用户名: 密码: 验证码:
低碳结构钢热塑性成形过程的组织细化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业和科学技术的发展,各行业钢制构件正朝着巨型化、高性能方向发展。而晶粒细化是唯一能同时提高钢铁材料强度和韧性的强化机制。因此,超细晶粒钢研究已成为国际上高性能结构材料研究领域中备受关注的热点之一。本文结合国家自然科学基金课题“结构钢热塑性成形过程中组织细化机理”,采用实验研究和理论分析相结合的方法,对SPHC钢在热塑性成形过程中的奥氏体再结晶行为及应变诱导铁素体相变过程进行了系统研究。分析了热变形工艺参数在组织细化中的作用,并提出了低碳结构钢热塑性成形过程中晶粒细化的数学模型,探讨了组织细化的机理,为新一代超细晶钢生产提供理论指导。论文的主要研究结果如下:
     采用单道次热压缩实验,对SPHC钢在热塑性成形过程中的动态再结晶规律进行了研究。显微组织分析表明:降低变形温度和增加应变速率,可以导致动态再结晶晶粒尺寸的减小。通过分析动态再结晶的应力-应变曲线,采用三次多项式拟合θ-σ和ln(θ)-σ曲线计算得到了发生动态再结晶的临界条件的数学模型。计算得到了动态再结晶激活能为299.4 kJ/mol。建立了SPHC钢动态再结晶的动力学模型和晶粒尺寸模型。
     采用双道次热压缩实验,对SPHC钢高温变形后的静态再结晶及亚动态再结晶规律进行了研究。研究表明:高的变形温度、大应变量、高应变速率及细小的初始奥氏体晶粒都有利于静态再结晶的发生,静态再结晶后的晶粒尺寸随着应变量的增大和初始晶粒尺寸的减小而减小。亚动态再结晶主要受应变速率和变形温度的影响,随着应变速率的增大,亚动态再结晶过程加快,亚动态再结晶的晶粒尺寸减小;随着变形温度的降低,亚动态再结晶进行变得困难,而亚动态再结晶晶粒尺寸减小。计算得到了SPHC钢的静态再结晶激活能和亚动态再结晶激活能分别为284.1kJ/mol、195.6 kJ/mol,建立了各自的再结晶动力学模型和晶粒尺寸模型。
     在Gleeble 1500型热模拟机上通过不同的实验工艺,研究了热变形工艺参数对应变诱导铁素体相变的影响规律。结果表明:随着应变量的增大和变形温度的降低,应变诱导相变产生的铁素体数量增多、晶粒尺寸细化;随着应变速率的增大,铁素体数量和晶粒尺寸都减小;铁素体晶粒的数量随初始奥氏体晶粒尺寸的减小而增加。应变诱导铁素体相变机制为扩散相变机制。
     在引入一套计算奥氏体变形储存能的方法基础上,以超组元模型为热力学基础,利用修正的KRC模型,开发了多组元结构钢的应变诱导铁素体相变热力学计算模型,并分析了变形储存能对应变诱导铁素体相变热力学的影响。计算表明:奥氏体的变形储存能随着变形温度的降低和应变速率的升高而增加;应变诱导铁素体相变的驱动力随着变形储存能的增加而升高,其影响效果与温度范围有关,越靠近A_(e3)温度,影响效果就越明显;应变诱导铁素体相变平衡温度A_(e3)随着变形储存能的增加,即温度的降低或应变速率的提高而升高。
     本文首次通过分析应变诱导铁素体相变的应力-应变曲线,采用三次多项式拟合θ-σ和ln (θ)-σ曲线计算得到了发生应变诱导铁素体相变的临界条件的数学模型。
     通过实验分析,本文认为应变诱导铁素体相变过程是一个不断形核的过程。因此,本文首次提出了计算应变诱导铁素体相变时间的模型,在Cahan晶界形核的等温相变动力学理论基础上,以单一的“形核长大”机制提出了应变诱导铁素体相变的动力学模型。利用该模型对一些实验结果的模拟计算证明,本模型所预测热变形工艺参数对应变诱导相变形成的铁素体体积分数、铁素体平均晶粒尺寸的影响与实际情况相符,充分证明了本文模型的可用性。
With the development of modern industry and scientific technology, steel structural parts have been evolved towards the trend of giant and high performance. Grain refining strengthening has been proved to be the optimum way that can improve both the strength and the toughness. Therefore, the study of ultra-fine steel is becoming one of the most heated topics in the field of structural materials. The works of this dissertation are carried out integrating with the National Natural Science Foundation of China-Microstructure refinement mechanism for hot forming process of structural steel. The austenite recrystallizaiton behavior and strain induced ferrite transformation (SIFT) during hot forming for low carbon structural steel SPHC are investigated. The effects of hot working processing parameters on microstructure refinement are investigated also, and the integrated mathematical models for prediction of microstructure refinement are developed. The research results are summarized as the following:
     The dynamic recrystallization (DRX) behaviors of SPHC steel during hot deformation are investigated using single pass compression test. The metallographic analysis shows that grain size of DRX decreases with increasing strain rate or decreasing deformation temperature. The critical condition models for the initiation of DRX are built by analyzing stress-strain curves of DRX, and fittingθ-σcurves and ln (θ)-σcurves with cubic polynomial. The calculated activation energy of DRX is 299.4 kJ/mol, and the dynamic recrystallization kinetics and grain size models are established.
     The static recrystallization (SRX) and metadynamic recrystallizaiton (MDRX) behaviors of SPHC steel are investigated using double pass compression test. The results show that the volume fractions of SRX rapidly increase with the increase of the deformation temperature, strain, and strain rate. Also, the volume fractions increase with the decrease of initial austenite grain sizes. The grain size after SRX is affected mainly by strain and initial austenite grain size. The grain size of SRX decreases with increasing strain or decreasing initial austenite grain size. The metadynamic recrystallizaiton is affected mainly by strain rate and deformation temperature. With increasing strain rate, the MDRX progress accelerates and the grain size of MDRX decrease. As the deformation temperature decreases, the MDRX progress becomes difficult, but the grain size of MDRX decreases. The calculated activation energies of SRX and MDRX are 284.1kJ/mol and 195.6 kJ/mol respectively. Their kinetics and grain size models are built, respectively.
     The effects of hot working processing parameters on strain induced ferrite (SIF) transformation behavior are investigated on Gleeble 1500 hot simulator. The results show that SIF amount increases and SIF grain size decreases with increasing strain or decreasing deformation temperature. SIF amount and SIF grain size decreases with increasing strain rate. SIF amount increases with decreasing the initial austenite grain size. The mechanism of SIFT is mainly a diffusional transformation.
