用户名: 密码: 验证码:
纤维材料酶解机理分析与应用策略探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木质纤维素是最具有利用潜力的生物质资源,其生物降解产物可以用来生产多种生物产品以及渴望替代化石能源。对纤维素利用的工艺流程中,最主要的限制性因素存在于纤维素转化为可发酵的还原糖这一步。降低单位还原糖的生产成本的策略大体有两类途径:(1)提高纤维素酶生产的经济性,这主要涉及纤维素酶合成机理的研究,提高其合成效率以降低单位纤维素酶的生产成本(为本实验室另一研究组主要研究方向,不属本文主要研究内容);(2)提高纤维素酶的比活力或者利用效率,主要涉及纤维素酶解纤维材料时催化作用机理的研究,以降低单位可发酵还原糖的生产成本,此为本文研究的主要内容。
     与蛋白酶类、果胶酶类以及淀粉酶类相比较,纤维素酶(系)活力的准确测定十分困难,一直是理论和应用研究中的难题。由于纤维素的不溶性与结构异质性,以及纤维素酶系统的复杂性,建立以其为底物的实用且可靠的纤维素酶活力测定方法十分困难,而建立高效的活力测定或者筛选方法,以选择具有人们期望的特性的酶或者菌株,是酶工程学研究的基础。
     阐明纤维素酶的催化机理与催化环境的影响是提高其转化率的基础。酶与底物结合是催化过程的首要阶段,目前对酶与底物的结合的研究仍然沿用可逆平衡的假说进行分析,但实际上该理论并不适用于如纤维素酶催化体系等多组分反应体系。另外,温度是影响酶催化效率的重要影响因素,在热力学、动力学与生物工程学中都有关于温度对酶催化影响的研究,但无论是思路还是方法都没有形成统一的认识,彼此之间存在很多矛盾。
     山东大学微生物技术国家重点实验室从微生物学、生物化学、分子生物学、结构生物学等多学科出发对于解决上述问题进行了深入的研究。本文是从反应机理的角度,从反应动力学机理出发,探讨解决实际应用中的问题。本论文以纤维分解真菌Trichoderma pseudonkoningii S-38分泌的胞外纤维素酶以及从中分离到的外切纤维素酶1,4-β-D-glucan cellobiohydrolase I(CBHI)为材料,主要研究内容为:
     ●建立能够准确评价纤维素酶制剂对水解纤维材料的长时间总糖化能力,以及不同性质纤维材料酶解敏感性的测定方法;
     ●以反应过程的动态光谱变化为基础,建立CBHI酶活力的测定方法;
     ●深入的分析CBHI与其小分子底物对硝基酚纤维二糖苷(p-nitrophenyl-D-cellobioside,PNPC)的结合(Binding)过程的构象构型变化,以阐明结合在酶催化过程中的作用机理;
     ●研究了,温度和时间过程对CBHI催化PNPC反应的复合影响,以阐明动力学和热力学过程对酶催化的控制机理;
     ●对生物质资源的利用策略进行了探索和讨论。
     研究工作取得具有一定创新性结果如下:
     1.提出了一个可准确评价对纤维材料酶解糖化潜力的纤维素酶(系)催化活力的新方法,为应用研究中纤维素酶的准确定量测定这一难题,提供了解决方法。
     2.建立了一个可准确测定外切纤维素酶(CBHI)活力的动态光谱法,为纤维素酶作用机理研究提供了技术支持。
     3.证实OBHI结合底物对硝基苯纤维二糖(PNPO)时,OBHI的构象(Conformation)变化可导致PNPC构型(Configutation)的改变;证实了纤维二糖抑制纤酶活力的机理在于其能与OBHI活性中心附近的色氨酸残基结合发生位阻效应,是对酶催化机理的“诱导—契合”假说的进一步发展。
     4.从反应动力学和热力学机理以及数学分析相结合的角度,指出传统的研究中温度影响酶催化能力(催化活力和热稳定性测试)以及Arrhenius活化能等方法的局限性。并指出以时间—温度叠加法则测定了温度对酶催化过程的作用。分别选择复合函数表征瞬时速率和以偏导数之和表征产物瞬时增量的方法,以分析温度和时间对催化的综合影响。
     5.根据化学亲和力(Chemical affinity)并以净反应速率为工具,建立了一个可反映酶催化过程中自由能变化规律的方法。综合上述结果提出水解过程中,酶构象反复发生构型的变化,对以可逆平衡为基础等假说存在的问题进行分析的基础上,进一步提出酶是把环境中的热能转化为功的分子热能转换器,催化是一做功的过程,酶本身是参与反应的等关于酶反应机理的新假说。
     最后,对木质纤维材料生物转化利用的新策略做了一些探索性的实验。
     1.构建了能够准确评价纤维素酶制剂水解纤维材料的新方法,该方法可以用于评价不同性质纤维材料的酶解感受性。解决了目前应用CMC-Na方法和滤纸酶活法难以准确评价纤维材料被酶解糖化潜力的难题。
     由于纤维素的不溶性与结构异质性,以及纤维素酶系统的复杂性,并且因为传统的酶活力测定方法由于没有考虑到酶、底物浓度以及反应时间的影响,限于经验性的结果,拟合而缺少反应动力学分析的支持。特别是酶解过程中,底物结构变化对结果的影响,使测定结果之间难以比较,且不能反应纤维素酶制剂的真实糖化能力和纤维底物可被糖化的潜力。
     纤维素比底物转化率(Specific substrate conversion%,SSC)与纤维素酶的糖化能力密切相关,以其表征酶催化活力的变化,既能够反应纤维素酶制剂对底物的水解情况,又避免了酶与底物浓度对计算结果的影响,(Fig.1-A)。SSC的瞬时速率可以表征纤维素酶对底物的转化能力的变化,为了表征纤维素酶制剂对纤维素内禀的糖化能力,本文采用计算瞬时速率的曲线下总面积(The total area under the curve,AUC)的方法,该方法可以反映整个水解过程的信息(Fig.1-B)。在较大的纤维素酶与底物转化率范围之内,AUC-纤维素酶体积曲线在Y轴的截距与加入的酶浓度呈线性相关。
     Fig.1 (A) Time courses of SSC, during hydrolysis for filter paper by different concentrations of crude cellulase; (B) The relationship between cellulase concentration and its AUC calculated as d[SSC]/dt.
     本方法考虑到了纤维素酶浓度、纤维素底物浓度以及水解时间三个因素的共同影响,微分—积分方法,拟合数据合正确应用。所以能够准确测定纤维素酶粗酶对固体纤维素的糖化能力。经验证,本方法也适用于纤维素酶制剂对棉纤维、微晶纤维素PH101以及磷酸膨化纤维素等不同酶水解敏感度的纤维素底物水解活力的测定。经比较证实,本方法较国际纯粹和应用化学学会推荐的FPA(滤纸活力)法,能准确反映纤维材料被酶解糖化的潜力。
     对纤维素Ⅰ比纤维素Ⅱ形态与结构测定以及两者对稀酸水解和酶水解的感受性的比较结果表明,必须结合纤维素的酶水解过程才能正确评价不同纤维素底物酶解感受性的变化。应用本文提出的测定方法同样可以评价不同纤维素底物对特定纤维素酶的水解感受性,并在实际应用中评价各种纤维素改性方法对酶水解效率的促进作用。本文选取具有不同的结晶度、聚合度,以及无定形区含量的棉纤维、微晶纤维素PH101以及磷酸膨化纤维素等三种典型的纤维素模式底物,研究了不同类型纤维素底物酶解反应性。通常纤维素的改性一般会增加纤维素的比表面积,并提高纤维素无定形区的比例,因此,在对酶解效率改变的结果进行分析时应测定比表面积与无定形区的相对比例。
     2.建立了一个可准确测定外切纤维素酶(CBHI)活力的动态光谱法。
     CBHI是纤维素酶系中对结晶纤维素降解起决定作用的组分,目前,广泛应用的测定CBHI的PNPC水解活力方法,对底物浓度以及反应时间的选择都是经验性的,因此其酶活力测定的结果具有很大的随机性,并不适用于动力学研究。本文根据CBHI水解PNPC过程中动态光谱的变化,基于等吸光度点建立的一阶导数光谱的测定方法更加灵敏,其结果比经验性的方法具有更高的可比性,此外,该方法也应用于分析整个反应过程,以得到反应过程的动态(dynamic)变化,为酶催化机理分析提供了新方法。
     本文建立的测定方法其主要步骤为:
     (1)以样条插值的方法平滑实验数据以便测定瞬时反应速度;
     (2)应用基于导数光谱的等吸光度点为据,测定产物PNP的浓度;
     (3)以340-400nm一阶导数光谱的AUC对CBHI浓度作图,选择合适的反应时间,确定在此时间内酶浓度与催化速率之间应呈线性相关;
     (4)在选择的反应时间内,以一系列不同浓度的CBHI或者稀释的粗酶样品水解高浓度的底物PNPC。可以直接通过以CBHI的催化速率以及其瞬变速率对相应的CBHI浓度作图测定V_(max)与[E]_t,然后,通过简单计算即可以得到K_(cat)(反应速率常数),可用于酶作用机理的分析。
     该方法不仅能够很好的应用于CBHI纯酶催化活力的测定,而且对于含有内切酶和β-葡萄糖苷酶的酶制剂同样适用。另外,本方法对于多种邻/对硝基苯基类化合物酶水解活力的测定也具有普适性的意义。
     3.深入分析了CBHI与PNPC的结合机理。分别以紫外、荧光与ITC的方法以瞬变速率为基础,测定了CBHI与PNPC作用的摩尔结合位点数,并在饱和结合条件下测定了CBHI与PNPC的结构变化。证实了纤维二糖抑制纤维素酶活力的机理为其可以与CBHI催化结构域附近的色氨酸结合形成位阻效应,从而阻止纤维素糖链进入活性中心。
     通常的研究中,动力学分析主要集中于对一定条件下平衡状态的研究,习惯以可逆反应机理处理结合/吸附数据以及构建结合/吸附方程和进行机理分析,很少考虑饱和结合能力对结合结果的影响。我们的研究表明只有在饱和吸附点受体与配体结合的比例为一定值,游离的配体与受体所占比例最低,其光谱信号才能真正反映结合复合物的内禀的结构变化。在此基础上,本文以紫外光谱、荧光光谱以及ITC技术等三种方法,同时测定了CBHI与PNPC作用的饱和结合点,取得一致的结果;并提出可以通过求结合饱和度的瞬变速率V_(Inst)的方法,准确的测定结合的“摩尔结合位点数”,与传统方法中的最大结合量(B_(max))和达到1/2Bmax的底物浓度(K_d)等表征结合的参数比较,该参数可准确表征CBHI与PNPC之间的相互作用(Fig.2)。
     Fig.2 Comparison of the V_(Inst) curves of PNPC converted to PNP, fluorescence quenching %, and the quantity of heat released of CBHI binding by different molar ratio of PNPC with normalization.
     并在CBHI与PNPC的饱和结合点,以紫外光谱法观察到在结合复合物中PNPC的分子结构向PNP转变的构型变化,以荧光光谱法测定了结合诱导CBHI产生的构象变化。提出CBHI结合PNPC是受其结合的部分饱和度控制的不可逆过程,催化循环中,PNPC构型改变的热力学动力可能来自于结合过程中CBHI构象的可逆变化,在PNPC诱导CBHI发生构象变化的同时,CBHI也作用与PNPC使之产生构型的改变。另外,对荧光粹灭光谱的二阶导数谱进行分析表明,CBHI催化结构域内的色氨酸残基在PNPC的结合过程中发挥作用,这与CBHI结合结晶纤维素的方式有所差别。对本结果的普适性进行了讨论,提出:不可逆结合和底物在结合中会发生构型变化,在酶催化过程中具有普适性的看法,是对传统的“诱导—契合”理论的一个新的发展。
     4.从反应动力学和热力学机理以及数学分析相结合的角度,指出经典研究关于温度影响酶催化活力的分析以及计算Arrhenius活化能的局限性。根据时间—温度叠加法则分别选择复合函数瞬时速率c-v_(inst)以及关于产物瞬时增量dp_(t,T)作为目标函数,表征温度和时间对催化的综合影响;提出水解过程中,酶构象反复发生构型的变化,酶是把环境中的热能转化为功的分子热能转换器,催化是一做功的过程,酶本身是参与反应的,酶催化实际为可逆和不可逆的复合过程,可逆平衡假说具有局限性。
     温度是催化反应的重要变量。然而,在有/无底物存在的情况下,温度对酶的影响存在明显区别,因此,在存在底物的情况下讨论温度对酶催化特别是在酶的热稳性研究中的影响,在实际应用中具有更大的指导意义,但传统研究中均沿用无底物条件下升温的方法。
     本文以AUC_(370-400nm)为指标,测定了不同温度下CBHI水解PNPC的时间过程中PNP的产量。其结果表明PNP的产量是水解时间(t)与反应温度(T)的复合函数。因此,本文提出在讨论温度对催化的影响时,必须结合相应的时间过程。而通过圆二色谱解链试验,证明在所选的反应温度下,CBHI的活力改变受控于催化和抑制作用,而不可逆变性的影响可以忽略不计。根据温度—时间叠加法则,本文分别以复合函数求导得到的瞬时速率(V_(inst))与以偏导数法计算产物的瞬时增量(dp_(T,t))的方法分析上述两个参量对温度和时间的依赖性(Fig.3)。
     Fig. 3 Dependence of temperature and time course on the c-v_(inst) (A) and dp_(T,t) (B).
     有数种模型可以用于描述正态和不对称曲线,然而,因为这些曲线都十分复杂(比如方向、对称性和尾部等),很难构建一个模型,对所有曲线都具有高度适应性,而且在大多数情况下,模型的参数具有物理或者化学意义。本文尝试根据一阶和二阶导数速率的关系,基于两个曲线拐点和c-v_(sec)(瞬时速率的变化)曲线上0点的位置,将整个v_(inst)曲线可以分为四个阶段(Fig.4):
     Ⅰ.加速上升阶段。c-v_(inst)的加速度不断增加,从反应起始阶段至c-v_(sec)曲线达到最高值,在该点d~2v/dT~2达到最大值,而其位点大约为c-v_(inst)最大值的1/2。
     Ⅱ.减速上升阶段。c-v_(inst)的加速度不断减小至0,从c-v_(sec)曲线最高点降至0点,在该点d~2v/dT~2=0,而c-v_(inst)达到最大值的。
     Ⅲ.下降阶段。c-v_(inst)不断降低,从最高点降至大约1/2最大值的位置,此时d~2V/dT~2降至最小值位置。
     Ⅳ.加速下降阶段。c-v_(inst)曲线从1/2最大值位置到终点不断加速下降。
     Fig. 4 Estimation of the four phases of v_(inst) curve based on the relationship between v_(inst) and v_(sec) and there corresponding T_(acc), T_(opt-inst) and T_(inac-99).
     从数学角度讲,c-v_(inst)最大值所在的温度为反应的最适反应温度T_(opt-inst)。而二阶导数曲线c-v_(sec)最小值对应的温度为T_(inac-99)—催化活力丧失99%的温度。结果表明尽管在同样温度范围内,测定T_(opt)与T_(inac-99)都随反应时间过程的不同而有所区别。时间过程对T_(inac-99)比对T_(opt)的影响更加显著。
     同样根据PNP的瞬时增量计算得到的T_(opt-inc)比T_(opt-inst)高3-5K,这是由于T_(opt-inst)的测定是基于瞬时速率达到最大值的温度,而T_(opt-inst)则基于PNP累积量最大的温度,进一步还表明对于酶来讲,不存在具有内禀性质的T_(opt),所有的T_(opt)都是关于如温度、时间、pH等特定环境条件的函数。
     依据Zhang等提出的近抛物线模型并做出一些修改,本文提出对c-v_(inst)对温度曲线进行合理近似以得到净反应速率R_(net)的模型。并以以R_(net)作为独立变量,根据Arrhenius作图法计算反应过程中的表观活化能。结果表明Arrhemius活化能(E_a)并不是常数,而是依赖于温度和反应时间的复合函数。在一定的温度以上则出现负活化能。本实验室共进行了四组不同的试验,测定不同糖苷水解酶的表观活化能,其中两组为内切酶,一组为β-半乳糖苷酶,而另一组也为CBHI但底物为微晶纤维素粉。发现在高于最适反应温度时,总能观察到负的E_a。
     对上述结果的分析,表明以Arrhrnius作图的方法测定酶催化反应的表观活化能的结果,(E_a)对于解释反应机理不能提供可靠证据,而酶催化反应中负E_a的出现也表明不能将其作为表征温度影响酶催化的标准。
     根据化学亲和力假说和以净反应速率反映酶催化反应进行的程度,提出了一个可表征负反应自由能变化的方法,在CBHI、EGm、EGt等糖苷酶水解过程中得到实证(Fig.5)。
     Fig. 5 Comparison of the effects of temperature and time course on the hydrolysis of PNPC by CBHI expressed in three different manners.
     在以ITC技术分别测定三个温度下CBHI与PNPC结合和水解的结果后,进一步对以亲和力分析的方法作为确定催化和热力学关系的新途径进行了讨论。并详细讨论了传统研究中,基于可逆平衡的假设进行讨论的弊端,指出酶反应过程中,包括有不可逆反应和非平衡态,必须基于不可逆和非平衡的角度才能得到更加正确的分析结果。本文的前一部分的研究结果表明吸附过程中,底物即发生了不可逆的构型变化;而本部分的研究则证实水解过程中,酶构象反复发生构型的变化,并进一步提出,酶是把环境中的热能转化为功的分子热能转换器,催化是一做功的过程,酶本身是参与反应的。最后,本文还分析了ITC结果可信度不高的原因。
     最后,对木质纤维材料生物转化利用的新策略做了一些探索性的实验。
     本文以玉米秸秆的皮穰分离利用为例,展望了玉米秸芯为原料产酒精、多糖以及菌体蛋白的可行性,提出农业废弃物资源的利用应该本着“物尽其用”的原则,对不同结构状态的木质纤维,以最低成本为准,分别利用,要考虑工业成本、原材料全利用和环境影响等多个方面,而不能仅以纤维素的利用转化率为唯一目标。而工业中纤维质废弃物的运输与存储的成本是其大规模生产的限制性因素,其综合利用有利于降低对环境的污染。因此,尽量增加纤维质废弃物的用途,提高其利用率和降低生产成本是主要的研究方向。本文还以海带残渣为原料生产燃料乙醇为例进行了讨论,表明海带残渣比秸秆等木质纤维素资源更适合用作发酵产乙醇的原料。木素的存在是木质纤维材料生物转化中必须克服的障碍,目前物理/化学预处理工艺为其必不可少的前提,然而,又一直存在成本过高和环境污染等难题。我们试图探索在不进行木素去除的条件下对某些木质纤维材料进行酶解利用的途径。
Cellulose is a biomass having the most potential in utilization. Its can be used to replace fossil energy. The main problem in its utilization is the conversion of cellulose to fermentable reducing sugars.
    Because of the insolubility and inhomogeneous structure of cellulose, and the complexity of cellulase system, it is difficult to design a rational quantitative assay using cellulose as substrate. However, The cornerstone of enzyme engineering is to achieve a direct correlation between the enzyme assays or screening approaches and the changes in enzyme functions in the desired application.
    Information of the catalysis mechanism and the effect of catalytic condition is very important in improving the cellulase enzyme performance. And the binding of enzyme and substrate is the prerequisite step of catalytic reaction. So far, the analysis in binding/ adsorption studies assumes a one-step reversible interaction between the ligand and receptor. However, as criticized in chemistry textbooks elsewhere, the above simple assumption only adapted for the elementary reaction, and is limited for multi-component systems. In addition, temperature is a very important factor of the enzymatic catalysis reaction. However, the method and the conclusion of studies about the effect of temperature on enzymatic reactions in kinetics, thermodynamics, and bioengineering are conflicting.
    The crude cellulase and the purified 1,4-β-D-glucan cellobiohydrolase I (CBHI) produced by a cellulolytic fungus Trichoderma pseudonkoningii S-38 were used as the material. A new approach to accurately estimating the potential capacity of a cellulase system for the hydrolysis of insoluble cellulosics is described, which can be used to evaluate the susceptibility of different cellulose. Based on the dynamic spectra of reaction, an assay method determining the activity of CBHI for p-nitrophenyl-D-cellobioside (PNPC) was established. The mechanism of CBHI binding to PNPC and the effect of temperature on catalysis in certain time courses were studied in detail. At last, the strategy in biomass utilization was discussed. New discoveries established during my Ph.D., were as follows:
    1. Establish a new approach to accurately estimating the potential saccharifying activity of a cellulase system for the hydrolysis of insoluble cellulosics, which can be used to evaluate the susceptibility of different cellulose.
    Because the classic cellulase assay methods do not take into account all of the effective factor, it prevents any accurate comparison to be made between the outcomes of different experiments.
    Specific Substrate conversion percentage (SSC) of cellulose is closely related to the saccharifying activity of cellulase. SSC was used to express the catalytic rate to overcome the influence cause by the concentration of enzyme and cellulose (Fig.1-A). The converting ability of cellulase for the cellulose can be expressed by the of d[SSC]/dt. For expressing the intrinsic saccharifying of cellulase, the total area under the curve (AUC) of d[SSC]/dt was used to reflect information of the total hydrolysis reaction (Fig.1-B). The Y-intercept of AUC-cellulase adding curve was linear related with the amount of cellulase added.
    Fig. 1 (A) Time courses of SSC, during hydrolysis for filter paper by different concentrations of crude cellulase; (B) The relationship between cellulase concentration and its AUC calculated as d[SSC]/dt.
    This method takes account into the influence of concentration of cellulase and cellulose added, and the hydrolysis time. Thus, it quantitatively reflects the saccharifying activity of cellulase, and reliable results were obtained that the method can also be used to determine the activity of cellulase for cotton fiber, Avicel PH101, and phosphate acid swollen cellulose (PASC). The comparison of morphology, structure, and the susceptibility of dilute and enzymatic hydrolysis between cellulose I and cellulose II showed that the susceptibility of cellulosics for enzymatic hydrolysis must be estimated by actual hydrolysis. The assay method can also be used for estimating the susceptibility of different cellulosics to evaluate the effect of cellulose treatment. The susceptibility of enzymatic catalysis of cotton fiber, Avicel PH101, and PASC was studied. The treatment of cellulose often increases the special area and the ratio of amorphous region, so they were estimated as well.
    2. Establish an assay method of CBHI by numerical differentiation of dynamic UV spectroscopy
    In the widely used assay method of CBHI, the reaction conditions such as concentrations of enzyme and PNPC, and the reaction time are empirically selected, thus the dynamic properties of catalytic reaction will not be estimated.
    This method was more sensitive based on the analysis of numerical differentiation of dynamic UV spectroscopy, and the result of which is more comparable, furthermore it can be used to analyze the entire reaction process. The main step of the method is:
    (1) Smoothing experimental data by spline interpolation method;
    (2) Use of isosbestic points of derivative absorbance curves as an index to determine the concentration of PNP.
    (3) From the plot of first derivative AUC_(340-400nm) versus concentrations of CBHI, evaluation of suitable reaction time, in which a linear relationship would be established between enzyme concentration and catalytic activity.
    (4) Finally, at the selected reaction time, using higher concentration of PNPC as substrate hydrolyzed by a series of different concentration of CBHI or a series of diluted crude cellulase samples. The V_(max) and [E]_t can be directly observed from the plot of instantaneous rate of CBH I activities versus different concentration of CBH I. Then K_(cat) will be obtained by simple calculate.
