用户名: 密码: 验证码:
高延伸凸缘型铁素体/贝氏体钢的组织演变及力学行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热轧双相钢具有强度高、屈强比低、初始加工硬化率高以及强度和韧性配合良好等优点,是目前应用最多的先进高强度钢(Advanced High Strength Steel,AHSS)之一。与传统的铁素体/马氏体双相(FMDP)钢相比,铁素体/贝氏体双相(FBDP)钢具有强度和冷成形性的匹配,且焊接、疲劳以及延伸凸缘性能优良,是底盘和车轮等部件用热轧高强度钢的理想材料。
     本文结合上海宝钢集团公司开发项目“铁素体/贝氏体高扩孔钢的相变及强化机理”,研究低碳硅-锰钢在连续冷却及等温过程中的相变行为,利用控轧控冷(Thermo-MechanicalControl Process,TMCP)工艺开发出经济型的热轧FBDP钢板,通过扩孔实验评价不同强度级别FBDP钢板的延伸凸缘性能,并对FBDP钢在单轴拉伸下的变形行为和断裂机理,以及扩孔成形中的裂纹形成及其扩展行为进行研究,取得了如下研究成果:
     (1)通过热模拟实验研究不同硅、锰含量的低碳钢在连续冷却过程中的相转变规律,定量分析合金元素、热变形工艺参数以及冷却速度对相变温度和转变组织的影响。结果表明:1)硅含量增加使Ar_3温度升高,锰含量增加使Ar_3温度降低,但锰对Ar_3温度的影响效果强于硅;2)硅对Ar_3温度的影响与变形条件有关,增加硅含量使未变形条件下Ar_3温度升高的更加明显;3)硅在促进多边形铁素体形成的同时,也抑制了贝氏体相变,而锰不仅细化了铁素体和贝氏体组织,还促进了贝氏体的形成;4)变形使低硅钢中贝氏体铁素体板条变得细而短,使高硅钢中铁素体以及M/A岛的分布更均匀。
     (2)通过等温转变实验研究硅含量和变形对铁素体和贝氏体转变的影响及机理,采用超组元方法,修正后的Zener两参数(考虑了碳、硅和锰等元素之间的交互作用),对等温转变过程中相变热力学和相变动力学进行数值模拟。结果表明:1)随硅含量增加,γ→α转变的孕育期缩短,γ→B转变的孕育期延长;2)随着硅含量增加,组织中铁素体晶粒细化,且贝氏体铁素体的形态由细长条状变为短杆状;3)奥氏体变形后,组织中铁素体的形态多呈等轴状,铁素体晶粒明显细化,贝氏体的体积分数减少;4)增加硅含量或奥氏体变形增大了碳在γ/(γ+α)或α/(α+γ)相界面的平衡浓度,以及γ→α转变的驱动力|△G~(γ→α)|。
     (3)通过TMCP实验,在低碳硅-锰钢中获得具有铁素体和贝氏体组织的FBDP钢,研究合金元素和工艺参数对实验钢显微组织和力学性能的影响规律。结果表明:1)以低碳硅-锰钢为基础,合理选择硅、锰含量和TMCP工艺参数,可获得不同强度级别的高延伸凸缘型FBDP钢板:抗拉强度可达472.5~721.5MPa,伸长率可达27.4~43.8%,扩孔率可达95~117.8%,满足高延伸凸缘钢扩孔率λ≥80%和伸长率A≥20%的标准,且比较经济;2)增加锰含量,可以有效提高实验钢的强度和韧性,但塑性和延伸凸缘性能有所下降;3)在实验范围内,当硅含量由0.06%增加至0.57%时,实验钢的抗拉强度、韧性和延伸凸缘性能均提高;当硅含量增至0.92%时,实验钢的抗拉强度升高,但韧性和延伸凸缘性能下降;当硅含量为0.57%时,实验钢具有强度、韧性和延伸凸缘性能的良好匹配;4)与铁素体/珠光体钢和FMDP钢相比,FBDP钢具有良好的强度与延伸凸缘性能之间的平衡;5)终轧温度的降低虽然有利于细晶粒铁素体的形成,改善钢材的塑性和韧性,但也使组织中贝氏体的体积分数降低,导致钢材的抗拉强度降低以及屈强比升高。
     (4)研究FBDP钢在扩孔过程中的裂纹形成及扩展行为。结果表明,预制圆孔的边缘是扩孔成形的变形危险区,当该处的切向伸长超过材料的成形极限时,就会产生缩颈或裂纹。FBDP钢的裂纹扩展主要以微孔聚集模式进行,当遇到贝氏体时,裂纹通过F-B相界面并剪断铁素体进行扩展。在裂纹扩展中,大部分的等轴铁素体在应力场作用下沿垂直于裂纹方向被显著拉长,这表明裂纹扩展在FBDP钢中进行时,强度较低的铁素体在应力场的作用下会产生较大的塑性变形,在一定程度上减弱了裂纹附近的应力集中,阻止了裂纹扩展。
     (5)对FBDP钢在单轴拉伸下的变形行为和断裂特性的研究表明:在均匀塑性变形阶段,FBDP钢的n~*(瞬时加工硬化指数)值随真应变ε的增加呈逐渐减小趋势,且n*-ε曲线大体可以分为n~*较高,n~*随ε增加而缓慢下降,以及n~*随ε增加而迅速下降等三个阶段。与HSLA和FMDP钢相比,FBDP钢在低应变区域具有明显高的加工硬化值。在拉伸断裂的缩颈过程中,FBDP钢的孔洞或微裂纹多产生在铁素体内或F-B相界面附近。通过压缩-拉伸实验测定了FBDP钢的包辛格效应参量以及预压缩变形对FBDP钢的加工硬化速率dσ/dε和加工硬化指数n的影响:随着预压缩变形量(0~1.0mm)增加,FBDP钢在拉伸变形过程中的dσ/dε和n值基本呈先减小然后增大的趋势。
Dual-phase steels are one of the most widely used AHSS(Advanced High Strength Steel) sheets,because of their characteristic mechanical properties,such as high strength,low yield ratio,high initial work hardening rate as well as good combination of strength and toughness. As compared to FMDP(Ferrite/Martensite Dual-Phase) steels,FBDP(Ferrite/Bainite Dual-Phase) steels exhibit a superior combination of strength and cold formability,especially excellent welding and fatigue properties as well as high stretch-flangeability.Therefore, FBDP steel may be an ideal candidate for the complex press-formed parts,such as automotive chassis and wheels.