     A method for calculating deformation stored energy of austenite is proposed. On the thermodynamic basis of superelement mode and modified KRC mode, the thermodynamics parameters of multicomponent steels for SIFT are calculated, and the effects of deformation stored energy on the thermodynamics parameters are analyzed. The results of the calculations show that the value of deformation stored energy increases with lowering the deformation temperature or increasing strain rate. Deformation stored energy enhance the driving force of SIFT, which is relevant to deformation temperature, and the nearer the equilibrium temperature of austenite to ferrite transformation Ae3, the more obvious impact effect. The equilibrium temperature of austenite to ferrite transformation Ae3 rises with increasing deformation stored energy.
     The critical condition models for the initiation of SIFT are established by analyzing stress-strain curves of SIFT and fittingθ-σcurves and ln(θ)-σcurves with cubic polynomial.
     By the experimental analysis, nucleation is consider to be a dominant course during SIFT. Therefore, the model of SIFT is suggested on the view that SIFT is a single course of nucleation and growth. A method for calculating SIFT time is proposed, and SIFT kinetics model is suggested based on Cahn’s isothermal transformation kinetics theory of grain boundary nucleation and growth mechanism. The simulations of some experiments prove that calculated results agree with the measured results in the effect of hot working processing parameters on transformed fraction and ferrite grain size. So the SIFT model of present paper is valuable for analyzing the process of SIFT.
引文
[1]张树松,仝爱莲.钢的强韧化机理与技术途径.北京:冶金工业出版社. 1995.
    [2]翁宇庆.超细晶钢理论及技术进展.钢铁, 2005, 40(3): 1-8.
    [3]雷毅,许晓峰,余圣甫,等.面向高性能结构材料的超细晶粒钢研究现状及发展方向.中国石油大学学报, 2007, 31(2): 155-161.
    [4] Petch N J. The cleavage strength of polycrystalline. ISIJ International, 1953, 174: 25-28.
    [5]王有铭,李曼云,韦光.钢材的控制轧制和控制冷却.北京:冶金工业出版社, 2009.
    [6] M inoru U. Nanocrystallization of steels by severe plastic deformation. Materials Transactions, 2003, 44(10): 1900-1911.
    [7]齐俊杰,黄运华,张跃.微合金化钢.北京:冶金工业出版社. 2006.
    [8]陈蕴博,张福成,褚作明,等.钢铁材料组织超细化处理工艺研究进展.中国工程科学, 2003, 5(1): 74-81.
    [9] Choo W Y, Lee S W. Development of RCR-processed Ti-Nb steel for shiphull structural application. In, Proceedings of international symposium on high performance steels for structural application. Cleverland, USA, 1995, 117-121.
    [10]惠卫军,董瀚,王毛球,等.新一代1500MPa级耐延迟断裂高强度合金结构钢的研究.见,北京科技大学编,新一代钢铁材料重大基础研究论文集,北京, 2000: 260-267.
    [11]董成瑞,任海鹏,金同哲.微合金非调质钢.北京:冶金工业出版社, 2000.
    [12]石淑琴译.细晶铁素体组织.国外金属热处理. 2001, 22(6): 9-12.
    [13]赵宇光.外场在材料制备和加工过程中的应用.铸造, 2004, 53(4): 257-259.
    [14]石勤,朱兴元,邹洋.低碳钢晶粒超细化方法初探.钢铁研究, 2005, 146(5): 55-58.
    [15]周雄龙.向开发1μm级超细晶钢的挑战.见,冶金部钢铁研究总院编,高洁净度超细晶微合金化高强高韧钢文集,北京, 1999: 19-28.
    [16]冯光宏,周少雄,杨钢,等.稳衡磁场对低碳锰铌钢晶粒细化的影响.钢铁研究学报, 2000, 12(4): 27-30.
    [17]杨钢,冯光宏.稳衡磁场对低碳锰铌钢γ/α相变的影响.钢铁研究学报, 2000, 12(5): 31-35.
    [18]李新城,陈光,张开华.钢铁材料组织超细化技术研究.热加工工艺, 2002, (6): 54-57.
    [19]陈思联,董瀚,惠卫军,等.合金结构钢的组织超细化及其性能研究.见,北京科技大学编,新一代钢铁材料重大基础研究论文集,北京, 2000: 281-286.
    [20]杨蕴林,席聚奎,孙万昌. 65Mn钢的组织超细化与超塑性.热加工工艺, 1995, (2): 14-15.
    [21]文九巴. 9SiCr钢超塑形变热处理的组织与性能.金属热处理学报, 1994, 15(4): 26-29.
    [22]大内千秋.超微细组织的研制及技术课题.见,冶金部钢铁研究总院编.高洁净度超细晶微合金化高强高韧钢文集,北京, 1998, 1116-1119.
    [23]牧正志.钢的组织控制发展现状与展望.见,冶金部钢铁研究总院编.高洁净度超细晶微合金化高强高韧钢文集,北京, 1998, 7-16.
    [24] Tsuji N, Saito Y, Utsunomiya H etc. Ultra-fine grained bulk steel produced by accumulative rolling-bonding process. Scripta Materialia, 1999, 40(7): 795-800.
    [25] Tsuji N, Ito Y, Saito Y etc. Strength and ductility of ultra-fine grained aluminum and iron produced by ARB process and annealing. Scripta Materialia, 2002, 47(12): 893-899.
    [26] Tsuji N, Ueji R, Minamino Y etc. A new and simple process to obtain nano-structured bulk low carbon steelwith superior mechanical property. Scripta Materialia, 2002, 46(4): 305-310.
    [27] Segal V M. Simple shear as a metalworking process for advanced materials technology. In, Henein H, Oki T, First International Conference on Processing Materials for Properties, UAS, 1993, 947-950.
    [28] Terry C L, Ruslan Z V. Investigations and applications of severe plastic deformation. London, Kluwer Academic, 2000, 27-28.
    [29] Iwahashi Y, Horita Z, Nemoto M, etc. An investigation of microstructural evolution during equal channel angular pressing . Acta Materialia, 1997, 45(11): 4733-4741.
    [30] Popov A A, Pshmintsev I Y, Demakov S L. Structural and mechanical properties of nanocrystalline titanium processed by severe plastic deformation. Scripta Materialia, 1997, 37(7): 1089-1094.
    [31] Iwahashi Y, Horita Z, Nemoto M, etc. An investigation of microstructural evolution during equal channel angular pressing. Acta Materialia, 1998, 46(9): 3317-3331.
    [32] Shin D H, Kim I, Kim J, etc. Grain refinement mechanism during equal channel angular pressing of a low carbon steel. Acta Materialia, 2001, 49(7): 1285-1292.
    [33] Shin D H, Pak J J, Kim Y K, etc. Effect of pressing temperature on microstructure and tensile behavior of low carbon steels processed by equal channel angular pressing. Materials Science and Engineering A, 2002, 325(1-2): 31-37.
    [34] Fukuda Y, Ohishi K, Horita Z etc. Processing of a low carbon steel by equal channel angular pressing. Acta Materialia, 2002, 50: 1359-1368.