    The above assay procedure was very well not only for pure CBH I preparations but also for crude cellulase preparations. 3. Analyzed the mechanism of PNPC binding to CBHI in detail. The binding stoichiometry was determined base on the instantaneous rate by UV and fluorescence quenching spectra, and isothermal titration calorimetry (ITC) technique. And the structure changes of CBHI and PNPC were determined at SBP.
    The behavior of specific bonds between CBHI and PNPC was expressed by the binding stoichiometry — molar binding sites that can accurately determined by its instantaneous rate. Fig.2 combines the results of the instantaneous rate of UV spectra, fluorescence quenching, and the quantity of heat released (Fig.2), from which the SBP can be easily determined.
    The conformational changes in CBHI induced by binding of PNPC were analyzed by second-derivative fluorescence spectrometry at the saturation binding point (SBP). And the configurational changes of PNPC in binding process have been evidenced by UV spectra. The technique of isothermal titration calorimetry (ITC) was used to accurately determine the stoichiometry of binding (the molar binding sites) for CBHI to PNPC. All the results suggested that there are at lease two points on CBHI surface that can be bound by PNPC, and the configurationally changes in PNPC converted to PNP (p-nitrophenyl) were observed during binding process. Analysis by fluorescence quenching indicated that the hydrophobic interactions probably play an important role in the binding process, and two tryptophan residues located in catalysis domain contribute to the binding. The results also demonstrated that the binding process of PNPC to CBHI is not an equilibrium process controlled by binding and de-sorption, but an irreversible process controlled by the saturability — degree of fractional saturation. These new insights derived from the interaction between the CBHI and PNPC may provide a basis for further understandings of the binding mechanism for enzyme-substrate interaction.
    4. Propose that the effect of temperature on the catalysis and Arrhenius E_a must be analyzed combining with time course; the instantaneous rate (c-v_(inst) and dp_(t,T) was used as a basis for analyzing the effect of temperature and time course on the dynamics; both temperature and time course have the effect on the character of thermodynamics, and temperature was more affective; and estimating the effect of temperature on the structure of CBHI. Suggest that the conformation of enzyme continuously changes during the hydrolysis, further more an enzyme is a "machine" that translates the energy into work, and the enzyme take part in the catalysis process.
    Temperature is a important variable of catalytic reactions. However, the effect of temperature on enzyme differs greatly with the presence and absence of substrate. Thus, the result is more instructive for actual use when analyzed the temperature effect on the enzymatic catalysis. The time courses of PNPC hydrolyzed by CBHI under different temperatures were determined. The result showed that output of PNP is the compound function of hydrolysis time (t) and reaction temperature (T). Thus, the effect of temperature on the catalysis must be analyzed combining with time course. The instantaneous rate (V_(Inst)) obtained by compound function and instantaneous increment (dP_(T,t)) obtained from partial derivative are two different concepts.
    The variation of CBHI activity was controlled only by both combination of catalysis and inhibition effects and the affect by the irreversible denaturation can then be neglected. This is supported by the melting studies of Circular Dichroism. In the paper, compound function method was used to evaluate the combining effects of temperature and time course on V_(inst) , and the instantaneous increments (V_(inc))(Fig. 3). Fig. 3 Dependence of temperature and time course on the c-V_(inst)(A) and dp_(T,t) (B).
    Several models can be used to describe the characteristics of those normal and asymmetric curves. However, because of the complexity of these curves (fronting, symmetric, and tailing etc), it is so difficult to construct a highest flexibility model best fitting to all those different curves, and in most cases no physical or chemical meaning can be associated with the values taken by the parameters. We therefore tried to consider a new way to overcome this difficulty.
    Based on the position of two turning points and one zero point on curve of c-v_(sec), the change of instantaneous rate, the c-V_(inst) during entire curve can be separated into four phases:
    I. Accelerating increase phase. The c-V_(inst) accelerating increases from the initial up to the
    maximum point on curve of c-v_(sec) at which d~2V/dT~2 reached the maximum value it as about the 1/2 maximum of the c-V_(inst) ,
    II. Decelerating increase phase. The c-V_(inst) increases with decelerating rate from the maximum point to the zero point on curve of c-v_(sec) at which d~2V/dT~2 reaches zero value.
    III. Declining phase. The c-V_(inst) continuously decreases from zero point to about the 1/2 maximum of the decline step at which d~2V/dT~2 reached the minimum point.
    IV. Accelerating declining phase. The c-V_(inst) accelerating decreases from 1/2 maximum point to the end.
    Mathematically, the corresponding point of the maximum value of c-v_(inst) on temperature-axis indicates the optimum temperature, T_(opt-inst) And the minimum point c-v_(sec) curve is corresponding to the T_(inac-99)-the catalysis activity has lost 99% at this temperature. They showed even the assays under same temperature, however, the T_(opt-inst) and T_(inac-99) are all varied with the assay time course and increase of temperature can decreased the time course for reached the T_(opt-inst) and T_(inac-99), while those effect is more for
    T_(inac-99) than T_(opt-inst)(Fig. 4).
    Fig. 4 Estimation of the four phases of v_(inst) curve based on the relationship between v_(inst) and v_(sec) and there corresponding T_(acc) , T_(opt-inst) and T_(inac-99)
    Following the method proposed by Zhang and Wang for quasi-parabola model, and gives some modified, a rational approximation to modeling the curve of c-V_(ins) versus temperature to get the R_(net) . And R_(net) was used as independent variable to calculate the apparent activation energy by Arrhenius plot. As suggested, the Arrhemius activation energy (E_a) is not a constant while is a compound function of temperature and assay time course dependence. The positive slope is equivalent to negative activation energy, which only appeared as the temperature is beyond certain point.
    There are four experimental results performed in our Lab, for estimation of apparent activation energy, two of which belong to β-Endoglucanase, one is the β-Galactosidase and the another one is also CBHI but for hydrolysis of Microcrystalline cellulose powder. A negative Ea are always observed as the temperature beyond the T_(opt).
    The studies in enzyme-catalysis, performed with Arrhenius plot to estimate the apparent activation energy, E_a that does not provide favor- able information for explain the reaction mechanism. And the existence of negative E_a during enzyme-catalysis reaction also suggested that there is no possibility for identification of the Ea as a criterion to express the temperature effect on enzyme-catalysis reaction. Thus in this paper, we suggest using the extent of reaction of enzyme-catalysis can be reflected by the net reaction rate.
    According to the Chemical affinity theory, based on the calculation of net reaction rates, a method was proposed for expressing the negative free energy, and examined by the hydrolysis result of CBHI, EGm and EGt (Fig. 5).
    The quantity of heat released, the Q, during the binding of PNPC to CBHI at 277, 279 and 281 K and hydrolysis at 309, 311 and 313 K were measured by ITC, and explored a new way for establishing the connection between catalysis and thermodynamics ?affinity analysis. And point out that there are irreversible and non-equilibrium processes in the whole catalysis process, and this character must be considered in the analysis so that we can obtain the more correct result. The above result suggested that the irreversible configurational changes of substrate has occurred during the binding process; while in this part, we found that the conformation of enzyme continuously changes during the hydrolysis, and furthermore, an enzyme is a machine that translate the energy in the circumstance into work, and it takes part in the catalysis process.
    5. Discussed the strategy in biomass utilization
    The main problem of biomass utilization is the high cost in conversion. The separation of cornstalk core and its further conversion was chosen as an example for discussing the feasibility of the production of alcohol, amylase, and protein feed. Propose that the utilization of agricultural waste should follow the fundamental of "make the best use of everything". While the transport and storage cost of industrial waste was very low compared to agricultural waste, on the contrary, its utilization is beneficial to reduce the pollution. Thus, developing the new use and increase the utilized ratio of industrial waste is main object. The industrial waste of kelp was selected as material in alcohol production, and the result suggested that it is more suitable than lignocellolose such as cornstalk.
引文
Agmon N. Conformational cycle of a single working enzyme. J. Phys. Chem. B. 2000, 104:7830-7834.
    Aktas N., Boyen I.K, Mutlu M., and Tanyobac A. Optimization of lactose utilization in deproteinated whey by Kluyveromyces marxianus using response surface methodology (RSM). Bioresour Technol. 2006, 97:2252-2259.
    Alberty R.A. Relations between biochemoical thermodynamics and biochemical kinetics. Biophysical Chemistry 2006.124:11-17.
    Allison R.D., Purich D.L. Practical considerations in the design of initial velocity enzyme rate assay. Methods Enzymol 1979, 63:3-22.
    Aminlari M., Vaseghi T. A new colorimetric method for determination of creatine phosphokinase. Anal Biochem 1987, 164:397-404.
    Anastas P.T., Warner J.C.L. Green chemistry, theory and practices. Oxford Great Britain, Oxford University Press, 2000.
    Arato C, Pye E.K., Gjennestad G. The lignol approach to biorefining of woody biomass to produce ethanol and chemicals. Appl Biochem Biotechnol 2005,121-124:871 - 882.
    Argirova M. C, and Argirov O. K. Correlation between the UV spectra of glycated peptides and amino acids, Specrochimica Acta Part A 1999, 55:245-250.
    Arnold F.H., Wintrode P.L., Miyazaki K., Gershenson A. How enzymes adapt: lessons from directed evolution. Trends Biochem Sci. 2001, 26:100-106.
    Arai K. New catalysis system for hydrolysis of model substances of cellulose. In Brown R.D. and Jurasek L. Eds. Hydrolysis of cellulose mechanisms of enzymatic and acid catalysis. Advances in chemistry series 181, Washington, 1979.
    Arrhenius S. 1889. Uber die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Sauren. Z. Physik. Chem. 4:226-248.
    Barbara S., Berlett R.L. Use of isosbestic point wavelength shifts to estimate the fraction of a precursor that is converted to a given product. Analytical biochemistry 2000, 287:329-333.
    Bardsley W.G., Wright A.J. A new approach to the measurement of sigmoid curves with enzyme kinetic and ligand binding data. J. Mol. Biol. 1983, 165:163-182
    Barr B.K., Holewinski R.J. 4-Methyl-7-thioumbelliferyl-beta-D-cellobioside: a fluorescent, nonhydrolyzable substrate analogue for cellulases. Biochemistry 2002, 41:4447-4452.
    Barr B.K., Hsieh Y.L., Ganem B., and Wilson D.B. Identification of two functionally distinct classes of exocellulases. Biochemistry 1996, 35:586-592.
    Bates D.J., and Frieden C. Treatment of enzyme kinetic data. The Journal of Biological Chemistry 1973, 248:7878-7884
    Beezer A.E. An outline of new calculation method for the determination of both thermodynamic and kinetic parameters from isothermal heat conduction microcalorimetry. Thermochinica Acta 2001, 380:205-208.
    Beguin P., and Aubert J.P. The biological degradation of cellulose. FEMS Microbiology Reviews. 1994, 13:25-58.
    Berlett B.S., Levine R.L., Stadtman E.R. Use of isosbestic point wavelength shifts to estimate the fraction of a precursor that is converted to a given product. Anal Biochem. 2000, 287: 329-333
    Bhat K.M., Hay A.J., Claeyssens M., Wood T.M. Study of the mode of action and site-specificity of the endo-(1-4)-beta-D-glucanases of the fungus Penicillium pinophilum with normal, l-3H-labelled, reduced and chromogenic cello-oligosaccharides. Biochem J 1990,266:371-378.
    Boeker E.A. Initial rates. A new plot. Biochem J. 1982,203:117-123.
    Boeker E.A. Integrated rate equations for enzyme-calalysed first-order and second-order reaction. Biochem. J. 1984,223:15-22.
    Boisset C, Chanzy H., Henrissat B., Lamed R.L., Shoham Y., Bayer E.A. Digestion of crystalline cellulose substrates by the Clostridium thermocellum cellulosome: structural and morphological aspects. Biochem J. 1999, 340:829-835.
    Boisset C, Petrequin C, Chanzy H., Henrissat B., Schulein M. Optimized mixtures of recombinant Humicola insolens cellulases for biodegradation of crystalline cellulose. Biotechnol. Bioeng. 2001, 72:339-345.
    Boraston A.B. The interaction of carbohydrate-binding modules with insoluble non-crystalline cellulose is enthalpically driven. Biochem J. 2005, 385:479-484.
    Boraston A.B., Ghaffari M., Warren R.A.J., and Kilburn D.G Identification and glucan-binding properties of a new carbohydrate-binding module family. Biochem. J. 2002, 361:45-40.
    Bradford M.M. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 1976, 72:248-254.
    Bronshtein LN., and Semendyayev K.A. Handbook of Mathematics 4th ed., Springer-Verlag, New York. 2004.
    