     The work of this dissertation was carried out integrating with the project of 'Phase Transformation and Strengthening Mechanism of Ferrite/Bainite Dual-Phase Steels with High Hole-Expansion Ratio',which is supported by the Baoshan Iron and Steel Group.The continuous cooling and isothermal transformation behavior of low carbon Si-Mn steels was studied.Economical hot-rolled FBDP steels were developed by TMCP(Thermo-Mechanical Control Process) technology and the stretch flangeability of these steels with different strength grades was evaluated by hole-expansion tests.Deformation behavior and fracture characteristics in the uniaxial tension,and crack formation and propagation behavior during the hole-expansion were also investigated.The main work involved as follows:
     (1) The continuous cooling transformation behavior of low carbon steels with different Si and Mn contents was investigated by thermal simulation experiment.Effects of alloying elements,hot-deformation parameters and cooling rates on ferrite transformation start temperature(Ar_3),microstructure and properties were studied.The results showed:1) Ar_3 rises with the increase in Si,while it drops with the increase in Mn.The effect of Mn on Ar_3 is more obvious than that of Si;2)Influence of Si on Ar_3 is dependent on deformation,and such effect is more significant without the prior deformation of austenite;3) Si promotes the formation of polygonal ferrite,but inhibited the transformation of bainite.Mn not only refines the microstructure of ferrite and bainite,but also promotes the formation of bainite;4)In case of the deformation with true strain of 0.4,the length of bainitic ferrite laths is significantly decreased in the low Si steel,whereas,the M/A constituents become more uniform in the high Si steel.
     (2) The influence of Si and prior deformation on the isothermal transformation of ferrite and bainite in low carbon steels was studied.The numerical simulation of phase transformation kinetics and thermodynamics was carried out by the super-element method and modified Zener's parameters.The results were showed as follows:1) With Si content increasing,the incubation time of ferritic transformation decreases,while that of bainitic transformation increases;2) The ferrite grains are refined and the bainitic ferrite laths become shorter with increasing Si content;3) After the prior deformation of austenite,the ferrite grains become equiaxed and more refined,and the volume fraction of bainite decreases;4) Deformation or increasing Si content increases the carbon equilibrium concentration onγ/(γ+α) orα/(α+γ) phase boundary and driving force for ferrite transformation.
     (3) The economical hot-rolled FBDP steels were developed by TMCP technology.Some factors affecting the microstructure and properties of FBDP steels were investigated.1) FBDP steels with high stretch-flangeability were exploited by designing Si and Mn contents as well as TMCP parameters.The tensile strength,total elongation and hole-expansion ratio may reach 472.5~721.5MPa,27.4~43.8%and 95~117.8%,respectively,which meets the standards of high stretch-flangeability steels(λ≥80%,A≥20%);2) The increase in Mn content increases both the strength and toughness,but decreases the ductility and stretch-flangeability; 3) When Si content increases from 0.06%to 0.57%,the values of tensile strength,impact toughness and stretch-flangeability all increase.When Si content increases to 0.92%,the strength increases,whereas,the values of toughness and stretch-fiangeability decrease.The steel with 0.57%Si exhibits the best combination of all the three property parameters;4) Compared with ferrite/pearlite and FMDP steels,FBDP steels have a better balance between strength and stretch-flangeability;5) The decrease in finish rolling temperature promotes the formation of fine-grained ferrite and improves the ductility and toughness of experimental steels,but results in the lower tensile strength and higher yield ratio of steels due to the decrease in the volume fraction ofbainite.
     (4) The crack formation and propagation behavior during the hole-expansion were investigated.Since the edge of punched hole is the dangous zone of deformation,the necking or cracking will occur when the tangential elongation is more than the forming limit here.The crack of FBDP steels is formed by the mode of microvoid coalescence.When a microcrack meets the bainite,it mostly propagates along the phase interface between ferrite and bainite by cutting off ferrite grains.In the crack propagation,the majority of equiaxed ferrite grains are elongated along the direction perpendicular to the crack,which shows that ferrite grains with lower strength will have a greater plastic deformation.This helps to reduce the stress concentration near the crack and thus restrain the crack propagation.
     (5) The deformation behavior and fracture characteristics in the uniaxial tension were studied.The curves of the instantaneous work-hardening factor n~* value versus true strainεare made up with three stages during the uniform plastic deformation:n~* value is relatively higher at stageⅠ,decreases slowly withεin'stageⅡ,and then decreases quickly withεat stageⅢ.Compared to the ferrite/pearlite and FMDP steels,FBDP steels show higher n~* value in the low strain region.The uniaxial compression-tension testing was performed,and the Bauschinger effect parameter and work-hardening behavior were examined to understand the deformation mechanism of FBDP steels under complex loading conditions.The values of dσ/dεand n firstly increase and then decrease with the prior compressive deformation increasing from O to 1.0mm.
引文
[1]Takechi H.Recent progress in high strength steels for automobile in Japan[C],The Fifth International Conference on HSLA Steels,Sanya,China:The Chinese Society for Metals,2005:58-63.
    [2]Bhattacharya D.Developments of advanced high strength steels[C],The Fifth International Conference on HSLA Steels,Sanya,China:The Chinese Society for Metals,2005:70-77.
    [3]王瑞珍,罗海文,董瀚.汽车用高强度钢板的最新研究进展[J],中国冶金,2006,16(9):1-10.
    [4]康永林.汽车轻量化先进高强钢与节能减排[J],钢铁,2008,43(6):1-7.
    [5]Hansen S S.The formability of dual-phase steels[J],Journal of Applied Metalworking,1982,2(2):107-118.
    [6]Park K S,Park K T,Lee D L and Lee C S.Effect of heat treatment path on the cold formability of drawn dual-phase steels[J],Materials Science and Engineering A,2007,449-551:1135-1138.
    [7]Chatterjee S,Verma A K and Sharma V.Direct-cast dual-phase steel[J],Scripta Materialia,2008,58:191-194.
    [8]Li D G,Dong R F,Yan B,Zhang X Y,Liu Y C and Wang G D.Research on 540MPa grade hot rolled dual-phase strip steel in Baotou CSP plant[C],The 2006 National Symposium on Thin Slab Casting and Rolling,Guangzhou,China:The Chinese Society for Metals,2006:130-134.
    [9]张梅.高强度和超高强度相变塑性钢的开发和研究[D],上海:上海大学,2007.
    [10]黄晓艳,刘波.先进高强钢的显微组织与力学性能[J],云南冶金,2008,37(4):43-47.
    [11]马鸣图,吴宝榕.双相钢——物理和力学冶金(第二版)[M],北京:冶金工业出版社,2009,8-11.
    [12]康永林,邝霜,尹显东,于浩,刘仁东.汽车用双相钢板的开发与研究进展[J],汽车工艺与材料,2006(5):1-5.
    [13]Nishimoto A,Hosoya Y and Nakaoka K.A new type of dual-phase steel sheet for automobile outer body panels[J],Transactions ISIJ,1981,21:778-782.
    [14]Furukawa T,Morikawa H,Endo M,Takechi H,Koyama K,Akisue O and Yamada T.Process factors for cold-rolled dual-phase sheet steels[J],Transactions ISIJ,1981,21:812-819.
    [15]Furukawa T,Tanino M,Morikawa H and Endo M.Effects of composition and processing factors on the mechanical properties of as-hot-rolled dual-phase steels[J],Transactions ISIJ,1984,24:113-121.
    [16]Hashiguchi K,Nishida M,Kato T and Tanaka T.Effects of alloying elements and cooling rate after annealing on mechanical properties of dual-phase sheet steel[J],1980,(1):70.
    [17]Rocha R O,Melo T M F,Pereloma E V and Santos D B.Microstructural evolution at the initial stages of continuous annealing of cold rolled dual-phase steel[J],Materials Science and Engineering A,2005,397:296-304.