    [35] Salishchev G, Zaripova R, Galeev R, etc. Nanocrystalline structure formation during severe plastic deformation in metals and their deformation behaviour. Nanostructured Materials, 1995, 6(5-8): 913-916.
    [36] Valiev R Z, Islanmgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation. Progress in Materials Science, 2000, 45(2): 103-189.
    [37] Andrey B, Kaneaki T, Yuuji K, etc. Comparative study on microstructure evolution upon unidirectional and multidirectional cold working in an Fe–15%Cr ferritic alloy. Materials Science and Engineering A, 2007, 456(1-2): 323-331.
    [38] Borner I, Eckert J. Nanostructure formation and steady state grain size of ball milled iron powder. Materials Science and Engineering A, 1997, 226(1-2): 541-545.
    [39] Oleszak D, Matyja H. Nanocrystalline Fe-based alloy obtained by mechanical alloying. Nanostructured Materials, 1995, (7): 425-428.
    [40]牧正志.细化钢铁材料的晶粒的原理与方法.热处理, 2006, 21(1): 1-9.
    [41]杜林秀.低碳钢变形过程及冷却过程的组织演变与控制.东北大学博士学位论文,东北大学, 2003.
    [42] Tamura I, Sekine H, Tanaka T. Thermomechanical processing of high strength low alloy steels. London,Butterworth & Co. Ltd, 1988.
    [43] Priestner R. Strain induced gamma/alpha transformation in the roll gap in carbon and microalloyed steel. In , Metallurgical Society of AIME, International Proceedings of an International Conference on the Thermomechanical Processing of Microalloyed Austenite, Pittsburgh, 1982, 455-466.
    [44] Priestner R, Ali L. Strain induced transformation in C-Mn steel during single pass rolling. Materials Science and Technology, 1993, 9(2): 135-141.
    [45] Matsumura Y, Yada H. Evolution of ultrafine-grained ferrite in hot successive deformation. Transactions of the Iron and Steel Institute of Japan, 1987, 27(6): 492-498.
    [46] Hodgson P D, Hickson M R, Gibbs R K. Strain induced transformation to ultrafine microstructure in steel. United State Patent No.6027587, 2000.
    [47] Choo W Y, Lee J S, Lee C S, etc. Strain Induced Dynamic Transformation of Austenite to Fine Ferrite and It's Characteristics. Current Advances in Materials and Processes, 2000, 13(6): 1144-1147.
    [48] Yang Zhong-min, Wang Rui-zhen. Formation of ultra-fine grain structure of plain low carbon steel through deformation induced ferrite transformation. ISIJ International, 2003, 43(5): 761-766.
    [49] Beladi H, Kelly G L, Shokouhi A, etc. The evolution of ultrafine ferrite formation through dynamic strain induced transformation. Materials Science and Engineering A, 2004, 371(1-2): 343-352.
    [50] Dong Han, Sun Xin-jun. Deformation induced ferrite transformation in low carbon steels. Current Opinion in Solid State and Materials Science, 2005, 9(6): 269-276.
    [51] Eghbali B, Zadeh A A. Strain induced transformation in a low carbon microalloyed steel during hot compression testing. Scripta Materialia, 2006, 54(6): 1205-1209.
    [52] Beladi H, Kelly G L, Hodgson P D. Ultrafine grained structure formation in steels using dynamic strain induced transformation processing. International Materials Reviews, 2007, 52(1): 14-27.
    [53]董瀚,孙新军,刘清友,等.变形诱导铁素体相变-现象与理论.钢铁,2003,38(10): 56-67.
    [54]翁宇庆,等.超细晶钢-钢的组织细化理论与控制技术.北京,冶金工业出版社,2003.
    [55] Yada H, Li C, Yamagata H. Dynamicγ→αtransformation during hot deformation in iron-nickel-carbon alloys. ISIJ International, 2000, 40(2): 200-206.
    [56] Hurley P J, Hodgson P D. Effect of process variables on formation of dynamic strain induced ultrafine ferrite during hot torsion testing. Materials Science and Technology, 2001, (17): 1360-1368.
    [57] Du Linxiu, Zhang caibei, Ding hua, etc. Determination of upper limit temperature of strain induced transformation of low carbon steels. ISIJ International, 2002, 42(10):1119-1124.
    [58] Beladi H, Kelly G L, Shokouhi A, etc. Effect of thermomechanical parameters on the critical strain for ultrafine ferrite formation through hot torsion tesing. Materials Science and Engineer A, 2004, 367(1-2): 152-161.
    [59] Kelly G L, Beladi H, Hodgson P D. Microstructural evolution of ultrafine grained structure in plain carbon steels through single pass rolling. Materials Science and Technology, 2004, 20(12): 1538-1544.
    [60] Inoue T, Torizuka S, Nagai K. Effect of shear deformation on refinement of crystal grains. Materials Science and Technology, 18(9): 1007-1015.
    [61] Hurley P J, Muddle B C, Hodgson P D. The production of ultrafine ferrite during hot torsion testing of a 0.11 wt pct C steel. Metallurgical and Materials Transactions A, 2002, 33(9): 2985-2933.
    [62] Hanlon D N, Sietsma J, Sybrand V D Z. The effect of plastic deformation of austenite on the kinetics of subsequent ferrite formation. ISIJ International, 2001, 41(9): 1028-1036.
    [63] Yada H, Matsumura Y, Senuma T. A new thermomechanical heat treatment for grain refining in low carbon steels. In, Iron and Steel Institute of Japan, International Conference on Physical Metallurgy of Thermomechanical Processing of Steels and Other Metals, Tokyo, 1988, 200-207.
    [64] Hickson M R, Hurley P J, Gibbs P K, etc. The production of ultrafine ferrite in low carbon steel by strain induced transformation. Metallurgical and Materials Transactions A, 2002, 33(4): 1019-1026.
    [65]杨平,傅云义,崔凤娥,等. Q235碳素钢应变强化相变的基本特点及影响因素.金属学报, 2001, 37(6): 592-600.
    [66]杨平,傅云义,崔凤娥,等.变形温度对Q235碳素钢应变强化相变的影响.金属学报, 2001, 37(6): 601-608.
    [67]杨平,傅云义,崔凤娥,等. Q235碳素钢应变强化相变过程中的动力学问题.金属学报, 2001, 37(6): 617-624.
    [68]孙新军.微合金钢变形诱导铁素体相变的研究.钢铁研究总院博士后学位论文, 2003.
    [69] Seo D H, Um K K, Lee J S, etc. Fine ferrite formation by strain induced dynamic transformation in low carbon steel. International Symposium on Ultrafine Grained Steels; Fukuoka, Japan, 2001, 104-107.
    [70] Yang P, Fu Y, Cui F, etc. Characteristics of strain enhanced transformation and its influencing factors in Q235 plain carbon steel. Acta Metallurgica Sinica (China), 2001, 37(6): 592-600.