    Boudart M. Consistency between kinetics and thermodynamics. J. Physical Chemistry 1976, 28:2869.
    Bruice T.C. A view at the millennium: the efficiency of enzymatic catalysis. Acc. Chem. Res. 2002, 35:139-148.
    
    Bruice T.C. and Benkovie S.J. Chemical basis for enzyme catalysis. Biochem. 2000, 39:6267-6274.
    Carcia E., Johnston D., Whitaker J.R., Shoemaker S.P. Assessment of endo-l,4-beta-D- glucanase activity by a rapid colorimetric assay using disodium 2,2'-bicinchoninate. J Food Biochem 1993, 17:135-145.
    Carvalho A.L., Goyal A., Prates J.A., Bolam D.N., Gilbert H.J., Pire, V.M., Ferreira L.M., Planas A., Romao M.J., & Fontes C.M. The family 11 carbohydrate-binding module of Clostridium thermocellum Lic26A-Cel5E accommodates beta-1,4- and beta-l,3-l,4-mixed linked glucans at a single binding site. J. Biol. Chem. 2004, 279:34785-34793.
    Chernov N., Lesort C, and Simanyi N. On the complexity of curve fitting algorithms. Journal of complexity 2004,20:484-492.
    Cherry J.R., Fidantsef A.L. Directed evolution of industrial enzymes: an update. Curr. Opin. Biotechnol. 2003,14:438-443.
    Citri N. Conformational adaptability in enzymes. Adv. Enzymol. Relat. Areas Mol. Biol. 1973, 37:397-648.
    Claeyssens M, Aerts G. Characterisation of cellulolytic activities in commercial Trichoderma reesei preparations: an approach using small, chromogenic substrates. Bioresour Technol 1992, 39:143-146.
    Cleland W.W. Partition analysis and the conception of net rate constants as tools in enzyme kinetics. Biochemistry 1975, 14:3220-3224.
    