    [18]张久信,王明微,谭佃龙.640MPa级直接热轧双相钢SX65的研制[J],鞍钢技术,1994,(4):1-10.
    [19]于二钧,王明微.冷轧罩式炉退火双相钢的成型性能评价[J],鞍钢技术,1992,(3):37-42.
    [20]梅蓉俊,陈凌峰,梅冰.宝钢热轧汽车用钢生产现状及发展趋势[J],轧钢,2004,(4):27-29.
    [21]谭善锟,潘兴旺,李明,高升,陈云霞,张劲松.奇瑞轿车用钢板[J],汽车工艺与材料,2004,(6):59-74.
    [22]钟定忠,彭涛,李平和.直接热轧双相钢板RS55的研究与开发[J],武钢技术,1994,(1):41-47.
    [23]冷启明.S07Mn冷轧双相钢的成形性与适用性[J],汽车工艺与材料,1991,(3):20-23.
    [24]Son Y I,Lee Y K,Park K T,Lee C S and Shin D H.Ultrafine grained ferrite-martensite dual phase steels fabricated via equal channel angular pressing:microstructure and tensile properties[J],Acta Materialia,2005,53:3125-3134.
    [25]Kim S and Lee S.Effects of martensite morphology and volume fraction on quasi-static and dynamic deformation behavior of dual-phase steels[J],Metallurgical and Materials Transactions A,2000,31:1753-1760.
    [26]Rashid M S.Dual-phase steels[J],Annual Review of Materials Science,1981,(11):245-266.
    [27]Shi M F.双相钢和低合金高强度钢成型性能的对比[J],世界钢铁,2002,(4):18-22.
    [28]Anthony J.Multi-phase microstructures and their properties in high strength low carbon steels[J],ISIJ International,1995,35(8):946-954.
    [29]木下正行.拉伸凸缘性优良的高强度热轧钢板[J],武钢技术,1995,(10):44-50.
    [30]殷宇佳.日本汽车用高强度钢板新产品及其特点[J],汽车工艺与材料,2000,(11):20-22.
    [31]Shimizu T,Funakawa Y and Kaneko S.High strength steel sheets for automobile suspension and chassis use-high strength hot-rolled steel sheets with excellent press formability and durability for critical safety parts[J],JFE Technical Report,2004,(4):25-30.
    [32]Sudo M and Iwai T.Deforamtion behavior and mechanical properties of ferrite-bainite-martensite (Triphase) steel[J],Transactions ISIJ,1983,23:294-302.
    [33]Sudo M,Hashimoto S I and Kambe S.Niobium bearing ferrite-bainite high strength hot-rolled sheet steel with improved formability[J],Transactions ISIJ,1983,23:303-311.
    [34]Kumar A,Singh S B and Ray K K.Influence of bainite/mastensite-content on the tensile properties of low carbon dual-phase steels[J],Materials Science and Engineering A,2008,474:270-282.
    [35]康永林.现代汽车板的质量控制与成形性[M],北京:冶金工业出版社,1999,131-136.
    [36]刘东升,王国栋,刘相华,白玉光,宋亚平,谢英秀,吴其法.微合金低碳Mn-B钢连续冷却转变及控轧控冷的显微组织与力学性能[J],钢铁研究学报,1998,10(3):41-44.
    [37]Mukherjee S,Gope N,Bhagat A N and Bhattacharjee D.热轧延伸凸缘钢(SFHS-600):Tata钢铁公司的实践[C],中信微合金化技术中心编译,2005汽车用铌微合金化钢板国际研讨会论文集,北京:冶金工业出版社,2006:142-146.
    [38]俞德刚,谈育煦.钢的组织强度学-组织与强韧性[M],上海:上海科学技术出版社,1983,338-348.
    [39]Misra R D K,Nathani H,Hartmann J E and Siciliano F.Microstructural evolution in a new 770Mpa hot rolled Nb-Ti microalloyed steel[J],Materials Science and Engineering A,2005,394:339-352.
    [40]翁宇庆.超细晶钢——钢的组织细化理论与控制技术[M],北京:冶金工业出版社,2003,48-70.
    [41]Nagai K.Grain refinement through heavy deformation,Proceeding of the 4th Workshop on HIPERS-21[C],Pohang,Korea:2002,17-25.
    [42]Hodgson P D,Hickson M R and Gibbs R K.Ultrafine ferrite in low carbon steel[J],Scripta Materialia,1999,40(10):1179-1184.
    [43]Hong S C and Lee K S.Influence of deformation induced ferrite transformation on grain refinement of dual phase steel[J],Materials Science and Engineering A,2002,323:148-159.
    [44]Ding H,Li L,Yang C Z,Song D and Du L X.Microstructures of ultrafine grained SS400 steel in an industrial scale[J],Journal of Materials Science and Technology,2006,22(2):145-148.
    [45]Tsuchida N,Tomota Y and Nagai K.High-speed tensile deformation behavior for ultrafine-grained steels[C],The Fifth International Conference on HSLA Steels,Sanya,China:The Chinese Society for Metals,2005:270-273.
    [46]Han B Q and Yue S.Processing of ultrafine ferrite steels[J],Journal of Materials Processing Technology,2003,136:100-104.
    [47]余宗森,袁泽喜,李士琦.钢的成分、残留元素及其性能的定量关系[M],北京:冶金工业出版社,2001,180-186.
    [48]李见.材料科学基础[M],北京:冶金工业出版社,2000,175-176.
    [49]王占学.控制轧制与控制冷却[M],北京:冶金工业出版社,1991,55-75.
    [50]胡赓样,钱苗根.金属学[M],上海:上海科学技术出版社,1980,301-302.
    [51]林豊.金属薄板的变形特性及其应用技术[C],第二届先进钢铁材料发展国际研讨会-汽车用钢新进展,东北大学,沈阳:东北大学轧制技术连轧自动化国家重点实验室,2004:9-28.
    [52]Hyun D I,Oak S M,Kang S S and Moon Y H.Estimation of hole flangeability for high strength steel plates[J],Journal of Materials Processing Technology,2002,130-131:9-13.
    [53]Sugimoto K,Sakaguchi J,Iida T and Kashima T.Stretch-fangeability of a high-strength TRIP type bainite sheet steel[J],ISIJ International,2000,40(9):920-926.
    [54]Hasegawa K,Kawamura K,Urabe T and Hosoya Y.Effect of microstructure on stretch-flange formability of 980MPa grade cold-rolled ultra high strength steel sheets[J],ISIJ International,2004,44(3):603-609.
    [55]森田正彦.凸缘拉伸性好的析出硬化型热轧高强度钢的开发[J],武钢技术,1994,(6):42-46.
    [56]Hashimoto S.铌在汽车板中的应用[C],中信微合金化技术中心编译,2005汽车用铌微合金化钢板国际研讨会论文集,北京:冶金工业出版社,2006:414-424.
    [57]王卫卫.热轧FB钢组织和扩孔性能研究[D],沈阳:东北大学,2008.
    [58]余海.热轧多相钢的生产[J],轧钢,2005,(6):10-13.
