. Luminescence and Tuning of the Electronic and NLO Properties and the Application in an OLED [J]. Organometallics, 2008, 27: 1690–1701.
    25. CHANG S -Y, KAVITHA J, HUNG J- Y, CHI Y, CHENG Y -M, LI E Y, CHOU P -T, CARTY G -H L J. Luminescent Platinum(II) Complexes Containing Isoquinolinyl Indazolate Ligands: Synthetic Reaction Pathway and Photophysical Properties [J].Inorg. Chem, 2007, 46: 7064-7074.
    26. CHANG S-Y, CHEN J-L, CHI Y, CHENG Y-M, LEE G-H, JIANG C-M, CHOU P-T. Blue-Emitting Platinum(II) Complexes Bearing both Pyridylpyrazolate Chelate and Bridging Pyrazolate Ligands: Synthesis, Structures, and Photophysical Properties [J]. Inorg. Chem, 2007, 46: 11202–11212.
    27. WILLIAMS E L, HAAVISTO K, LI J, JABBOUR G E. Excimer-Based White Phosphorescent Organic Light-Emitting Diodes with Nearly 100 % Internal Quantum Efficiency [J]. Adv. Mater, 2007, 19: 197-202.
    28. D’ANDRADE B W, BROOKS J, ADAMOVICH V, THOMPSON M E, FORREST S R. White Light Emission Using Triplet Excimers in Electrophosphorescent Organic Light-Emitting Devices [J]. Adv. Mater, 2002, 14: 1032-1036.
    29. FURUTA P T, DENG L, GARON S, THOMPSON M E, FRéCHET J M J. Platinum-Functionalized Random Copolymers for Use in Solution-Processible, Efficient, Near-White Organic Light-Emitting Diodes [J]. J. Am. Chem. Soc, 2004, 126: 15388-15389.
    30. DENG L, FURUTA P T, THOMPSON M E, FRéCHET J M J. Living Radical Polymerization of Bipolar Transport Materials for Highly Efficient Light Emitting Diodes [J]. Chem. Mater, 2006, 18: 386-395.
    31. MA B, DJUROVICH P I, YOUSUFUDDIN M, BAU R, THOMPSON M E. Phosphorescent Platinum Dyads with Cyclometalated Ligands: Synthesis, Characterization, and Photophysical Studies [J]. J. Phys. Chem. C, 2008, 112: 8022-8031.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700