    Cleland,W.W. An analysis of Haldance relationships, Methods in Enzymology 1982, 87:366-369.
    Collison R. Reversible and irreversible reaction. Education Chemistry 1967,4:109-110.
    Coughlan M.P. The properties of fungal and bacterial cellulases with comment on their production and applications. Biotechnol. Genet. Eng. Rev. 1985, 3:39-109.
    Coughlan M.P., and Collaco M.T.A. Advances in biological treatment of lignocellulosic materials. Elsevier Appl Sci, Essex, 1990.
    Coward-Kelly G., Aiello-Mazzari C, Kim S., Granda C, Holtzapple M. Suggested improvements to the standard filter paper assay used to measure cellulase activity. Biotechnol. Bioeng. 2003, 82:745-749.
    Cox C, Camus P., & Duvivier J. An enzymatic cycling procedure for NAD+ using an irreversible reaction with NAD+-peroxidase. Anal. Biochem. 1982, 119:185-193.
    Cukrowaki A.S., and Telka M.A. The role of nonequilibrium effects on negative Arrhenius activation energy in a Lorentz gas. Chemical Physica Letter 1998, 297:402-408.
    Dahiya J.S. Fungal degradation of lignin. Indian J Nicrobiol, 1989, 29:1-14
    Daniel R.M., and Danson M.J. Assaying activity and assessing thermostability of hyperthermophilc enzymes. Methods in Enzymology. 2001, 334: 283-293.
    Dainel R.M., Danson M.J., and Eisenthal R. The temperature optima of enzymes: a new perspective on an old phenomenon. Trends Biochem. Sci. 2001, 26:223-225.
    Dainel R.M., Dines M., and Petach H.H. The denaturation and degradation of stable enzymes at high temperatures. Biochem J. 1996, 317:1-11.
    Darvey,I.G. One substrate-one product enzymic reaction: The determination of the velocity constants for an enzyme mechanism involving two conformational forms of enzyme and one enzyme intermediate. J.Theor.Biol. 1977, 66:653-663.
    
    Day D.F., Workman W.E. A kinetic assay for cellulases. Anal Biochem. 1982, 126: 205-207.
    Davidson T.C., Newman R.H. and Ryan M.J. Variations in the fibre repeat between samples of cellulose I from different sources, Carbohydr. Res. 2004, 339:2889-2893.
    