    [59]蔡明晖,丁桦,张建苏,李龙,唐正友.铁素体/贝氏体双相钢的变形和断裂特性[J],材料研究学报,2009,23(1):83-88.
    [60]Kawaguchi H.不同的汽车用钢板[C],中信微合金化技术中心编译,2005汽车用铌微合金化钢板国际研讨会论文集,北京:冶金工业出版社,2006:36-40.
    [61]Takahashi M.Development of high strength steels for automobiles[J],Nippon Steel Technical Report,2003,88:3-7.
    [62]Kashima T,Hashimoto S and Mukai Y.780 N/mm~2 grade hot-rolled high-strength steel sheet for automotive suspension system[J].JSAE Review,2003,24(1):81-86.
    [63]Barbacki A.The role of bainite in shaping mechanical properties of steels[J],Journal of Materials Processing Technology,1995,53:57-63.
    [64]祖荣祥.热轧高强度钢的研究及在汽车车轮上的应用[J],汽车工艺与材料,1994,(12):23-26.
    [65]Takahashi M.High strength hot rolled steel sheets for automobiles[J],Nippon Steel Technical Report,2003,88:8-12.
    [66]Funakawa Y,Shiozaki T,Tomita K,Yamamoto T and Maeda E.Development of high strength hot rolled sheet steel consisting of ferrite and nanometer-sized carbides[J],ISIJ International,2004,44(11):1945-1951.
    [67]Jitsukawa M and Hosoya Y.NKK's state-of-the-art flat-rolled products developed in the last decade[J],NKK Technical Review,2003,88:46-57.
    [68]刘波,张朝生.国外汽车用高强度钢板的发展[J],鞍钢技术,1998,7:48-53.
    [69]Cho Y R,Chung J H,Ku H H and Kim I B.A study on the stretch-flangeability of hot-rolled high strength steel with ferrite-bainite duplex microstructures[J],Korean Journal of Materials Research,1999,9(12):1252-1262.
    [70]Cho Y R,Chung J H,Ku H H and Kim I B.Effect of controlled cooling on the formability of TS 590MPa grade hot-rolled high strength steels[J],Metals and Materials,International,1999,5(6):571-578.
    [71]刘东雨,徐鸿,方鸿生.我国低碳贝氏体钢的发展[J],热处理,2005,20(2):14.
    [72]柏建仁.中国含铌汽车钢板应用进展[C],中信微合金化技术中心编译,2005汽车用铌微合金化钢板国际研讨会论文集,北京:冶金工业出版社,2006:156-160.
    [73]Wang J P,Yang Z G,Bai B Z and Fang H S.Grain refinement and microstructural evolution of grain boundary allotriomorphic ferrite/granular bainite steel after prior austenite deformation[J],Materials Science and Engineering A,2004,369:112-118.
    [74]Xu P G,Bai B Z,Yin F X,Fang H S and Nagai K.Microstructure control and wear resistance of grain boundary allotriomorphic ferrite/granular bainite duplex steel[J],Materials Science and Engineering A,2004,385:65-73.
    [75]徐平光,方鸿生,白秉哲,杨志刚.仿晶界型铁素体/粒状贝氏体复相组织的韧性[J],金属学报,2002,38(3):255-260.
    [76]李龙,丁桦,杜林秀,宋红梅,郑芳.TMCP对低碳-锰钢组织和力学性能的影响[J],钢铁,2006,41(11):53-57.
    [77]Li L,Ding H,Du L X,Song H M and Zheng F.Effect of Mn content and TMCP on microstructures and mechanical properties of C-Mn steels[C],The Fifth International Conference on HSLA Steels,Sanya,China:The Chinese Society for Metals,2005:174-178.
    [78]周乐育.高强度含铌热轧双相钢组织性能柔性轧制控制研究[D],北京:北京科技大学,2008.
    [1]林慧国,傅代直.钢的奥氏体转变曲线[M],北京:机械工业出版社,1988,159.
    [2]Manohar P A and Chandra T.Continuous cooling transformation behavior of high strength microalloyed steels for linepipe applications[J],ISIJ International,1998,38(7):766-774.
    [3]Zhang Y T,Mo C L,Li D Z and Li Y Y.Modeling of phase transformation of plain carbon steels during continuous cooling[J],Journal of Materials Science and Technology,2003,19(3):262-264.
    [4]Zhao M C,Yang K,Xiao F R and Shan Y Y.Continuous cooling transformation of undeformed and deformed low carbon pipeline steels[J],Materials Science and Engineering A,2003,355:126-136.
    [5]Medina S F,Vega M I and Chapa M.Critical cooling temperature and phase transformation kinetics in structural steels determined by mean flow stress and dilatometry[J],Materials Science and Technology,2000,16(2):163-170.
    [6]徐京娟,邓志煜,张同俊.金属物理性能分析[M],上海:上海科学技术出版社,1988,108-112.
    [7]郑成悌,陈政.用活度计算扩散过程中的碳浓度[J],金属热处理学报,1991,12(2):43-48.
    [8]Zhu L J,Wu D and Zhao X M.Effect of silicon content on thermodynamics of austenite decomposition in C-Si-Mn TRIP steels[J].Journal of Iron and Steel Research International,2006,13(3):57-60.
    [9]Wu D,Li Z and Lv H S.Effect of controlled cooling after hot rolling on mechanical properties of hot rolled TRIP steel[J],Journal of Iron and Steel Research International,2008,15(2):65-70.
    [10]Oi K,Lux C and Purdy G R.A study of the influence of Mn and Ni on the kinetics of the proeutectoid ferrite reaction in steels[J],Acta Mater,2000,48(9):2147-2155.
    [11]Li L,Ding H,Du L X,Wen J L,Song H M and Zhang P J.Influence of Mn content and hot deformation on transformation behavior of C-Mn steels[J],Journal of Iron and Steel Research International,2008,15(2):51-55.
    [12]Liu S K and Zhang J.The influence of the Si and Mn concentration on the kinetics of the bainite transformation in Fe-C-Si-Mn alloys[J].Metallurgical Transactions A,1990,21(6):1517-1525.
    [13]Yamashita T,Torizuka S and Nagai K.Effect of manganese segregation on fine-grained ferrite structure in low-carbon steel slabs[J],ISIJ International,2003,43(11):1833-1841.
    [14]Lv Y P,Zhu R F,Li S T,Zhang F C and Wang S Q.C-Mn segregation and its effect on phase transformation in Fe-Mn-C alloys[J],Progress in Nature Science,1999,9(7):239-244.
    [15]朱瑞富,李士同,刘玉先,王世清.Fe-Mn-C合金中的C-Mn偏聚及其对相变和形变的影响[J],中国科学(E辑),1997,27(3):193-198.
    [16]朱瑞富,李士同,吕宇鹏,王晓燕,张福成,王世清.Fe-Mn-C合金中的C-Mn偏聚及其对相变的影响[J],自然科学进展,1999,9(6):558-563.
    [17]高宽.低碳贝氏体钢组织细化及力学性能的改善[D],西安:西北工业大学,2006.
    [18]Li Z,Wu D and Hu R.Effect of silicon and manganese on mechanical properties of low-carbon plain TRIP steels[J],Journal of Iron and Steel Research International,2005,12(3):51-55.