    [71] Mintz B, Jonas J J. Influence of strain rate on production of deformation induced ferrite and hot ductility of steels. Materials Science and Technology, 1994, 10(8): 721-727.
    [72] Lewis J, Jonas J J, Mintz B. The formation of deformation induced ferrite during mechanical testing. ISIJ International, 1998, 38(3): 300-309.
    [73]杨忠民.利用形变诱导铁素体获得棒材超细晶组织.见,中国机械工程学会编,热处理学会物理冶金学术交流会论文集,北京, 2002, 155-157.
    [74]王慧敏,邱坤,杨忠民.变形速率对普碳钢中形变诱导铁素体相变的影响.钢铁研究学报, 2005, 17(4): 1-4. 20
    [75] Hatherly M. Deformation at high strains. Strength of Metals and Alloys, Melbourne, Australia, 1983, 1181-1195.
    [76] Bengochea R, Lopez B, Gutierrez I. Influence of the prior austenite microstructure on the transformation products obtained for C-Mn-Nb steels after continuous cooling. ISIJ International 1999, 39(6): 583-591.
    [77] Hickson M R, Gibbs R K, Hodgson P D. The effect of chemistry on the formation of ultrafine ferrite in steel. ISIJ International 1999, 39(11): 1176-1180.
    [78] Hurley P J, Hodgson P D. Formation of ultra-fine ferrite in hot rolled strip: potential mechanisms for grain refinement. Materials Science and Engineering A, 2001, 302(2): 206-214.
    [79] Hodgson P D, Hickson M R, Gibbs R K. Ultrafine ferrite in low carbon steel. Scripta Materialia, 1999, 40(10): 1179-1184.
    [80] Choo W Y, Um K K, Lee J S, etc. Enhancement of fine ferrite formation by strain induced dynamic transformation and mechanical properties of fine grained steel. In, Iron and Steel Institute of Japan, International Symposium on Ultrafine Grained Steels, Fukuoka, 2001, 2-9.
    [81] Priestner R, Alhorr Y M, Ibraheem A K. Effect of strain on formation of ultrafine ferrite in surface of hot rolled microalloyed steel. Materials Science and Technology, 2002, 18(9): 973-980.
    [82] Sun Z Q, Yang W Y, Hu A M, etc. Deformation enhanced ferrite transformation in plain low carbon steel. Acta Metallurgica Sinica(English Letters), 2001, 14(2): 115-121.
    [83] Sun Z Q, Yang W Y, Hu A M, etc. Microstructure evolution during deformation of undercooled austenite in low carbon steel. In, The Chinese Society for Metals, Workshop on new generation steel, Beijing, 2001, 35-39.
    [84]杨王玥,胡安民,孙祖庆.低碳钢奥氏体晶粒控制.金属学报, 2000, 36(10): 1050-1054.
    [85]杨王玥,胡安民,孙祖庆.低碳钢奥氏体晶粒控制对应变强化的影响.金属学报, 2000, 36(10): 1055-1060.
    [86]杨王玥,胡安民,齐俊杰,等.低碳钢形变强化相变的组织细化.材料研究学报, 2001, 15(2): 171-178.
    [87]杨忠民,赵燕,王瑞珍,等.形变诱导铁素体的形成机制.金属学报, 2000, 36(8): 818-822.
    [88]杨忠民,赵燕,王瑞珍,等.普通低碳钢低温变形获得超细晶铁素体的形成.金属学报, 2000, 36(10): 1061-1066.
    [89]杨忠民,赵燕,王瑞珍,等.普通低碳钢超细晶临界奥氏体控轧工艺研究.钢铁, 2001, 36(8): 43-48.
    [90] Yada H, Matsumura Y, Nakajima K. Ferritic steel having ultra-fine grains and a method for producing the same. United State Patent No. 4466842, 1984.
    [91] Hurley P J, Hodgson P D, Muddle B C. Analysis and characterisation of ultra-fine ferrite produced during a new steel strip rolling process. Scripta Materialia, 1999, 40(4): 433-438.
    [92] Hickson M R, Hodgson P D. Effect of preroll quenching and post-roll quenching on production and properties of ultrafine ferrite in steel. Materials Science and Technology, 1999, 15(1): 85-90.
    [1] Glover G, Sellars C M. Recovery and recrystallization during high temperature deformation ofα-iron. Metallurgical and Materials Transactions B, 1973, 4(3): 765-775.
    [2] Sakai T. Dynamic recrystallization microstructures under hot working conditions. Journal of Materials Processing Technology, 1995, 53(1-2): 349-361.
    [3] Stuwe H P, Padilha A F, Siciliano F. Competition between recovery and recrystallization. Materials Science and Engineering A, 2002, 333(1-2): 361-367.
    [4] Roberts W, Ahiblom B. A nucleation criterion for dynamic recrystallization during hot working. Acta Metallurgica, 1978, 26(5): 801-813.
    [5] Sakai T, Jonas J J. Dynamic recrystallization: mechanical and microstructural considerations. Acta Metallurgica, 1984, 32(2): 189-209.
    [6] Samuel F H, Yue S, Jonas J J, etc. Effect of dynamic recrystallizaiton on microstructural evolution during strip rolling. ISIJ International, 1990, 30(3): 216-225.
    [7] Jonas J J. Dynamic recrystallizaiton: Scientific curious or industrial tool. Materials Science and Engineering A, 1994, 184: 155-165.
    [8] Kim S, Yoo Y C. Dynamic recrystallization behavior of AISI 304 stainless steel. Materials Science and Engineering A, 2001, 311: 108-113.
    [9] Salvatori I, Inoue T, Nagai K. Ultrafine grain structure through dynamic recrystallization for type 304 stainless steel. ISIJ International, 2002, 42(7): 744-750.
    [10] Fujita N, Narushima T, Iguchi Y, etc. Grain refinement of as cast austenite by dynamic recrystallization in HSLA steels. ISIJ International, 2003, 43(7): 1063-1072.
    [11]程晓茹,郑琳.管线钢X65高温变形动态再结晶研究.金属学报, 1997, 33(12): 1275-1281.
    [12]李会莉,陈岁月.热变形参数对奥氏体再结晶过程的影响.沈阳航空工业学院学报, 2002, 19(2): 88-90.
    [13]魏立群. B30MnSi钢的动态再结晶行为.特殊钢, 2005, 26(4): 13-15.
    [14]黄杰.奥氏体的变形与再结晶对其相变的影响.上海交通大学博士论文,上海交通大学, 2005.
    [15] Imbert C, Ryan N D, Mcqueen H J. Hot workability of three grades of tool steel. Metallurgical and Materials Transactions A, 1984, 15(10): 1855-1864.
    [16] Milovic R, Manojlovic D, Andjelic M, etc. Hot workability of M2 type high speed steel. Steel Research, 1992, 63(2): 78-84.
    [17] Roucoules C, Yue S, Jones J J. Effect of dynamic and metadynamic recrystallization on rolling load and microstructure. In, Beynon J H, International Conference on Modeling of Metal Rolling Processes, London, 1993, 165-179.