    Davies G, Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure 1995, 3:853-859
    De Donder. Lecons de Thermodynamique et de Chimie Physique. Paris. Gauthier-Villars. 1920.
    Decker S.R., Adney W.S., Jennings E., Vinzant T.B., Himmel M.E. Automated filter paper assay for determination of cellulase activity. Appl. Biochem. Biotechnol. 2003, 105-108: 689-703.
    Demeeste J., Brade M., and Lanwers A. Absolute viscosimetirc method for the determination of endoglucanase activities. Advances in Chemistry. Washington D C.1979, pp 91-126.
    Denbigh G.K. The principles of chemical equilibrium. 4th ed. Cambridge University Press, Cambridge. 1981. pp. 63-94.
    Deshpande M.V., Eriksson K.E., Pettersson L.G. An assay for selective determination of exo-l,4,-p-glucanases in a mixture of.cellulolytic enzymes. Anal. Biochem. 1984, 138: 481-487
    Dicko M.H., Searle-van Leeuwen M.J.F., Beldman G, Quedraogo O.G., Hilhorst R., Traore A.S. Purification and characterization of beta-amylase from Curculigo pilosa. Appl. Microbiol. Biotechnol. 1999, 52:802-805
    Dinand E., Vignon M., Chanzy H., and Heuz L. Mercerization of primary wall cellulose and its implication for the conversion of cellulose I→ cellulose II. Cellulose 2002, 8:7-18.
    Divne C., Stahlberg J., Reinikainen T., Ruohonen L., Pettersson G, Knowles J.K.C., Teeri T.T. & Jones T.A. The three-dimensional structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 1994, 265:524-528.
    Divne C, Stahlberg J., Teeri T. T., & Jones T. A. High-resolution crystal structures reveal how a cellulose chain is bound in the 50 A long tunnel of cellobiohydrolase I from Trichoderma reesei. J. Mol. Biol. 1998, 275:309-325.
    Duan X.Y., Liu S.Y, Zhang W.C., Zhang Q.X. and Gao P.J. Volumetric productivity improvement for endoglucanase of Trichodermapseudokoingii S-38. J Appl Microbiol. 2004, 96: 772-776
    Duggleby R.G. Estimation of the initial velocity of enzyme-catalysed reactions by non-linear regression analysis of progress curves. Biochem. J. 1985,228:55-60.
    Duggleby R.G. Progress-curve analysis in enzyme kinetics. Numerical solution of integrated rate equations. Biochem. J. 1986, 235: 613-615.
    Duggleby R.G., and Clarke R.B. Experimental designs for estimating the parameters of the Michaelis-Menten equation from progress cueves of enzyme-catalyzed reactions. Biochemica et BiophysicaActa 1991,1080:231-236.
    Enari T.M., Niku-Paavola M.L., Harju L., Lappalainen A., and Nummi M. Purification of Trichoderma reesei and Aspergillus niger β-glucosidase. J. Appl. Biochem. 1991, 185: 515-519.
    Eriksson T., Karlsson J., and Tjerneld F. A model explaining declining rate in hydrolysis of lignocellulose substrates with cellobiohydrolase (cel 17A) and endoglucanase I (cel 17B) of Trichoderma reesei. Appl. Biochem. Biotechnol. 2002,101:41-60.
    Monserrate, E., Leschine S.B., Canale-Parola. E. Clostridium hungatei sp. nov., a cellulolytic N2-fixing bacterium isolated from soil. International Journal of Systematic and Evolutionary Microbiology 2001,51:123-132.
    Fan L.T., Lee Y.H., David H. Mechanism of the enzymatic hydrolysis of cellulose: effects of major structural feature of cellulose on enzymatic hydrolysis. Biotech. & Bioeng. 1980,22:177-199.
    Fang J., Liu W., and Gao P.J. Cellobiose dehydrgenease from Schizophyllum commune. Archives of Biochemstry and biophysics 1998,353:37-46.
    Fierobe H.P., Bayer E.A., Tardif C, Czjzek M., Mechaly A., Belaich A., Lamed R., Shoham Y. and Belaich J.P. Degradation of cellulose substrates by cellulosome chimeras: substrate targeting versus proximity of enzyme components. J. Biol. Chem. 2002,277:49621-49630.
    Fisher H.F., & Singh N. Calorimetric methods for interpreting protein-ligand interactions. Methods Enzymol. 1995,259:194-221.
    Fuchs H., & Gessner R. The result of equilibrium-constant calculations strongly depends on the evaluation method used and on the type of experimental errors. Biochem. J. 2001, 359:411-418.
    Gao P.J. A simple method for estimating cellobiose activity by determination of reduced sugars. Biotech. & Bioeng. 1987,24:903-905.
    Gao P.J., Chen G.J., Wang T.H., Zhang Y.S., & Liu J. Non-hydrolytic Disruption of Crystalline Structure of Cellulose by Cellulose Binding Domain and Linker Sequence of Cellobiohydrolase I from Penicillium janthinellum. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 2001, 33:13-18.
    Gao P.J., Qu Y.B., and Wang Z.N. Estimating the pitfalls in the assay of FPA by use of multiple regression analysis. J Biomoth. 1990, 5:15-50.
    Gao P.J., Qu Y.B. and Wang Z.N. The use of multiple regression analysis for estimating the action pattern of cellulase fraction in hydrolysis of cellulose. J. Biomath.1989,4:144-150.
    Ghose T.K. Measurement of cellulase activities. Pure & Appl. Chem. 1987, 59: 257-268.
    Gilkes N.R., Kilburn D.G., Miller R.C. Jr., Warren R.A., Sugiyama J., Chanzy H., & Henrissat B. Visualization of the adsorption of a bacterial endo-beta-1,4-glucanase and its isolated cellulose-binding domain to crystalline cellulose. Int. J. Biol. Macromol. 1993, 15:347-351.
    Gilkes N.R., Warren R.A., Miller R.C. Jr., & Kilburn D.G. Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis. J. Biol. Chem. 1988, 263:10401-10407.
    Glazer A.N., and Smith E.L. Effects of denaturation on ultraviolet ansorption spectra of prot3ein. J.Biol.Chem. 1960, 235:43-44.
    Graham D. Characterization of physical adsorption systems. III. The separate effects of pore size and surface acidity upon the adsorbent capacities of activated carbons. Chem Eng. J. 1955, 59:896-900.
    Gregg S.J., Sing K.S.W. The physical adsorption of gases by nonporous solids: The type II isotherm. In: Adsorption, surface area and porosity. London: Academic Press. 1982, pp. 41-110.
    Grethlein H.E. The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulose substrates. Bio/Technol 1985, 3:155-160.
    Griffin H.L. Filter paper assay—effect of time and substrate concentration on cellulase activity. Anal. Biochem. 1973,56:621-625.
    Gusakov A.V., Sinitsyn A.P., Gerasimas V.B., Savitskene R.Y., Steponavichus Y.Y. A product inhibition study of cellulases from Trichoderma longibrachiatum using dyed cellulose. J. Biotechnol. 1985,3:167-174.
    Gutteridge A., & Thornton J. Conformational change in substrate binding, catalysis and product release: an open and shut case? FEBS Lett. 2004, 567:67-73.
    Gutteridge A., & Thornton J. Conformational changes observed in enzyme crystal structures upon substrate binding. J. Mol. Biol. 2005, 346:21-28.
    Hagerman A.E., Blau D.M., and McClure A.L. Plate assay for determining the time of production of protease, cellulase, and pectinases by germinating fungal spores. Anal. Biochem. 1985,151:334-342.
    Hakamada Y., Endo K., Takizawa S., Kobayashi T, Shirai T., Yamane T., Ito S. Enzymatic properties, crystallization, and deduced amino acid sequence of an alkaline endoglucanase from Bacillus circulans. Biochim Biophys Acta. 2002, 1570:174-180.
    Hase W.L. Some recent advance and remaing questions regarding unimolecular rate theory. Acc. Chem. Res. 1998,31:659-665.
    Henrissat B. A classification of glycosyl hydrolases based on amino-acid sequence similarities. Biochem J. 1991,280:309-316.
    
    Henrissat B. Cellulases and their interaction with cellulose. Cellulose 1994, 1:169-196.
    Henrissat B., Bairoch A. New families in the classification of glycosyl hydrolases based on amino- acid sequence similarities. Biochem. J. 1993,293:781-788.
    Henrissat B., Bairoch A. Updating the sequence-based classification.of glycosyl hydrolases. Biochem. J. 1996,316:695-696.Hestrin S. Bacterial cellulose. Methods Carbohydr. Chem. Academic Press; 1963. pp 4-9.
    Hibino T. Nonfixed Relationship of the Michaelis Constant and Maximum Velocity with Their Corresponding Rate Constants. J. Biol. Chem. 2005, 280: 30671-30680.
    Himmel M.E., Adney W.S., Baker J.O., Nieves R.A. and Thomas S.R. Cellulases for commodity products from cellulosic biomass. Curr. Opin. Biotechnol. 1999, 10:358-364.
    Hinterstoisser B., Salmen L. Application of dynamic 2D FTIR to cellulose. Vibration Spectroscopy, 2000,22:111-118.
    Holtzapple M.T., Caram H., Humphrey A.E. Determining the inhibition constants in the HCH-1 model of cellulose hydrolysis. Biotechnol. Bioeng. 1984, 26:735 - 757.
    Horton, H.R. Principles of biochemistry. 3nd ed. Prentice Hall, 2002, pp.134-135.
    
    Hoshino E., Shiroishi M., Amano Y., Nomura M., Kanda T. Synergistic actions of exo-type cellulases in the hydrolysis of cellulose with different crystallinities. J. Ferment Bioeng. 1997, 84:300-306.
    Hoxter G. Suggested isosbestic wavelength calibration in clinical analysis. Clin. Chem. 1979, 25:143-146
    Humphrey A.E. The hydrolysis of cellulosic materials. In Brown R.D., Jurasek L. Eds. Hydrolysis of cellulose mechanisms of enzymatic and acid catalysis. Advances in chemistry series 181, Washington, 1979.
    Huang C.Y. Derivation and initial velocity and isotope exchange rate equation. Methods Enzymol. 1979, 63: 54-84.
    Huang, C.Y. Determination of binding stoichiometry by the continuous variation method: the Job plot. Methods Enzymol. 1982, 87:509-525.
    IllIanes A., and Eilson L. Enzyme reactor design under thermal inactivation. Crit Rev Biotechnol. 2003, 23:61-93.
    Illanes A., Wilson L., Tomasello G Effect of modulation of enzyme inactivation on temperature optimization for reactor operation with chitin-immobilized lactase. Journal of Molecular Catalysis B: Enzymatic, 2001, 11:531-540.
    Illanes A., Wilson L., Tomasello G. Temperature optimization for reactor operation with chitin-immobilized lactase under modulated inactivation Enzyme and Microbial Technology 2000, 27:270-278.
    Irwin D., Spezio M., Walker L.P., Wilson D.B. Activity studies of eight purified cellulases: specificity, synergism and binding domain effects. Biotechnol. Bioeng. 1993,42:1002 - 1013.
    IUPAC-IUB. Commission on Biochemical Nomenclature. Abbreviations and symbols for the description of the conformation of polypeptide chains. Tentative rules (1969). Biochemistry 1970, 9:3471-3479.
    IUPAC-IUB. Joint Commission on Biochemical Nomenclature (JCBN). Symbols for specifying the conformation of polysaccharide chains. Recommendations 1981. Eur. J. Biochem. 1983, 131:5-7.
    James K.L., and Jorgenson J.W. A hybrid of exponential and Gaussian functions as a simple model of asymmetric chromatographic peaks. J Chromatography A 2 001,915:1-13.
    Jang S.J., Ham M.S., Lee J.M., Chung S.K., Lee H.J., Kim J.H., et al. New integration vector using a cellulase gene as a screening marker for Lactobacillus. FEMS Microbiol. Lett. 2003, 224:191-195.
    
    Jarvis M. C. Cellulose stacks up. Nature 2003,426:611-612.
    