    [19]Song H W.Effects of silicon,manganese and hot-rolling parameters on mechanical properties of DP steels[C],The Fifth International Conference on HSLA Steels,Sanya,China:The Chinese Society for Metals,2005:184-188.
    [20]Jacques P,Girault E,Catlin T,Geerlofs N,Kop T,Zwaag S and Delannay F.Baintie transformation of low carbon Mn-Si TRIP-assisted multiphase steels:influence of silicon content on cementite precipitation and austenite retention[J],Materials Science and Engineering A,1999,273-275:475-479.
    [21]Tsukatani I,Hashimoto S and Inoue T.Effects of silicon and manganese addition on mechanical properties of high-strength hot-rolled sheet steel containing retained austenite[J],ISIJ International,1991,31(9):992-1000.
    [22]Ollilainen V,Kasprzak W and Holappa L.The effect of silicon,vanadium and nitrogen on the microstructure and hardness of air cooled medium carbon low alloy steels[J],Journal of Materials Processing Technology,2003,134:405-412.
    [23]Wang J,Wolk P J and Zwaag S.On the influence of alloying elements on the bainite reaction in low alloy steels during continuous cooling[J],Journal of Materials Science,2000,35:4393-4404.
    [24]刘世楷,杨柳,张筠,朱德贵.Si和Mn对钢中贝氏体形态和转变动力学的影响[J],金属学报,1992,28(12):513-520.
    [25]桂洲,谭谆礼,白秉哲.Si对低碳贝氏体钢组织与性能的影响[J],金属学热处理,2006,31(5):4-6.
    [26]张明星,康沫狂.Si对低碳贝氏体钢组织与性能的影响[J],金属学报,1993,29(1):6-10.
    [27]Byun J S,Shim J H and Cho Y W.Influence of Mn on microstructural evolution in Ti-killed C-Mn steel[J],Scripta Materialia,2003,48:449-454.
    [28]Song R J,Ponge D and Raabe D.Influence of Mn content on the microstructure and mechanical properties of ultrafine grained C-Mn steels[J],ISIJ International,2005,45(11):1721-1726.
    [29]张永权,刘天军,杨才福,刘宪民.硅锰含量对10CrSiNiCu钢低温韧性的影响[J],特殊钢,1997,(6):24-27.
    [30]任学平,唐荻,张海冰,崔光春.变形功和冷却速度对金属组织细化的影响[J],金属学报,2002,38(3):295-298.
    [31]Ghosh A,Das S,Chatterjee S and Ramachandra P.Effect of cooling rate on structure and properties of an ultra-low carbon HSLA-100 grade steel[J],Materials Characterization,2006,56:59-65.
    [32]Shanmugam S,Ramisetti N K,Misra R D K,Mannering T,Panda D and Jansto S.Effect of cooling rate on the microstructure and mechanical properties of Nb-microalloyed steels[J],Materials Science and Engineering A,2007,460-461:335-343.
    [33]王佳夫,林清华,漆世泽,杜林秀,刘相华,王国栋.冷却速度对高强度低合金钢组织和性能的影响[J],钢铁,2004,16(5):51-55.
    [34]Manohar P A,Chandra T and Killmore C R.Continuous cooling transformation behavior of microalloyed steel containing Ti,Nb,Mn and Mo[J],ISIJ International,1996,36(12):1486-1493.
    [35]金波.Nb微合金钢形变连续冷却过程中的相变研究[D],西安:西安建筑科技大学,2007.
    [36]郭营利.低碳微合金钢动态再结晶行为及TMCP工艺研究[D],沈阳:东北大学,2008.
    [37]Hanlon D N,Sietsma J and Zwaag S.The effect of plastic deformation of austenite on the kinetics of subsequent ferrite formation[J],ISIJ International,2001,41(9):1028-1036.
    [38]兰勇军,黄成江,李殿中,李依依.热变形条件下C-Mn钢奥氏体→铁素体相变模拟[J],金属学报,2003,39(3):242-248.
    [39]张斌,张鸿冰.形变条件对热变形过冷奥氏体相变的影响[J],上海交通大学学报,2003,37(10):1522-1525.
    [40]Tagashira K,Sumita N,Hayakawa H and Kikuchi K.The effects of Si on the formation of Mn-C dipoles in Fe-Si-Mn-C alloys[J],Journal of the Japan Institute of Metals,1987,51(3):167-173.
    [41]李树尘,刘世楷.Fe-C-Si-Mn晶界偏聚研究与热力学分析[J],金属学报,1991,27(3):161-165.
    [42]杨柳,刘世楷,杨萍.Fe-C-Si-Mn系合金贝氏体相变动力学计算[J],金属学报,1993,29(1):1-5.
    [43]Zhu L J,Wu D and Zhao X M.Effect of silicon addition on recrystallization and phase transformation behavior of high-strength hot-rolled TRIP steel[J],Acta Metallurgica Sinica(English Letters),2008,21(3):163-168.
    [44]方鸿生,白秉哲,邓海金,赵如发,郑燕康,侯淑琴.粒状贝氏体组织形态、精细结构及相变[J],金属热处理学报,1982,3(2):76-90.
    [45]Aaronson H I and Laughlin D E.Solid-solid phase transformations[M].New York:Metallurgical Society of AIME,1982.
    [46]Khlestov V M,Konopleva E V and Mcqueen H J.Kinetics of austenite transformation during thermomechanical processes[J],Canadian Metallurgical Quarterly,1998,37(2):75-89.
    [47]杜林秀.低碳钢变形过程及冷却过程的组织演变与控制[D],沈阳:东北大学,2003.
    [48]Fujiwara K,Okaguchi S and Ohtani H.Effect of hot deformation on bainite structure in low carbon steels[J],ISIJ International,1995,35(8):1006-1012.
    [1]Aaronson H I,Domain H A and Pound G M.Thermodynamics of the austenite→proeutectoid ferrite transformation Ⅱ,Fe-C-X alloys[J],Transactions Metallurgical Society of AIME,1966,236(5):769-781.
    [2]Hillert M and Staffanson L I.Regular-solution model for stoichiometric phases[J],Acta Chem Scand,1970,24(10):3618-3626.
    [3]Tanaka T,Aaronson H I and Enomoto M.Calculations of α/γ phase boundaries in Fe-C-X_1-X_2 systems from the central atom model[J],Metallurgical and Materials Transactions A,1995,26:535-545.
    [4]Hashiguchi K,Kirkaldy J S,Fukuzumi P and Pavaskar V.Prediction of the equilibrium,paraequilibrium and no-partition local equilibrium phase diagrams for muti-component Fe-C based alloys[J],Calphad,1984,8(2):173-186.
    [5]刘振宇,王国栋,张强.热变形对合金钢Ae_3影响的热力学计算[J],金属学报,1994,30(6):277-282.
    [6]张斌,张鸿冰,阮雪榆.热变形奥氏体先共析铁素体的热力学计算[J],上海交通大学学报,2003,37(10):1517-1521.