    [18] Siciliano F, Minami K, Maccagno T M, etc. Mathematical modeling of the mean flow stress, fractional softening and grain size during the hot strip rolling of C-Mn steels. ISIJ International, 1996, 36(12): 1500-1506.
    [19]余永宁.金属学原理.北京:冶金工业出版社, 2003.
    [20]王有铭,李曼云,韦光.钢材的控制轧制和控制冷却.北京:冶金工业出版社,2009.
    [21] Sellars C M. The physical metallurgy of hot working. In, Sellars C M, Davies G J, the Proceeding of the International Conference on Hot Working and Forming Process, London, 1980. 3-15.
    [22] Johnson W A, Mehi R F. Reaction kinetics of nucleation and growth. Transactions AIME, 1939, 614-622.
    [23] Avrami M. Kinetics of phase changeⅠ: general theory, The Journal Chemical Physics. 1939, 7: 1103-1107.
    [24] Avrami M. Kinetics of phase changeⅡ: transformation-time relations for random distribution of nuclei. TheJournal Chemical Physics. 1940, 8: 212-219.
    [25] Roberts W, Sandberg A. HSLA steel: technology and applications. International conference on technology and application of HSLA steels, Korchynsky, American Society for Metals, 1983: 33-65.
    [26] Sellars C M. The kinetics of softening processes during hot working of austenite. Czechoslovak Journal of Physics, 1985, 35(3): 239-248.
    [27] Saito Y, Enami T, Tanaka T. The mathematical model of hot deformation resistance with reference to microstructural changes during rolling in plate mill. Transactions of the Iron and Steel Institute of Japan, 1985, 25(11): 1146-1155.
    [28] Yada H. Prediction of microstructural changes and mechanical properties in hot strip rolling. Accelerated Cooling of Rolled Steel. Canada, 1987: 105-119.
    [29] Suehiro M, Sato K, Tsukano Y, etc. Computer modeling of microstructural change and strength of low carbon steel in hot strip rolling. Transactions of the Iron and Steel Institute of Japan, 1987, 27(6): 439-445.
    [30] Shen G, Semiatin S L, Shivpuri R. Modeling microstructural development during the forging of Waspaloy. Metallurgical and Materials Transactions A, 1995, 26(7): 1795-1803.
    [31] Sandstrom R, Lagneborg R. Model for hot working occurring by recrystallization. Acta Metallurgica, 1975, 23(3): 387-398.
    [32] Roberts W, Boden H, Ahlblom B. Dynamic recrystallizaiton kinetics. Metal Science and Heat Treatment, 1979, 34(3-4): 195-205.
    [33]毛卫民,赵新兵.金属的再结晶与晶粒长大.北京:冶金工业出版社,1994.
    [34]金泉林.一个新的动态再结晶过程的分析模型.塑性工程学报, 1994, 1(1): 3-13.
    [35]高维林.金属塑性变形的耗散结构和协同学模型及含铌低碳钢的热变形行为,东北大学博士学位论文,1993.
    [36] Rollett A D, Srolovitz, Doherty R D, etc. Computer simulation of recrystallization in non-uniformly deformed metals. Acta Metallurgica, 1989, 37(2): 627-639.
    [37] Karhausen K, Kopp R. Model for integrated process and microstructure simulation in hot forming. Steel Research, 1992, 63(6): 247-256.
    [38] Luton M J, Sellars C M. Dynamic recrystallization in nickel and nickel iron alloys during high temperature deformation. Acta Metallurgica, 1969, 17(8): 1033-1043.
    [39] Sakai T, Jonas J J. Dynamic recrystallization mechanical and microstructural considerations. Acta Metallurgica, 1984, 32(2): 189-209.
    [40] Sah J P, Richardson G J, Sellars C M. Grain size effects during dynamic recrystallizaiton of nickel. Metal Science, 1974, 8: 325-331.
    [41] Barnett M R, Kelly G L, Hodgson P D. Predicting the critical strain for dynamic recrystallization using the kineticsof static recrystallization. Scripta Materialia, 2000, 43(4): 365-369.
    [42] Gottstein G, Frommert M, Goerdeler M, etc. Prediction of the critical conditions for dynamic recrystallization in the austenitic steel 800H. Materials Science and Engineering A, 2004, 387-389: 604-608.
    [43] Poliak E I, Jonas J J. Initiation of dynamic recrystallization in constant strain rate hot deformation. ISIJ International, 2003, 43(5): 684-691.
    [44] Najafizadeh A, Jonas J J. Predicting the critical stress for initiation of dynamic recrystallization. ISIJ International, 2006, 46(11): 1679-1684.
    [45] Sellars C M, Whiteman J A. Recrystallization and grain growth in hot rolling. Metal Science, 1979, 13(3-4):187-194.
    [46] Colas R. A model for the hot deformation of low carbon steel. Journal of Materials Processing Technology, 1996, 62(1-3):180-184.
    [47] Minami K, Siciliano F, Maccagno J T, etc. Mathematical modeling of mean flow stress during the hot strip rolling of Nb steels. ISIJ International, 1996, 36(12): 1507-1515.
    [1]王有铭,李曼云,韦光.钢材的控制轧制和控制冷却.北京:冶金工业出版社,2009.
    [2] Jonas J J. Static and dynamic recrystallization under hot working conditions. In, The Iron and Steel Institute ofJapan, International Conference on Physical Metallurgy of Thermomechanical Processing of Steel and Other Metals, Japan, 1988, 59-69.
    [3] Samuel F H, Yue S, Jonas J J, etc. Modeling of flow stress and rolling load of a hot strip mill by torsion testing. ISIJ International, 1989, 29(10): 878-886.
    [4] Maccagno T M, Jonas J J. Correcting for the effects of static and metadynamic recrystallization during the laboratory simulation of rod rolling. ISIJ International, 1994, 34(7): 607-614.
    [5] Medina S F, Mancilla J E. Static recrystallization of austenite and strain induced precipitation kinetics in titanium microalloyed steel. Acta Metallurgica, 1994, 42(12): 3945-3951.
    [6] Karjalainen L P, Perttula J. Characteristics of static and metadynamic recrystallization and strain accumulation in hot deformed austenite as revealed by the stress relaxation method. ISIJ International, 1996, 36(6): 729-736.
    [7] Hodgson P D. The metadynamic recrystallization of steels. In, Chandra T M, Sakai T, International Conference on Thermomechanical Processing of Steels and Other Materials, Australia, 1997, 121-131.
    [8] Sun W P, Hawbolt E B. Comparison between static and metadynamic recrystallization: an application to the hot rolling of steels. ISIJ International, 1997, 37(10): 1000-1009.
    [9] Medeiros S C, Prasad Y, Frazier W G, etc. Microstructural modeling of metadynamic recrystallization in hot working of IN 718 superalloy. Materials Science and Engineering A, 2000, 293(1-2): 198-207.