    Jarvis M.C. Interconversion of the I_α snd I_β crystalline forms of cellulose by bending. Carbohydr. Res. 2000,325:150-154.
    Jezewska M.J., & Bujalowski W. Quantitative analysis of ligand-macromolecule interactions using differential dynamic quenching of the ligand fluorescence to monitor the binding. Biophys. Chem. 1997,64:253-269.
    Jin Q.S., and Bethke C.M. A new rate law describing microbial respiration. App.Envr.Microbial. 2003, 69:2340-2348.
    Johnson F.H., Eyring H., and Polissar M.J. The kinetic basis of molecular biology. Chaps. 1 and 8. Wiley, New York. 1954.
    Juhasz P., Vestal M.L., and Martin S.A. On the initial velocity of ions generated by matrix-assisted laser desorption, ionization and its effect on Gilibration of delayed extraction time-flight mass spectra. J Am Soc Mass Spectrom. 1997, 8:209-217.
    Kaewprasit C, Hequet E., Abidi N., et al. Application of methylene blue adsorption to cotton fiber specific area measurement: Part I . Methodology. The journal of cotton science 1998,2:164-173.
    Karlsson J., Momcilovic D., Wittgren B., Schulein M., Tjerneld F., Brinkmalm G. Enzymatic degradation of carboxymethyl cellulose hydrolyzed by the endoglucanases Cel5A, Cel7B, and Cel45A from Humicola insolens and Cel7B, Cel12A and Cel45Acore from Trichoderma reesei. Biopolymers 2001, 63:32 - 40.
    Kelly GC, Mazzari C.A., Kim S., et al. Suggested improvements to the standard filter paper assay used to measure cellulase activity. Biotechnol. Bioeng. 2003, 82:745-749.
    Kim J.E., Pan D., Mathies R.A. Picosencond dynamics of G-protein coupled receptor activation in rhodopsin from time-resolved UV resonance Raman spectroscopy. Biochemistry 2003, 42:5169-5175.
    Kim Y.S., Jung H.C., Pan J.G. Bacterial cell surface display of an enzyme library for selective screening of improved cellulase variants. Appl Environ Microbiol 2000, 66:788-793.
    Kipriyanov A. A., and Doktorov A.B. Long-time behaviour of the observables in irreversible reactions in liquid solutions. Chemical physics Letters 1995, 246:359-369.
    Kipriyanov A.A., Gopich I.V., Doktorov A.B. Exactly solvable model in the theory of irreversible reactions in liquids, Physica A 1994, 205:585-622.
    Kirk O., Borchert T.V., Fuglsang C.C. Industrial enzyme applications. Curr. Opin. Biotechnol. 2002, 13:345-351.
    Klein G.L., and Snodgrass W.R. Cellulose, In: Macrae R., Robinson R.K., Saddler M.J. Eds: Encyclopedia of food science, food technology and nutrition. London: Academic Press. 1993, pp.758-767
    Klonowski W. Simplifying principles for chemical and enzyme reaction kinetica. Biophysical Chemistry 1983, 18:73-87.
    Klotz I.M. & Hunston D.L. Mathematical models for ligand-receptor binding. Real sites, ghost sites. J. Biol. Chem. 1984, 259:10060-10062.
    Klyosov A.A. Trends in biochemistry and enzymology of cellulose degradation. Biochemistry 1990, 29:10577-10585
    Knowles J.K.C., Lehtovaara P., Murray M., & Sinnott M.L. Stereochemical course of the action of the cellobioside hydrolases I and II of Trichoderma reesei. J. Chem. Soc. Chem. Commun. 1988, 1401-1402.
    Knowles J., Lethtovaara P., Reeri T.T. Cellulase families and their genes. Trends Biotechnol 1987, 5:255-261.
    Koch A.L. The logarithm in biology. I. Mechanisms generating the log-normal distribution exactly. J Theoret. Biology 1966,12:276-290.
    Koerber S.C., Fink A.L. The analysis of enzyme progress curves by numerical differentiation including competitive product inhibition and enzyme reaction. Anal Biochem. 1987, 165: 75-87
    Koivula A., Kinnari T., Harjunpaa V., Ruohonen L., Teleman A., Drakenberg T., Rouvinen J., Jones T.A., & Teeri T.T. Tryptophan 272: an essential determinant of crystalline cellulose degradation by Trichoderma reesei cellobiohydrolase Cel6A. FEBS Lett. 1998. 429:341-346.
    Koshland D.E.Jr. Conformational changes: how small is big enough? Nat. Med. 1998, 4:1112-1114.
    Koshland D.E.Jr. Correlation of structure and function in enzyme action. Science, 1963, 142:1533-1541.
    Koshland D.E.Jr., & Neet K.E. The catalytic and regulatory properties of enzymes. Annul. Rev. Biochem. 1968,37:359-410.
    Krassig H.A. Cellulose structure, accessibility, and reactivity. Gordon and Breach Science Publishers, USA. 1993.
    Kraut D.A., Carroll K.S., & Herschlag D. Challenges in enzyme mechanism and energetics. Annu. Rev. Biochem. 2003,72:517-571.
    Kraulis J., Clore G.M., Nilges M., Jones T.A., Pettersson G., Knowles J., & Gronenborn A.M. Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry 1989,28:7241-7257.
    Krohn K.A. The physical chemicstry of ligand-receptor binding identifies some limitations to analysis of receptor images, Nuclear Mericine and Biology 2001, 28:477-483.
    Kroon-Batenburg L.M.J., Kroon J. The crystal and molecular structures of cellulose I and II. Cellulose 1997, 14:677-690.
    Kumar V., Sharma V.K., & Kalonia D.S. Second derivative tryptophan fluorescence spectroscopy as a tool to characterize partially unfolded intermediates of proteins. Int. J. Pharm. 2005, 294:193-199.
    Kuo Y.H., ScM M.S.. Extrapolation of correlation between 2 variables in 4 general medical journals. Quality Issues and Standards 2002,287(21): 2815-2817.
    Laider K.J., and Peterman B.F. Temperature effects in enzyme kinetics. Methods Enzymol. 1979, 63:234-257
    Lamed R., Kenig R., Morag E., Calzada J.F., de Micheo F., Bayer E.A. Efficient cellulose solubilization by a combined cellulosomeh-glucosidase system. Appl Biochem Biotechnol 1991, 27:173-183.
    Leavitt S., and Freire E. Direct measurement of protein binding energetics by isothermal titration calorimetry. Current Opinion in Structure Biology 2001, 11:560-566.
    Lee T.C.M. Improved smoothing spline regression by combining estimates of different smoothness. Stat. Probab. Lett. 2004, 67:133-140
    Lee Y.H., Fan L.Y. Kinetic studies of the enzymatic hydrolysis of cellulose: analysis of extended hydrolysis times. Biotech. & Bioeng. 1983, 32:853-865.
    Lehmann M., Pasamontes L., Lassen S.F., and Wyss M. The consensus concept for thermostability engineering of proteins. Biochemi Biophys Acta. 2000, 1543:408-415.
    Lehtio J., Sugiyama J., Gustavsson M., Fransson L., Linder M. and Teeri T.T. The binding specificity and affinity determinants of family I and family 3 cellulose binding modules. Proc Natl Acad Sci USA. 2003, 100:484-489.
    Levine R.L., and Stadtman E.R. Use of isosbestic point wavelength shifts to estimate the fraction of a precursor that is converted to a given product. Anal. Biochem. 2000, 287:329-333.
    Lewis G.N. Thermodynamics and free energy of chemical substrate. Mcgraw-HiLL Book Company. INC Chaps 1 and 2. 1921.
    Li J.W. Comparison of the capability of peak function in describing real chromatographic peaks. J Chromatography A 2002, 952:63-70.
    Li L., Storm P., Karlsson O.P., Berg S., & Wieslander A, Irreversible binding and activity control of the 1,2-diacylglycerol 3-glucosyltransferase from Acholeplasma laidlawii at an anionic lipid bilayer surface. Biochemistry 2003, 42:9677-9686.
    Li R. Time-temperature superposition method for glass transition temperature of plastic materials. Materials Sci & Engi A. 2000, 278:36-45.
    Liang Y.Z., Patel S.S., and Dean D.H. Irreversible Binding Kinetics of Bacillus thuringiensis CryIA 5-Endotoxins to Gypsy Moth Brush Border Membrane Vesicles Is Directly Correlated to Toxicity J. Biol. Chem. 1995, 270: 24719-24724.
    Liao F., Zhu X.Y.; Wang Y.M., and Zuo Y.P. The comparison of the estimation of enzyme kinetic parameters by fitting reaction curve to the integrated Michaelis-Menten rate equations of different preeictor variables. J. Biochemical and biophysical methods 2005, 62:13-24.
    Linder M., Mattinen M.L., Kontteli M., Lindeberg G, Stahlberg J., Drakenberg T., Reinikainen T., Pettersson G, & Annila A. Identification of functionally important amino acids in the
    
    cellulose-binding domain of Trichoderma reesei cellobiohydrolase I. Protein Sci. 1995, 4:1056-1064.
    Liu A.R., Huang X.R., Song S.F., Wang D., Lu X.M., Qu Y.B., Gao P.J.. 2003, Kinetics of the H2O2-dependent ligninase-catalyzed oxidation of veratryl alcohol in the presence of cationic surfactant studied by spectrophotometric technique. Spectrochimica Acta Part A 59:2547-2551.
    Liu S.Y., Duan X.Y., Lu X.M., Gao P.J. A novel thermophlic endoglucanase from a mesophilic fungus Fusarium oxysporum. Chinese Science Bullatin 2006, 51:191-197.
    Londesborough J. The causes of sharply bent or discontinuous Arrhenius plots for enzyme-catalyzed reactions. Eur. J. Biochem 1980, 105:211-215.
    Lu H.P. Single-molecule spectroscopy studies of conformational change dynamics in enzymatic reactions. Curr Pharm Biotechnol 2004, 5: 261-269
    Lu W.P. and Fei L. A logarithmic approximation to initial rates of enzyme reactions. Anal. Biochem. 2003,316:58-65.
    Lynd L.R., Wyman C.E., and Gerngross T.U. Biocommodity engineering. Biotechnol. Prog. 1999, 15:777-793.
    Lynd L.R., Weimer P.J., van Zyl W.H., Pretorius I.S. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol Mol Biol Rev. 2002, 66:506-577.
    Ma D.B., Gao P.J., Wang Z.N. Preliminary studies on the mechanism of cellulose formation by Trichoderma pseudokoningii S-38. Enzyme Microb Technol 1990, 12: 631-635.
    Ma D.B, Gao P.J., Wang Z.N., and Mikio Shimada. Kinetic Analysis of the Noncompetitive Inhibition of Lignin peroxidase by Cellobiose Quinone Oxidoreductase Wood Research 1995, 82:43-46.
    Ma Y.F., Evans D.E., Logue S.J., Langridge P. Mutations of barley beta-amylase that improve substrate-binding affinity and thermostability. Mol Genet Genomics 2001, 266:345-352.
    Ma B.Y., Kumar S., Tsai C.J., Hu Z.J., and Nussinov R. Transition-state ensemble in enzyme catalysis: possibility, reality, or necessity? J Theor Biol. 2000, 203:383-397.
    Malcolm A.D. The measurement of enzyme-ligand dissociation constants by relaxation kinetics. Anal, Biochem. 1977,77:529-531.
    Mandels M., and Reese E.T. Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J. Bacteriol. 1957, 73:269-278.
    Mandels R., and Webber J. The production of cellulose. In: Advan. Chem. Washington DC. 1969, pp.391-413.
    Manning K. Improved viscometric assay for cellulose. J. Biochem. Biophys. Methods 1981, 5(4):189-202.
    Mansfield S.D., Mooney C, and Saddler J.N. Substrates and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog. 1999, 15:804-816.
    Marchessault R.H., and P.R. Sundararajan. Cellulose. In Aspinall G.O. Ed: The polysaccharides, vol. 2. Academic Press, Inc., New York, 1993, pp. 11-95.
    Mattinen M.L., Linder M., Teleman A., & Annila A. Interaction between cellohexaose and cellulose binding domains from Trichoderma reesei cellulases. FEBS Lett. 1997,407:291-296.
    McCarthy J.K., Uzelac A., Davis D.F., Eveleigh D.E. Improved catalytic efficiency and active site modification of 1,4-beta-D-glucan glucohydrolase A from Thermotoga neapolitana by directed evolution. J Biol Chem. 2004, 279:11495-11502.
    McMillan J.D. Pretreatment of lignocellulosic biomass. In: Himmel M.E., Baker J.O., Overend R.P. Eds. Enzymatic Conversion of Biomass for Fuels Production. ACS Symposium Series, 1994, 566:292-324.
    Mehauden K., Cox P.W., Bakalis S., Simmons M.J.S., Tucker G.S., and Fryer P.J. A novel method to evaluate the applicability of time temperature integrators to different temperature profiles. To appear in: Innovative Food Science and Emerging Technologies. 2007, Accepted manuscript. Melikhova E.M., Kurochkin I.M., Zaitsev S.V., and Varfolomeev S.D. Analysis of ligand-receptor binding by the difference method. Anal Biochem. 1988, 175:507-515.
    Michell A.J. Second-derivative FT-IR spectra of cellulose I and II and related mono-and oligo-saccharides. Carbohydrate Res. 1988, 193:185-195.
    MonzOn A., Romeo E., and Borgna A. Relationship between the kinetic parameters of different catalyst deactivation models/Chemical Engineering J. 2003, 94:19-28.
    Mosier N., Wyman C.E., Dale B.E., Elander R.T., Lee Y.Y., Holtzapple M., et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 2005, 96:673-686.
    Motulsky H., and Christopoulos A. Fitting models to biological data using linear and nonlinear regression: a practical guide to curve fitting. Harvey Motulsky & Arthur Christopoulos. 2004. P.316-317.
    Mozo-Villarias A. Second derivative fluorescence spect(?)oscopy of tryptophan in proteins. J. Biochem. Biophys. Methods 2002, 50:163-178.
    Muench J.L., Kruuv J., and Lepock J.R. A two-step reversible-irreversible mode can account for a negative activation energy in an Arrhenius plot. CryoBiology 1996, 33:253-259.
    Neviere R. An extension of the time-temperature superposition principle to non-linear viscoelastic solids. Inter.J.of Solids and Structure 2006,43: 5295-5306.
    Nielsen A.D., Fuglsang C.C., & Westh P. Isothermal titration calorimetric procedure to determine protein-metal ion binding parameters in the presence of excess metal ion or chelator. Anal. Biochem. 2003,314:227-234.
    