    [7]朱丽娟,吴迪,赵宪明.Fe-C-X系合金奥氏体分解热力学计算[J],东北大学学报(自然科学版),2004,25(11):1065-1068.
    [8]Umemoto M,Hiramatsu A,Moriya A,Watanabe T,Nanba S,Nakajima N,Anan G and Higo Y.Computer modelling of phase transformation from work-hardened austenite[J],ISIJ International,1992,32(3):306-315.
    [9]David N H,Sietsma J and Zwaag S.The effect of plastic deformation of austenite on the kinetics of subsequent ferrite formation[J],ISIJ International,2001,41(9):1028-1036.
    [10]刘振宇,许云波,王国栋.热轧钢材组织-性能演变的模拟和预测[M],沈阳:东北大学出版社,2004,152-154.
    [11]徐祖耀,牟翊文.Fe-C合金贝氏体相变热力学(KRC模型)[J],金属学报,1985,21(2):107-118.
    [12]Kaufman L,Radcliffe S V and Cohen M.Decomposition of austenite by diffusional process[M],Pennsylvania:TMS-AIME,1962.
    [13]Aaronson H I,Domain H A and Pound G M.Thermodynamics of the austenite→proeutectoid ferrite transformation Ⅰ,Fe-C alloys[J],Transactions Metallurgical Society of AIME,1966,236(5):753-767.
    [14]徐祖耀,牟翊文.Fe-C合金贝氏体相变热力学(LFG模型)[J],金属学报,1987,23(1):33-41.
    [15]Hsu T Y and Mou Y W.Thermodynamics of the bainite transformation in Fe-C alloys[J],Acta Metallurgica,1984,32(9):1469-1481.
    [16]Zener C.Impact of magnetism upon metallurgy[J],Transactions AIME,1955,203(5):619-630.
    [17]彭宁琦,唐广波,刘正东,吴秀月.Fe-∑X_i-C合金系超组元模型Zener两参数的修正[J],金属学报,2009,45(3):331-337.
    [18]牟翊文,徐祖耀.Fe-C合金中C-C交互作用能[J],金属学报,1987,23(4):329-338.
    [19]Cadevila C,Garcia C and Caballero F G.Incubation time of isothermally transformed allotriomorphic ferrite in medium carbon steels[J],Scripta Materialia,2001,32(9):129-134.
    [20]Lange W F,Enomoto M and Aaronson H I.The kinetics of ferrite nucleation at austenite grain boundaries in Fe-C alloys[J],Metallurgical Transactions A,1988,19(3):427-440.
    [21]Bhadeshia H K D H,David S A and Vitek J W.Stress induced transformation to bainite in Fe-Cr-Mo-C pressure vessel steel[J],Materials Science and Technology,1991,7(8):686-698.
    [22]Gomez M,Medina S F and Caruana G.Modelling of phase transformation kinetics by correction of dilatometry results for a ferrite Nb-microalloyed steel[J],ISIJ International,2003,43(8):1228-1237.
    [23]张斌,张鸿冰.形变奥氏体→铁素体转变的动力学研究[J],上海交通大学学报,2003,37(12):1831-1834.
    [24]西泽泰二著,郝士明译.微观组织热力学[M],北京:化学工业出版社,2006.
    [25]李见.材料科学基础[M],北京:冶金工业出版社,2000.
    [26]Zhu L J,Wu D and Zhao X M.Effect of silicon content on thermodynamics of austenite decomposition in C-Si-Mn TRIP steels[J],Journal of Iron and Steel Research International,2006,13(3):57-60.
    [27]徐祖耀,刘世楷.贝氏体相变和贝氏体[M],北京:科学出版社,1991.
    [1]马鸣图,吴宝榕.双相钢——物理和力学冶金(第二版)[M],北京:冶金工业出版社,2009,8-11.
    [2]木下正行.拉伸凸缘性优良的高强度热轧钢板[J],武钢技术,1995,(10):44-50.
    [3]康永林,邝霜,尹显东,于浩,刘仁东.汽车用双相钢板的开发与研究进展[J],汽车工艺与材料,2006,(5):1-5.
    [4]Hansen S S.The formability of dual-phase steels[J],Journal of Applied Metalworking,1982,2(2):107-118.
    [5]Park K S,Park K T,Lee D L and Lee C S.Effect of heat treatment path on the cold formability of drawn dual-phase steels[J],Materials Science and Engineering A,2007,449-551:1135-1138.
    [6]Kumar A,Singh S B and Ray K K.Influence of balnite/mastensite-content on the tensile properties of low carbon dual-phase steels[J],Materials Science and Engineering A,2008,474:270-282.
    [7]Takahashi M.Development of high strength steels for automobiles[J],Nippon Steel Technical Report,2003,88:3-7.
    [8]梅蓉俊,陈凌峰,梅冰.宝钢热轧汽车用钢生产现状及发展趋势[J],轧钢,2004,21(4):27-29.
    [9]Quidort D and Brechet Y.The role of carbon on the kinetics of bainite transformation in steels[J],Scripta Materialia,2002,47(3):151-156.
    [10]Bai D Q,Yue S,Maccagno T M and Jonas J J.Effect of deformation and cooling rate on the microstructures of low carbon Nb-B steels[J],ISIJ International,1998,38(4):371-379.
    [11]刘宗昌,任慧平.过冷奥氏体扩散型相变[M],北京:科学出版社,2007,187-191.
    [12]许云波,于永梅,吴迪,王国栋.低温变形Nb微合金钢铁素体相变的数学模型[J],材料研究学报,2006,20(2):131-135.
    [13]Rashid M S.Dual-phase steels[J],Annual Review of Materials Science,1981,(11):245-266.
    [14]Barbacki A.The role of bainite in shaping mechanical properties of steels[J],Journal of Materials Processing Technology,1995,53:57-63.
    [15]Rodrigues P C M,Pereloma E V and Santos D B.Mechanical properities of an HSLA bainitic steel subjected to controlled rolling with accelerated cooling[J],Materials Science and Engineering A,2000,283:136-143.
    [16]尚成嘉,杨善武,王学敏,贺信莱.新颖的贝氏体/铁素体双相低碳微合金钢[J],北京科技大学学报,2003,25(3):288-290.
    [17]Davies R G.Influence of silicon and phosphorous on the mechanical properties of both ferrite and dual-phase steels[J],Metallurgical Transactions A,1979,10:113-118.
    [18]Takahashi M.Development of high strength steels for automobiles[J],Nippon Steel Technical Report,2003,88:3-7.
    [19]Takahashi M.High strength hot rolled steel sheets for automobiles[J],Nippon Steel Technical Report,2003,88:8-12.
    [20]Abramowitz P and Moll R A.Silicon-carbon interaction and its effect on the notch toughness of mild steel[J],Metallurgical Transactions A,1970,1:1773-1775.
    [21]Sibley K D and Breyer N N.The effect of silicon on the impact and tensile properties of low-carbon steels[J],Metallurgical Transactions A,1976,7:1602-1604.
    [22]Mintz B.Role of silicon in influencing strength and impact behavior of ferrite and its likely influence at ultrafine grain size[J],Materials Science and Technology,2000,16:1282-1285.