    [10] Cho S H, Kang K B, Jonas J J. The dynamic, static and metadynamic recrystallization of a Nb microalloyed steel. ISIJ International, 2001, 41(1): 63-69.
    [11] Uranga P, Fernandez A I, Lopez B, etc. Transition between static and metadynamic recrystallization kinetics in coarse Nb microalloyed austenite. Materials Science and Engineering A, 2003, 345(1-2): 319-327.
    [12] Elwazri A M, Wanjara P, Yue S. Metadynamic and static recrystallization of hypereutectoid steel. ISIJ International, 2003, 43(7):1080-1088.
    [13] Zahiri S H, Byon S M, Kim S, etc. Static and metadynamic recrystallization of interstitial free steels during hot deformation. ISIJ International, 2004, 44(11): 1918-1923.
    [14] Hodgson P D, Zahiri S H, Whale J J. The static and metadynamic recrystallization behavior of an X60 Nb microalloyed steel. ISIJ International, 2004, 44(7): 1224-1229.
    [15] Elwazri A M, Essadiqi E, Yue S. Kinetics of metadynamic recrystallization in microalloyed hypereutectoid steels. ISIJ International, 2004, 44(4): 744-752.
    [16] Serajzadeh S. A study on kinetids of static and metadynamic recrystallization during hot rolling. Materials Science and Engineering A, 2007, 448(1-2): 146-153.
    [17]杜林秀.低碳钢变形过程及冷却过程的组织演变与控制.东北大学博士学位论文,东北大学, 2003.
    [18]钟志平,谢富东,陈小光,等. 20MnMoNi55钢的后动态再结晶模型.塑性工程学报, 2000, 7(2): 23-26.
    [19]窦晓峰,鹿守理,赵辉,等. Q235钢亚太再结晶模型的建立.钢铁, 1999, 34(4): 34-36.
    [20] Sellars C M. The physical metallurgy of hot working. In, Sellars C M, Davies G J, The Proceeding of the International Conference on Hot Working and Forming Process, London, 1980, 3-15.
    [21] Saito Y, Enami T, Tanaka T. The mathematical model of hot deformation resistance with reference to microstructural during rolling in plate mill. Transactions of the Iron and Steel Institute of Japan, 1985, 25(11): 1146-1155.
    [22] Perdrix C H. Characteristic of plastic deformation of metals during hot working. Report CECA No. 7210EA/311, France, 1987,
    [23] Yada H, Senuma T. Resistance to hot deformation of steel. Journal of the Japan Society for Technology of Plasticity, 1986, 27(300): 34-44.
    [24] Hodgson P D, Gibbs P K. A mathematical model to predict the mechanical properties of hot rolled C-Mn and microalloyed steels. ISIJ International, 1992, 32(12): 1329-1338.
    [25] Roucoules C, Hodgson P D, Yue S, etc. Softening and microstructural change following the dynamic recrystallization of austenite. Metallurgical and Materials Transactions A, 1994, 25(2): 389-400.
    [26] Djaic R A P, Jonas J J. Static recrystallization of austenite between intervals of hot working. The Journal of Iron and Steel Institute, 1972, 210: 256-261.
    [27] Sellars C M. Modelling of structural evolution during hot working processes. In, Ole G, Eigil P, Proceeding of the Seventh Ris International Symposium on Metallurgy and Materials Science, Roskide, Denmak, 1986, 167-187.
    [28] Fernandez A I, Lopez B, Ibabe J M B. Relationship between the austenite recrystallization fraction and the softening measured from the interrupted torsion test technique. Scripta Materialia, 1999, 40(5): 543-549.
    [29] Yanagida A, Yanagimota J. Formularization of softening fractions and related kinetics for static recrystallization using inverse analysis of double compression test. Metallurgical and Materials Transactions A, 2008, 487: 510-517.
    [30] Laasraoui A, Jonas J J. Prediction of steel flow stresses at high temperatures and strain rates. Metallurgical Transactions A, 1991, 22(7):1545-1558.
    [1] Priestner R. Strain induced gamma/alpha transformation in the roll gap in carbon and microalloyed steel. In, Deardo A J, Ratz G A, Wray P J, Proceedings of an International Conference on the Thermomechanical Processing of Microalloyed Austenite, Pittsburgh, 1981, 455-466.
    [2] Beladi H, Kelly G L, Shokouhi A, etc. Effect of thermomechanical parameters on the critical strain for ultrafine ferrite formation through hot torsion testing. Materials Science and Engineering A, 2004, 367(1-2):152-161.
    [3] Eghbali B, Zadeh A A. The influence of thermomechanical parameters in ferrite grain refinement in a low carbon Nb-microalloyed steel. Scripta Materialia, 2005, 53(1): 41-45.
    [4] Eghbali B, Zadeh A A. Strain induced transformation in a low carbon microalloyed steel during hot compression testing. Scripta Materialia, 2006, 54(6): 1205-1209.
    [5] Yang Zhong-min. Influence of deformation parameters on deformation induced ferrite transformation (DIFT) in plain low carbon steel. Materials Science Forum, 2007, 545): 4704-4707.
    [6] Hodgson P D, Shokouhi A, Beladi H. A descriptive model for the formation of ultrafine grained steels. ISIJ International, 2008, 48(8): 1046-1049.
    [7]董瀚,孙新军,刘清友,等.变形诱导铁素体相变-现象与理论.钢铁,2003,38(10): 56-67.
    [8]翁宇庆.超细晶钢-钢的组织细化理论与控制技术.北京,冶金工业出版社,2003.
    [9]杨平,傅云义,崔凤娥,等. Q235碳素钢应变强化相变的基本特点及影响因素.金属学报, 2001, 37(6): 592-600.
    [10]杨平,傅云义,崔凤娥,等.变形温度对Q235碳素钢应变强化相变的影响.金属学报, 2001, 37(6): 601-608.
    [11]杨平,傅云义,崔凤娥,等. Q235碳素钢应变强化相变过程中的动力学问题.金属学报, 2001, 37(6): 617-624.
    [12]孙新军.微合金钢变形诱导铁素体相变的研究.钢铁研究总院博士后学位论文,钢铁研究总院, 2003.
    [13]杨王玥,胡安民,孙祖庆.低碳钢奥氏体晶粒控制.金属学报, 2000, 36(10): 1050-1054.
    [14]杨王玥,胡安民,孙祖庆.低碳钢奥氏体晶粒控制对应变强化的影响.金属学报, 2000, 36(10): 1055-1060.
    [15]杨王玥,胡安民,齐俊杰,等.低碳钢形变强化相变的组织细化.材料研究学报, 2001, 15(2): 171-178.
    [16]杨忠民,赵燕,王瑞珍,等.形变诱导铁素体的形成机制.金属学报, 2000, 36(8): 818-822.