    Nidetzky B., Steiner S., Hayn M., et al. Cellulose action. Biochem J. 1994, 298:705-710.
    Nishiyama Y., Langan P., and Chanzy H. Crystal structure and hydrogen-bonding system in cellulose I_β from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc. 2002, 124: 9074-9082
    Nishiyama Y., Sugiyama J., Chanzy H., and Langan P. Crystal structure and hydrogen bonding system in cellulose I_α from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc. 2003, 125:14300-14306.
    O'Leary M.A., Malik J. Kinetics and mechanism of the binding of pyridixal 5'-phosphate to apoglutamate decarboxylase. J Biol Chem. 1972, 247:7097-7105.
    O'Sullivan A.C. Cellulose: the structure slowly unravels. Cellulose. 1997,4:173- 207.
    Ortega N., Busto M.D., and Mateob M.P. Kinetic of cellulose saccharification by Trichoderma reesei cellulases. International Biodetermination and Biodegradation. 2001, 47:7-14.
    Pan G, and Liss P.S. Metastable-equilibrium adsorption theory I. Theory, J. Colloid and Interface Scinece 1998,201:71-76.
    Parchevsky K.V., Parchcevsky V.P. Determination of instantaneous growth rates using a cubic spline approximation. Thermochima ACTA 1998, 309:181-192.
    Pascal R. Do enzymes bind their substrates in the ground state because of a physico-chemical requirement? Bioorg. Chem. 2003, 31:485-493.
    Patnaik P.R. Temperature optima of enzymes: sifting fact fiction. Enzyme and Microbial Technology 2002,31:198-200.
    Pelton J.T., and McLean L.R. Spectroscopic methods for analysis of protein secondary structure. Anal. Biochem. 2000,277:167-176.
    Pereira A.N., Mobedshahi M., Ladisch M.R. Preparation of cellodextrins. Methods Enzymol 1988,160:26-43.
    Perutz M.F. Regulation of oxygen affinity of hemoglobin: influence of structure of the globin on the heme iron. Annu. Rev. Biochem. 1979, 48:327-386.
    Perrier M.G.D. Pharmacokinetics. 2nd ed. New York: Marcel Dekker 1982
    Petersen L.C. Determination of Michaelis parameters from differentials of progress curves. Biochem J. 1983,215:589-595.
    Peterson M.E., Eisenthal R., Danson M.J., Spence A., and Dainel R.M. A new intrinsic thermal parameter for enzymes reveals true temperature optima. J Biol Chem. 2004, 279:20717-20722
    Perterson M.E., Daniel R.M., Danson M.J., and Eisenthal R. The dependence of enzyme activity on temperature: determination and validation of parameters. Biochem. J. 2007, 402:331-337.
    Petzelbauer I., Kuhn B., Splechtna B., Kulbe K.D., Nidetzky B. Development of anultrahigh-temperature process for the enzymatic hydrolysis of lactose. IV. Immobilization of two thermostable β-glycosidases and optimization of a packed-bed reactor for lactose conversion. Biotechnoloby & Bioeng. 2002, 77:619-631.
    
    Plilling M.J. Reaction Kinetics. Clarendon Press. Oxford. Chaps 3 and 4. 1975.
    Popov A.V., and Agmon N. Three-dimensional simulation verifies theoretical asymptotics for reversible binding. Chem. Phys. Lett. 2001,340:151-156.
    Podesta F.E., & Plaxton W.C. Fluorescence study of ligand binding to potato tuber pyrophosphate-dependent phosphofructokinase: evidence for competitive binding between fructose-1,6-bisphosphate and fructose-2,6-bisphosphate. Arch. Biochem. Biophys. 2003, 414:101-107.
    Price N.G. and Dnek R.A. The problem of physicochemical principle in biochemical. Clarendon Press, Oxford, 1979, pp. 42-55.
    Purich D.L. Practical consideration in the design of initial velocity enzyme rate assay. In: Punch D.L. ed. Methods in Enzymology V63. New York, Academic Press, 1979.
    Purves R.D. Optimum numerical integration methods for estimation of area-under-the-curve (AUC) and area-under-the-moment-curve (AUMC). J. Pharmacokinet. Biopharm. 1992, 20:211-226.
    Puterman M.L, Hrboticky N., and Innist S.M. Nonlinear estimation of parameters in biphasic Arrhenius plots. Analytical Biochem 1988, 178:409-420.
    Rautela G.S., and King K.W. Significance of the crystal structure of cellulose in the production and action of cellulase. Archinves Biohem. Biophysc. 1968, 123:589-601.
    Rescigno A. Area under the curve and bioavailability. Pharmacol. Res. 2000, 42:539-540.
    Reese E.T., Siu R.G.H., Levinson U.S. Biological degradation of soluble derivatives. J Bacteriol. 1950, 59:485-497.
    Riedel K., Ritter J., Bronnenmeier K. Synergistic interaction of the Clostridium stercorarium cellulases
    Avicelase I (CelZ) and Avicelase II (CelY) in the degradation of microcrystalline cellulose. FEMS Microbiol Lett. 1997,147:239-243.
    Rosenberg A. The optical rotaory dipersion of bovine and human carbonic anhydrase in the ultraviolet region. J.Biol.Chem. 1966, 241:5126-5136.
    Rousseau C, Nielsen N., and Bols M. An artificial enzyme that catalyzes hydrolysis of aryl glycosides. Tetrahedron Lett. 2004,45:8709-8711.
    Royer C.A., Mann C.J., & Matthews C.R. Resolution of the fluorescence equilibrium unfolding profile of trp aporepressor using single tryptophan mutants. Protein Sci. 1993, 2:1844-1852.
    Sakon J., Irwin D., Wilson D.B., & Karplus P.A. Structure and mechanism of endo/ exocellulase E4 from Thermomonospora fusca. Nat. Struct. Biol. 1997, 4:810-818.
    Sassner P, Galbe M, Zacchi G. Steam pretreatment of Salix with and without SO_2 impregnation for production of bioethanol. Appl Biochem Biotechnol 2005, 121-124: 1101-1117.
    Savageau M.A. Michaelis-Menten mechanism reconsidered: implications of fractal kinetics. J Theor Biol. 1995, 176:115-124.
    Schumaker, L.L. Spline functions: Basic Theory, Pure & Applied mathematics. John Wiley & Sons Inc, New York. 1981.
    Schmid G., & Wandrey C. Evidence for the lack of exo-cellobiohydrolase activity in the cellulose system of Trichoderma reesei QM 9414. J. Biotechnol. 1990,14:393-410.
    Schwarz W.H. The cellulosome and cellulose degradation by anaerobic bacteria. Appl. Microbiol. Biotechnol. 2001,56:634-649.
    Segel I.H. Biochemical calculations 2nd 1976. John Wiley & Sons, Inc. 中译本,科学出版社. 1994, pp208.
    
    Segel I.H. Enzyme Kinetics. John Wiley & Sons, New York. 1975, p44-88.
    Setlow B., Cabrera-Hernandez A., Cabrera-Martinez R.M., Setlow P. Identification of aryl-phospho-beta-D-glucosidases in Bacillus subtilis. Arch Microbiol 2004, 181:60-67.
    Shan S.O., Herschlag D. Hydrogen bonding in enzymatic catalysis: analysis of energetic contributions. Methods Enzymol. 1999,308: 246-276.
    
    Sharrock K.R. Cellulase assay method: A review. J Biochem Biophys Methods 1988,17: 81-105
    Sheehan J., Himmel M. Enzymes, energy, and the environment: a strategic perspective on the U.S. department of energy's research and development activities for bioethanol. Biotechnol Prog. 1999, 15:817-827.
    Shiner J.S. Transient intermediates, fast:equilibria" and the rate of enzyme catalysis. J.Theor. Biol. 1982, 99:309-318.
    
    Sinnott M.L. Catalytic mechanisms of enzymic glycosyl transfer. Chem. Rev. 1990, 90:1171-1202.
    Soderstrom J., Pilcher L., Galbe M., Zacchi G. Combined use of H_2SO_4 and SO_2 impregnation for steam pretreatment of spruce in ethanol production. Appl Biochem Biotechnol. 2003, 105-108:127-140.
    Sporlein S., Carstens H., Satzger H., Renner C, Behrendt R., Moroder L., Tavan P. et al. Ultrafast spectroscopy reveals subnanosecond peptide conformational dynamics and validates molecular dynamics simulation. Proc Natl Acad Sci USA 2002, 99: 7998-8002 .
    Srisodsuk M., Leyer K.K., Keranen S., Kirk T.K. and Treeri T.T. Modes of action on cotton and bacterial cellulose of a homologous Endoglucanase-exoglucanase pair from Trichoderma reesei. Eur J Biochem. 1998,151:885-892.
    Srisodsuk M., Reinikainen T, Penttila M. and Teeri T.T. Role of the interdomain linker peptide of Trichoderma reesei cellobiohydrolase I and its interaction with crystalline cellulose. J. Biochem. 1993,268:20756-20761.
    Stahlberg J., Divne C, Koivula A., Piens K., Claeyssens M., Teeri T.T. & Jones T.A. Activity studies and crystal structures of catalytically deficient mutants of cellobiohydrolase I from Trichoderma reesei. J. Mol. Biol. 1996, 264:337-349.
    Sternberg J.V., Stillo H.S., and Schwedeman R.H. Spectrophotometric analysis of multicomponent systems using the least squares method. Anal Chem. 1960,32:84-90.
    Stockwell G.R., and Thornton J.M. Conformational diversity of ligands bound to proteins. J. Mol. Biol. 2006, 356:928-944.
    Strobel H.J., Russell J.B. Regulation of beta-glucosidase in Bacteroides ruminicola by a different mechanism: growth rate-dependent derepression. Appl Environ Microbiol 1987, 53:2505-2510.
    Str(?)mme K.O. Thermodynamic restriction on the temperature and pressure dependence of the rate constant in chemical reaction kinetics. Thermochimica Acta 1994, 237:317-324.
    Sulkowska A., Równicka J., Bojko B., Pozycka J., Zubik-Skupien I., Sulkowski W. Effect of guanidine hydrochloride on bovine serum albumin complex with anti-thyroid drugs: fluorescence study. J. Mol. Struct. 2004, 704:291-295.
    Svehla G. Nomenclature of kinetic methods of analysis, Pure and applied chemistry, 1993, 65,2291-2298.
    Teeri T. Crystalline cellulose degradation: new insight into the on function of cellobiohydrolases. Trends Biotechnol. 1997, 15:160-167.
    Teeri T.T., Koivula A., Linder M., Wohlfahrt G, Divne C, & Jones T.A. Trichoderma reesei cellobiohydrolases: why so efficient on crystalline cellulose? Biochem. Soc. Trans. 1998, 26:173-178.
    Ten L.N., Im W.T., Kim M.K., Kang M.S., Lee S.T. Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 2004, 56:375-382.
    Thomas T.M., and Scopes R.K. The effects of temperature on the kinetics and stability of mesophilic and thermophilic 3-phosphoglycerate kinases. Biochem J. 1998, 330:1087-1095.
    Tolman C.T., Kanodia S., and Roberts M.E. 31P and 13C NHR analysis of the energy metabolism of the Thermophilic chromocellum. J.Bio.Chem. 1987,282:11988-11096.
    Tolman R.C. Principles of statistical mechanics.Caps.12. 13 and 14. Oxiford University Press. New York. 1938.
    Tombari E., Salvetti G., Ferrari C., and Johari G.P. Kinetics and thermodynamics of sucrose kydrolysis from real-time enthalpy and heat capacity measurements. J.Phys Chem.B 2007,111:496-501.
    Tomme P., Kwan E., Gilkes N.R., Kilburn D.G., Warren R.A. Characterization of CenC, an enzyme from Cellulomonas fimi with both endo-and exoglucanase activities. J. Bacteriol 1996, 178:4216-4223.
    Tomme P., Van Tilbeurgh H., Pettersson G, Van Damme J., Vandekerckhove J., Knowles J., Knowles J.
    