    [23]Hiroshi T.Recent progress in high strength steels for automobile in Japan[C],The Fifth International Conference on HSLA Steels,Sanya,China:The Chinese Society for Metals,2005:58-63.
    [24]王勇围,白秉哲,方鸿生.终轧温度对低碳Mn系贝氏体钢性能的影响[J],钢铁,2009,44(1):72-75.
    [25]钱志平.材料的变形与断裂[M],上海:同济大学出版社,1989,270.
    [1]木下正行.拉伸凸缘性优良的高强度热轧钢板[J],武钢技术,1995,(10):44-50.
    [2]森田正彦.凸缘拉伸性好的析出硬化型热轧高强度钢的开发[J],武钢技术,1994,(6):42-46.
    [3]Kawaguchi H.不同的汽车用钢板[C],中信微合金化技术中心编译,2005汽车用铌微合金化钢板国际研讨会论文集,北京:冶金工业出版社,2006:36-40.
    [4]Takahashi M.Development of high strength steels for automobiles[J],Nippon Steel Technical Report,2003,88:3-7.
    [5]Kashima T,Hashimoto S and Mukai Y.780N/mm~2 grade hot-rolled high-strength steel sheet for automotive suspension system[J].JSAE Review,2003,24(1):81-86.
    [6]殷宇佳.日本汽车用高强度钢板新产品及其特点[J],汽车工艺与材料,2000,(11):20-22.
    [7]Shimizu T,Funakawa Y and Kaneko S.High strength steel sheets for automobile suspension and chassid use-high strength hot-rolled steel sheets with excellent press formability and durability for critical safety parts[J],JFE Technical Report,2004,(4):25-30.
    [8]康永林.现代汽车板的质量控制与成形性[M],北京:冶金工业出版社,1999,226-243.
    [9]杨玉英.大型薄板成形技术[M],北京:国防工业出版社,1999,24-35.
    [10]Hyun D I,Oak S M,Kang S S and Moon Y H.Estimation of hole flangeability for high strength steel plates[J],Journal of Materials Processing Technology,2002,130-131:9-13.
    [11]Sugimoto K,Sakaguchi J,Iida T and Kashima T.Stretch-fangeability of a high-strength TRIP type bainite sheet steel[J],ISIJ International,2000,40(9):920-926.
    [12]亨利,豪斯特曼著,曾祥华,田继丰,柯伟,袁金才译.宏观断口学及显微断口学[M],北京:机械工业出版社,1990,7-11.
    [13]章熙康,陈源,王其闵.静载下裂纹扩展的规律和微观机制[C],断裂物理与断裂力学学术讨论会,武昌:断裂物理与断裂力学学术讨论会文集编委会,1978:242-262.
    [14]Hasegawa K,Kawamura K,Urabe T and Hosoya Y.Effect of microstructure on stretch-flange formability of 980MPa grade cold-rolled ultra high strength steel sheets[J],ISIJ International,2004,44(3):603-609.
    [15]俞德刚,谈俞煦.钢的组织强度学——组织与强韧性[M],上海:上海科学技术出版社,1983,357.
    [16]Xu P G,Bai B Z,Fang H S,Wang Z J,Wang J P and Pan Y K.Development of grain boundary allotriomorphic ferrite/granular bainite duplex steel[J],Journal of University of Science and Technology Beijing,2003,10(2):39-44.
    [17]Wang J P,Yang Z G,Bai B Z and Fang H S.Grain refinement and microstructural evolution of grain boundary allotriomorphic ferrite/granular bainite steel after prior austenite deformation[J],Materials Science and Engineering A,2004,369:112-118.
    [18]徐平光,方鸿生,白秉哲,杨志刚.仿晶界型铁素体/粒状贝氏体复相组织的韧性[J],金属学报,2002,38(3):255-260.
    [19]方鸿声,徐平光,白秉哲.一种新的复相组织-仿晶界型铁素体/粒状贝氏体[J],金属热处理,2000,(11):1-5.
    [20]张明星,康沫狂.Si对低碳贝氏体钢组织和性能的影响[J],金属学报,1993,29(1):6-10.
    [21]Sibley K D and Breyer N N.The effect of silicon on the impact and tensile properties of low-carbon steels[J],Metallurgical Transactions A,1976,7:1602-1604.
    [22]Mintz B.Role of silicon in influencing strength and impact behavior of ferrite and its likely influence at ultrafine grain size[J],Materials Science and Technology,2000,16:1282-1285.
    [23]Tsukatani I,Hashimoto S and Inoue T.Effects of silicon and manganese addition on mechanical properties of high-strength hot-rolled sheet steel containing retained austenite[J],ISIJ International,1991,31(9):992-1000.
    [24]Li Z,Wu D and Hu R.Effect of silicon and manganese on mechanical properties of low-carbon plain TRIP steel[J],Journal of Iron and Steel Research International,2005,12(3):51-55.
    [25]Girault E,Mertens A,Jacques P,Houbaert Y,Verlinden B and Humbeeck J V.Comparison of the effect of silicon and aluminum on the tensile behavior of multiphase TRIP-assisted steels[J],Scripta Materialia,2001,44(6):885-892.
    [26]Zhu L J,Wu D and Zhao X M.Effect of silicon addition on recrystallization and phase transformation behavior of high-strength hot-rolled TRIP steel[J],Acta Metallurgica Sinica(English Letters),2008,21(3):163-168.
    [27]Song H M.Effect of silicon,manganese and hot-rolling parameters on mechanical properties of DP steels[J],Iron and Steel(Supplement),2005,40(11):184-188.
    [28]殷宇佳.日本汽车用高强度钢板的新产品及其特点[J],汽车工艺与材料,2000,(11):20-22.
    [29]Pickering F.B.Physical metallurgy and the design of steels[M],London:Applied Science Publishers Ltd.,1978.
    [30]Fang X,Fan Z and Ralph B.The relationships between tensile properties and hole expansion property of C-Mn steels[J],Journal of Materials Science,2003,38:3877-3882.
    [31]马鸣图,吴宝榕.双相钢——物理和力学冶金(第二版)[M],北京:冶金工业出版社,2009,137-139.
    [32]徐永波,刘民治,朱桂秋,于章.金属材料形变与断裂过程的动态观察——珠光体组织的形变与断裂[J],金属学报,1980,16(12):485-488.
    [33]马鸣图,汪德根,吴宝榕.Mn-V双相钢变形特性的研究[J],钢铁,1982,17(10):49-57.
    [34]李秀华,吕伟,张凌云.对扩孔试验用凹模圆角半径的探讨[J],辽宁工程技术大学学报,2007,26(1):123-124.
    [1]马鸣图,吴宝榕.双相钢——物理和力学冶金(第二版)[M],北京:冶金工业出版社,2009,93-231.
    [2]Barbacki A.The role of bainite in shaping mechanical properties of steels[J],Journal of Materials Processing Technology,1995,53:57-63.
    [3]Xu P G,Fang H S,Bai B Z,Wang Z J,Yang Z G and Huang J F.New duplex microstructure of grain boundary allotriomorphic ferrite/granular bainite[J],Journal of Iron and Steel Research,International,2002,9(2):33-38.