    [17]杨忠民,赵燕,王瑞珍,等.普通低碳钢低温变形获得超细晶铁素体的形成.金属学报, 2000, 36(10): 1061-1066.
    [18]杨忠民,赵燕,王瑞珍,等.普通低碳钢超细晶临界奥氏体控轧工艺研究.钢铁, 2001, 36(8): 43-48.
    [19] Beladi H, Kelly G L, Hodgson P D. Ultrafine grained structure formation in steels using dynamic strain induced transformation processing. International Materials Reviews, 2007, 52(1): 14-27.
    [20] Beladi H, Kelly G L, Shokouhi A, etc. The evolution of ultrafine ferrite formation through dynamic strain induced transformation. Materials Science and Engineering A, 2004, 371(1-2): 343-352.
    [21] Dong Han, Sun Xin-jun. Deformation induced ferrite transformation in low carbon steels. Current Opinion in Solid State and Materials Science, 2005, 9(6): 269-276.
    [22] Gibbs P K, Hodgson P D, Parker B A. The modelling of microstructure evolution and final properties for Nb microalloyed steels. In, Liaw P K, Weertman J R, Marcus H L, etc, Proceedings of the Morris E. Fine Symposium, USA, 1991, 73-81.
    [23]林慧国,傅代直.钢的奥氏体转变曲线—原理、测试与应用.北京,机械工业出版社, 1988.
    [24] Santos D B, Bruzszek R K, Rodrigues P C M, etc. Formation of ultra-fine ferrite microstructure in warm rolled and annealed C-Mn steel. Materials Science and Engineering A, 2003, 346: 189-195.
    [25]孙蓟泉,张金旺,王永春. SPHC钢热变形行为研究.钢铁,2008, 43(9): 44-47.
    [26] Hurley P J, Hodgson P D. Formation of ultra-fine ferrite in hot rolled strip: potential mechanisms for grain refinement. Materials Science and Engineering A, 2001, 302: 206-214.
    [27] Hurley P J, Hodgson P D. Effect of process variables on formation of dynamic strain induced ultrafine ferrite during hot torsion testing . Materials Science and Technology, 2001, 17(11): 1360-1368.
    [28] Seo D H, Um K K, Lee J S, etc. Fine ferrite formation by strain induced dynamic transformation in low carbon steel. In, The Iron and steel Institute of Japan, International Symposium on Ultrafine Grained Steels, Japan, 2001, 99104-107.
    [29] Yada H, Li C M, Yamagata H. Dynamicγ→αtransformation during hot deformation in Iron-Nickel-Carbon alloys . ISIJ International, 2000, 40(2): 200-206.
    [30] Mintz B, Lewis J, Jonas J J. Importance of deformation induced ferrite and factors which control its formation. Materials Science and Technology, 1997, 13(5): 379-388.
    [31] Priestner R, Alhorr Y M, Ibraheem A K. Effect of strain on formation of ultrafine ferrite in surface of hot rolled microalloyed steel. Materials Science and Technology, 2002, 18(9): 973-980.
    [32] Sun Z Q, Yang W Y, Yang P. Deformation enchanted ferrite transformation in plain low carbon steel. Acta Metallurgica Sinica (English Letters), 2001, 14(2):115-121.
    [33] Choi J K, Seo D H, Lee J S, etc. Effect of processing parameters of strain induced dynamic transformation on the microstructures and mechanical properties of ultrafine grained low carbon steel. In, The Iron and Steel Institute of Japan, Proceedings of first international conference on advanced structural steels, Japan, 2002, 11-19.
    [34]张红梅.低碳钢γ→α相变行为及铁素体晶粒细化机制的研究.东北大学博士学位论文,东北大学, 2001.
    [35]贠冰.变形对γ→α相变的影响及变形诱导γ→α相变的数值模拟研究.钢铁研究总院博士学位论文,钢铁研究总院, 2002.
    [36]李静波.变形诱导铁素体相变中微合金元素的作用规律及相变热力学和动力学计算.钢铁研究总院博士后出站报告,钢铁研究总院, 2000.
    [37] Yada H, Matsumura Y, Nakajima K. Strain induced transformation to ultrafine microstructure in steel. United State Patent No. 4466842, 1984.
    [38] Seung C H, Sung H L, Kyung J L, etc. Effect of undercooling of austenite on strain induced ferrite transformation behavior. ISIJ International, 2003, 43(3): 394-399.
    [39] Pandi R, Yue S. Dynamic transformation of austenite to ferrite in low carbon steel. ISIJ International, 1994, 34(3): 270-279.
    [40] Glover G, Sellars C M. Recovery and recrystallization during high temperature deformation ofα-iron. Metallurgical and Materials Transactions B, 1973, 4(3): 1543-1916.
    [41] Hickson M R, Gibbs R K, Hodgson P D. The effect of chemistry on the formation of ultrafine ferrite in steel. ISIJ International, 1999, 39(11): 1176-1180.
    [42] Hodgson P D, Hickson M R, Gibbs R K. Ultrafine ferrite in low carbon steel. Scripta Materialia, 1999, 40(10): 1179-1184.
    [43] Hurley P J, Muddle B C, Hodgson P D. Nucleation sites for ultrafine ferrite produced by deformation of austenite during single-pass strip rolling. Metallurgical and Materials Transactions A, 2001, 32(6): 150-1517.
    [1]孙新军.微合金钢变形诱导铁素体相变的研究.钢铁研究总院博士后学位论文,钢铁研究总院, 2003.
    [2]余永宁.金属学原理.北京,冶金工业出版社, 2003.
    [3] Nanba S, Kitamura M, Shimada M et al. Prediction of microstructure distribution in the through-thickness direction during and after hot rolling in carbon steels. ISIJ International, 1992, 32(3):377-386.
    [4]王光耀,藏昆,石福庆等.塑性变形理论及应用.北京,国防工业出版社, 1988.
    [5] Lou H, Sietsma J, Zwaag S V. A novel observation of strain-induced ferrite-to-austenite retransformation after intercritical deformation of C-Mn steel. Metallurgical and Materials Transactions A, 2004, 35(9): 2789-2797.
    [6] Begochea R, Lopez B, Gutierrez I etc. Microstructural evolution during the austenite to ferrite transformation from deformed austenite. Metallurgical and Materials Transactions A, 1998, 29(2): 417-426.
    [7] Sellars C M, McTegart W J. On the mechanism of hot deformation. Acta Metallurgica, 1966, 14(9):1136-1138.
    [8] Karhausen K, Kopp K. Model for integrated process and microstructure simulation in hot forming. Steel Research, 1992, 63(6):247-256.
    [9] Kirkaldy J S, Baganis E A. Thermodynamic prediction of the Ae3 temperature of steels with additions of Mn, Si, Ni, Cr, Mo, Cu. Metallurgical Transactions A, 1978, 9(4): 495-501.
    [10] Bhadeshia H. Thermodynamic extrapolation and martensite start temperature of substitutionally alloyed steels. Metal Science, 1981, 15(4): 178-180.