    [4]Xu P G,Bai B Z,Fang H S,Wang Z J,Wang J P and Pan Y K.Development of grain boundary allotriomorphic ferrite/granular bainite duplex steel[J],Journal of University of Science and Technology Beijing,2003,10(2):39-44.
    [5]李龙,丁桦,杜林秀,宋红梅,郑芳.仿晶界型铁素体/贝氏体低碳锰钢的组织和力学性能[J],金属学报,2006,42(11):1227-1232.
    [6]李龙,丁桦,温景林,送红梅,张丕军.铁素体和贝氏体复相组织低碳钢的力学特性[J],材料研究学报,2007,21(5):517-522.
    [7]Reed R E,Cribb W R and Monteiro S N.Concerning the analysis of tensile stress-strain data using log(dσ/dε) versus logσ diagrams[J],Metallurgical Transactions,1973,4(11):2265-2267.
    [8]Monteiro S N and Reed R E.An empirical analysis of titanium stress-strain curves[J],Metallurgical Transactions,1973,4(4):1011-1015.
    [9]Kleemola H J and Nieminen M A.On the strain hardening parameters of metals[J],Metallurgical Transactions,1974,5(8):1863-1866.
    [10]Wan C M,Yie S N,Jahn M T and Kuo S M.Studies on the stress-strain relations of dual-phase steels[J],Journal of Materials Science,1981,16:2682-2688.
    [11]Tomita Y and Okabayashi K.Tensile stress-strain analysis of cold worked metals and dual-phase steels[J]Metallurgical Transactions A,1985,16(5):865-872.
    [12]Jha B K,Avtar R,Sagar V and Ramaswamy V.Applicability of modified Crussard-Jaoul analysis on the deformation behavior of dual-phase steels[J],Journal of Materials Science Letters,1987,(6):891-893.
    [13]马鸣图.金属合金中的Bauschinger效应[J],机械工程学报,1986,(2):15-21.
    [14]Tan Z and Magnusson C.The bauschinger effect of in compression-tension of sheet metals[J], Materials Science and Engineering A,1994,183:31-38.
    [15]Ramos L F,Matlock D K and Krauss G.On the deformation behavior of dual-phase steels[J],Metallurgical Transactions A,1979,10(2):259-261.
    [16]Davies R G.The mechanical properties of zero-carbon ferrite-plus-martensite structures[J],Metallurgical Transactions A,1978,9(3):451-455.
    [17]Bailey D J and Stevenson R.High strength low carbon sheet steel by thermomechanical treatment:strengthening mechanisms[J],Metallurgical Transactions A,1979,10(1):47-55.
    [18]Saha P A,Bhattacharjee D and Ray R K.Effect of martensite on the mechanical behavior of ferrite-bainite dual phase steels[J],2007,ISIJ International,47(7):1058-1064.
    [19]Kumar A,Brat singh S and Ray K K.Short fatigue crack growth behavior in ferrite-bainite dual-phase steels[J],ISIJ International,2008,48(9):1285-1292.
    [20]Hanson S S and Pradhan R R.Structure/property relationship and continuous yielding[C],Fundamentals of dual phase steels,New York:TMS/AIME,1981:113-144.
    [21]Koo J Y and Thomas G.Design of duplex Fe/X/0.1C steels for improved mechanical properties[J],Metallurgical Transactions A,1977,8(3):525-528.
    [22]Davies R G.Influence of silicon and phosphorous on the mechanical properties of both ferrite and dual-phase steels[J],Metallurgical Transactions A,1979,10:113-118.
    [23]杨玉英.大型薄板成形技术[M],北京:国防工业出版社,1996,43-53.
    [24]付瑞东,邱亮,王存宇,郑炀曾.氮强化高锰奥氏体低温钢的拉伸应变硬化行为[J],材料研究学报,2005,19(2):193-199.
    [25]李龙,丁桦,杜林秀,宋红梅,张丕军.低碳铁素体贝氏体复相钢的拉伸应力-应变曲线分析[J],材料热处理学报,2007,28(5):46-50.
    [26]马鸣图,汪德根,吴宝榕.Mn-V双相钢变形特性的研究[J],钢铁,1982,17(10):49-57.
    [27]孙忠明译.双相钢和低合金高强度钢成形性能的对比[J],世界钢铁,2002,(4):18-22.
    [28]Erdogan M.The effect of new ferrite content on the tensile fracture behavior of dual phase steels[J],Journal of Materials Science,2002,37:3623-3630.
    [29]Hasegawa K,Kawamura K,Urabe T and Hosoya Y.Effect of microstructure on stretch-flange formability of 980Mpa grade cold-rolled ultra high strength steel sheets[J],ISIJ International,2004,44(3):603-609.
    [30]Son Y I,Lee Y K,Park K T,Lee C S and Shin D H.Ultrafine grained ferrite-martensite dual phase steels fabricated via equal channel angular pressing:Microstructure and tensile properties[J],Acta Materialia,2005,53:3125-3134.
    [31]Jiang Z H,Guan Z Z and Lian J S.Effects of microstructure variables on the deformation behavior of dual-phase steel[J],Materials Science and Engineering A,1995,190:55-64.
    [32]Ma M T,Sun B Z and Tomota Y.Bauschinger effect and back stress in a dual phase steel[J],ISIJ International,1989,29(1):74-77.
    [33]Han K,Van C J and Levy B S.Effect of strain and strain rate on the Bauschinger effect response of three different steels[J],Metallurgical and Materials Transactions A,2005,36(9):2379-2384.
    [34]Li Z H and Gu H C.Bauschinger effect and residual phase stresses in two ductile-phase steels:Part Ⅰ.The influence of phase stresses on the Bauschinger effect[J],Metallurgical Transactions A,1990,21(3):717-724.
    [35]Li Z H and Gu H C.Bauschinger effect and residual phase stresses in two ductile-phase steels:Part Ⅱ.The effect of microstructure and mechanical properties of the constituent phases on Bauschinger effect and residual phase stresses[J],Metallurgical Transactions A,1990,21(3):725-732.
    [36]Jia P R,Li N and Zhu W D.Study of Bauschinger effect in X80 steel and bending strength[J],Key Engineering Materials,2004,274-276:1071-1076.
    [37]Pyshmintsev I Y,Pumpyanskyi D A,Marchenko L G and Stolyarov V I.Strength and Bauschinger effect in TMCP line pipe steels[J],Iron and Steel,2005,40(Supplement):379-383.
    [38]Ibrahim N and Embury J D.The Bauschinger effect in single phase b.c.c materials[J],Materials Science and Engineering,1975,19(1):147-149.
    [39]Chen Z H,Maekawa S and Takeda T.Bauschinger effect and multiaxial yield behavior of stress-reversed mild steel[J],Metallurgical and Materials Transactions A,1999,30(12):3069-3078.
    [40]龙明建,于浩,尹雨群,牛涛,杨旭宁,康永林.X70针状铁素体管线钢包辛格效应研究[J],材料工程,2007,(10):31-34.
    [41]Ni H and Wang Z R.Effect of prestrain and mean stress on cyclic plastic deformation response of iron-based alloys[J],Materials Science and Engineering A,2001,314:12-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700