    [11] Aaronson H I, Domain H A, Pound G M. Thermodynamics of the austenite proeutectoid ferrite transformation. Transactions of the Metallurgical Society of AIME, 1966, 236(5): 753-767.
    [12] Kaufman L, Radcliffe S V, Cohen M, Decomposition of austenite by diffusional processes, New York , Zackay V F, Aaronson H I , 1962, 313-332.
    [13] Mou Y W, Hsu T Y, C-C interaction energy in Fe-C alloys. Acta Metallurgical, 1986, 34(2): 325-331.
    [14]牟翊文,徐祖耀. Fe-C合金中C-C交互作用能.金属学报, 1987, 23(4):329-338.
    [15]徐祖耀,牟翊文. Fe-C合金贝氏体相变热力学(KRC模型).金属学报, 1985, 21(2):107-118.
    [16] Aaronson H I, Domain H A, Pound G M. Thermodynamics of the austenite proeutectoid ferrite transformation,ⅡFe-C alloys. Transactions of the Metallurgical Society of AIME, 1966, 236(5): 768-782.
    [17] Kaufman L, Clougherty E V, Weiss R J. The lattice stability of metals– III. Iron. Acta Metallurgica, 1963, 11(5):323-335.
    [18] Orr R L, Chipman J. Thermodynamic function of iron. Transactions of the Metallurgical Society of AIME, 1967, 239(5): 630-633.
    [19] Mogutnov B M, Tomilin I A, Shvarsman L A. Thermodynamics of Fe-C alloys, Moscow: Metallurgy Press, 1972, 110-115.
    [20] ?gren J, Thermodynamic analysis of the Fe-C and Fe-N phase diagrams. Metallurgical Transactions A, 1979, 10 (12): 1847-1852.
    [21] Hsu T Y, Chang H B. On calculation of MS and driving force for martensitic transformation in Fe-C. Acta Metallurgical, 1984, 32(3): 343-348.
    [22]吴瑞恒.结构钢热变形行为及其铁素体析出动力学数学模型.上海交通大学博士学位论文,上海交通大学, 2002.
    [23]徐祖耀.相变原理.北京,科学出版社, 2000.
    [24]徐祖耀,李麟.材料热力学(第二版).北京,科学出版社, 2000.
    [25]贠冰,杨才福,潘灏.变形能对奥氏体相变临界核胚尺寸的影响,钢铁研究, 2001, 36-38.
    [26]郑斌华,王连军,卢俊毅,等. SPHC钢在不同冷却条件下的相变规律研究.轧钢, 2006, 23(6): 4-7.
    [27] Choi J K, Seo D H, Lee J S, etc. Formation of ultrafine ferrite by strain induced dynamic transformation in plain low carbon steel. ISIJ International, 2003, 43(5):746-754.
    [1]贠冰.变形对γ→α相变的影响及变形诱导γ→α相变的数值模拟研究.钢铁研究总院博士学位论文,钢铁研究总院, 2002.
    [2]杨平,傅云义,崔凤娥等. Q235碳素钢应变强化的基本特点及影响因素.金属学报, 2001, 37(6): 592-600.
    [3]杨平,傅云义,崔凤娥等.变形温度对Q235碳素钢应变诱导相变中的影响.金属学报, 2001, 37(6): 601-608.
    [4]杨平,傅云义,崔凤娥等. Q235碳素钢应变诱导相变中的应力-应变曲线分析.金属学报, 2001, 37(6): 609-616.
    [5]杨平,傅云义,崔凤娥等. Q235碳素钢应变强化过程中的动力学问题.金属学报, 2001, 37(6): 617-624.
    [6]杨平,傅云义,崔凤娥等. Q235碳素钢应变强化过程中铁素体晶粒取向分析.金属学报, 2001, 37(9): 900-906.
    [7]李静波.变形诱导铁素体相变中微合金元素的作用规律及相变热力学和动力学计算.钢铁研究总院博士后研究报告,钢铁研究总院, 2000.
    [8] Umemoto M, Hiramatsu A, Moriya A etc. Computer modeling of phase transformation from work-hardened austenite. ISIJ International, 1992, 32(2): 306-315.
    [9]许云波.基于物理冶金和人工智能的热轧钢材组织-性能预测与控制.东北大学博士学位论文,东北大学, 2003.
    [10]朱洪涛.多元钢先共析铁素体析出及珠光体转变热力学研究.上海交通大学博士后研究报告,上海交通大学, 2002.
    [11] Speich G R. Cuddy L J, Gordon C R, etc. Formation of ferrite from control-rolled austenite, Proceedings of an international conference on phase transformations in ferrous alloys, Marder A R, Goldstein J I, AIME, 1984, 341-349.
    [12] Umemoto M, Ohtsuka H, Tamura I. Transformation to pearlite from work-hardened austenite. Transactions of the Iron and Steel Institute of Japan, 1983, 23(9):775-784.
    [13] Ouchi C, Sampei T, Kozasu I. Effect of hot rolling condition and chemical composition on the onset temperature of gamma - alpha transformation after hot rolling. Transactions of the Iron and Steel Institute of Japan, 1982, 22(3):214-222.
    [14]徐祖耀,牟翊文. Fe-C合金贝氏体相变热力学(KRC模型).金属学报, 1985, 21(2):107-118.
    [15] Lange W F, Enomoto M, Aaronson H I. The kinetics of ferrite nucleation at austenite grain boundaries in Fe-C alloys. Metallurgical and Materials Transactions A, 1988, 19(3): 427-440.
    [16] Kwon O. A technology for the prediction and control of microstructural changes and mechanical properties in steel. ISIJ International, 1992, 32(3): 350-358.
    [17] Senuma T, Suehiro M, Yada H. Mathematical models for predicting microstructural evolution and mechanical properties of hot strips. ISIJ International, 1992, 32(3): 423-432.
    [18] Kaufman L, Radcliffe S V, Cohen M. Decomposition of austenite by diffusional processes. New York: Interscience. 1962.
    [19] Zener C. Theory of growth of spherical precipitates from solid solution. Journal of Applied Physics, 1949, 20: 950-956.
    [20] Cahn J W. The kinetics of grain boundary nucleated reactions. Minerals, Metals and Materials Society/AIME, Warrendale: USA, 1998, 13-23.
    [21]曲镜波. HSLA钢板热轧组织性能控制及预测模型,东北大学博士学位论文,东北大学, 1998.
    [22] Umemoto M. Mathematical modeling of phase transformation from work-hardened austenite. In, Yue S, Proceedings of mathematical modeling of hot rolling of steel, Hamilton, 1990, 404-413.
    [23] Yoshie A, Fujioka M, Watanabe Y etc. Modelling of microstructural evolution and mechanical properties of steel platesproduced by thermo-mechanical control process. ISIJ International, 1992, 32(3): 395-404.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700