    Teeri T. and Claeyssens M. Studies of the cellulolytic system of Trichoderma reesei QM9414.
    
    Analysis of domain function in two cellobilhydrlases by limited proteolysis. Eur J Biochem. 1988, 170:575-581.
    Tomme P., Warren R.A.J., Gilkes N.R. Cellulose hydrolysis by bacterial and fungi. Adv Microb Physiol 1995,37:1-81.
    Toptygin D., and Brand L. Analysis of equilibrium binding data obtained by linear-response spectroscopic techniques. Anal. Biochem. 1995, 234:330-338.
    Tripp V.W. Measurement of. crystallinity. In Bikales N.M., Segel L. Eds. Cellulose and cellulose derivatives cellulose derivatives. Wiley Inter Science New York 1971, pp.305-320.
    Truhlar D.G, and Garrett B.C. Variational transition state theory. Annu. Rev. Phys. Chem 1984, 35:169-189.
    
    Truhlar D.G, and Kohen A. Convex Arrhenius plots and their interpretation. PNAS 2001, 98:848-851.
    Trujillo M.E., Fernández-Molinero C, Velazquez E., Kroppenstedt R.M, Schumann P., Mateos P.F., and Martinez-Molina E. Micromonospora mirobrigensis sp. nov. Int J Syst Evol Microbiol. 2005, 55:877-880.
    Tuohy M.G., Walsh D.J., Murray P.G., Claeyssens M., Cuffe M.M., Savage A.V., et al. Kinetic parameters and mode of action of the cellobiohydrolases produced by Talaromyces emersonii. Biochim Biophys Acta 2002, 1596:366-380.
    Valjamae P., Sild V., Pettersson G, Johansson G. The initial kinetics of hydrolysis by cellobiohydrolases I and II is consistent with a cellulose surface-erosion model. Eur J Biochem. 1998,253: 469-475.
    van Soest P.J. Nutritional ecology of the ruminant, 2nd ed. Cornell University Press, Ithaca, N.Y., 1994.
    van Tilbeurgh H., Claeyssens M., de Bruyne C.K. The use of 4-methylumbelliferyl and other chromophoric glycosides in the study of cellulolytic enzymes. FEBS Lett. 1982, 149:152-156.
    Vasquez M., Nemethy G, and Scheraga H.A. Conformational energy calculations on polypeptide and proteins. Chemical Review 1994, .94:2183-2239.
    Verdier-Pinard P., Sitachitta N., Rossi J.V., Sackett D.L., Gerwick W.H., & Hamel E. Biosynthesis of radiolabeled curacin A and its rapid and apparently irreversible binding to the colchicine site of tubulin. Arch. Biochem. Biophys. 1999, 370:51-58.
    Wahbi A.A., Hassan E.M., Gazy A.A. Use of isosbestic points of derivative absorption curves: The dissolution rate determination of aspirin. J Pharma Biomed Anal 1994,12:951-954.
    Wahl RC. The calculation of initial velocity from product progress curves when [s]?[Km]. Anal Biochem 1994,219: 383-384.
    
    Waley S.G. An easy method for the determination of initial rates. Biochem J. 1981, 193: 1009-1012
    Walker L.P., Wilson D.B. Enzymatic hydrolysis of cellulose: an overview. Biores Technol. 1991:3-14.
    Walker L.P., Wilson D.B., Irwin D.C. Fragmentation of cellulose by the major Thermomonospora fusca cellulase cellulases, Trichoderma reesei CBH1 and their mixtures. Biotechnol Bioeng. 1992, 40:1019-1026.
    Wang D., Qu Y.B., Gao P.J. Primary studies on several cellulase components with special characteristics purified from Trichoderma pseudokoniningii S38. Biotechnol Appl Biochem 1997,25:181-187.
    Wang H., and Qu J.R. The definition of the irreversible degree of a chemical reaction and its application. J. Central ChinaNormal University (Nat. Sci) 1991, 25:58-61.
    Wang L.S., Liu J., Zhang Y.Z., Zhao Y., and Gao P.J. Comparison of domains function between cellobiohydrolase I and endoglucanase I from Trichoderma pseudokoningii S38 by limited proteolysis. J. Mol. Catalysis B. Enzyme 2003,24-25:27-28.
    Wang L.S., Zhang Y.Z. and Gao P.J. Quantitative estimate of the effect of cellulase components during degradation of cotton fibers. Carbohydrate research. 2004, 339(4): 819-824.
    Wang L.S., Zhang Y.Z., Gao P.J., Shi D.X., Liu H.W, Gao P.J. Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis. Biotech. & Bioeng. 2006, 93:443-456.
    Wang Z.X. an alternative plotting method using progress curves of enzyme equation to determine kinetic parameters. ACTA Biophysica Sinica, 1990,6:235-241.
    Warren R.A.J. Microbial hydrolysis of polysaccharides. Annu Rev Microbiol. 1996, 50:183-212
    
    Warshel A. Dynamics of enzymatic reactions. Proc. Natl. Acad. Sci. U.S.A 1984, 81:444-448.
    
    Weiss M.S., Brandl M., Suhnel J., Pal D., Hilgenfeld R. More hydrogen bonds for the (structural) biologist. Trends Biochem. Sci. 2001,26:521-523.
    Willeman W.F., Straathof A.J.J., Heijnen J.J. Reaction temperature optimization procedure for the synthesis of (R)-mandelonitrile by Prunus amygdalus hydroxynitrile lyase using a process model approach Enzyme and Microbial Technology 2002, 30: 200-208.
    Williams M.L., Landel R.F., and Ferry J.D. Time-temperature superposition. J Am Chem Soc. 1955, 77:3701-3707.
    Wilson D.B. Studies of Thermobifida fusca plant cell wall degrading enzymes. Chem Rec. 2004, 4:72-82.
    Wiseman T., Williston S., Brandts J.F., and Lin L.N. Rapid measurement of Binding constants and heats of binding using a new titration calorimeter. Anal Biochem. 1989, 179:131-137.
    Wingren A., Galbe M., Zacchi G. Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 2003, 19:1109-1117.
    
    Wither S.G. Mechanism of glycosyl transferase and hydrolases. Carbohydr Polym 2001, 44:325-337.
    Withers S.G., Street. I.P. Identification of a covalent a-o-glucopyranosyl enzyme intermediate formed on a fl-glucosidase. J. Am Chem Soc. 1988,110:8551-8553.
    Wolfenden R. Thermodynamic and extrathermodynamic requirements of enzyme catalysis. Biophysical Chemistry 2003, 105:559-572.
    Wolfenden R., Lu X., Young G. Spontaneous Hydrolysis of. Glycosides. J. Am. Chem. Soc. 1998, 120:6814-6815.
    Wolfenden R. & Snider M. J. The depth of chemical time and the power of enzymes as catalysts. Acc. Chem. Res. 2001, 34:938-945.
    Wolfgang D.E., Wilson D.B. Mechanistic studies of active site mutants of Thermomonospora fusca endocellulase E2. Biochemistry 1999, 38:9746-9751.
    Wood T.M., and Bhat K.M. Methods for cellulase activities. In Wood W.A., and Kellong S.T. eds. Methods in Enzymology Academic Press. Inc San Diego, California, 92101. 1988, vol. 160 part A.
    
    Wood T.M., Garica-Campayo V. Enzymology of cellulose degradation. Biodegradation 1990;1:147-161.
    Wood T.M., McCrase S.I. The purification and properties of the C1 components of T. koningii cellulase. Biochem-J. 1972, 128:1183-1192.
    Wood T.M., McCrae S.I. and Bhat K.M. The mechanism of fungal cellulase action. Biochem. J. 1989, 260:37-43.
    Wood T.M., and Saddler J.N. Increasing the availability of cellulose in biomass materials. Methods Enzymol.1988,162:3-11.
    
    Woodward J. Synergism in cellulase systems. Biores Technol. 1991, 36: 67-75.
    Woodward J., Lima M., Lee N.E. The role of cellulose concentration in the determining the degree of synergism in the hydrolysis of micro-crystalline cellulose. Biochem J. 1988, 25: 895-899.
    Wright N.Y. On a relationship between the Arrhenius parameters from the thermal damage studies. J. Biomechanical Engineering 2003, 125:300-304.
    Wu B., Zhao Y. and Gao, P.J. Estimation of cellobiohydrolysis I activity by numerical differentiation of dynamic ultraviolet spectroscopy. Acta Biochim. Biophy. Sin. 2006, 38:372-378.
    Wu Y., and Yang X.G Exploring new route for establishing the theory of catalysis on the based of non-equilibrium thermodynamics. Progress Chemi (China) 2003, 15:81-91.
    Wyman C.E., Dale B.E., Elander R.T., Holtzapple M., Ladisch M.R., Lee Y.Y. Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 2005, 96:1959-1966.
    Xiao Z.Z., Wang P., Qu Y.B., Gao P.J., and Wang T.H. Cold adaptation of a mesophilic cellulase, EG III from Trichoderma reesei by directed evolution. Science in China (Series C) 2002,45:337-343.
    Yan B.X., Sun Y.Q., & Gao P.J. Intrinsic fluorescence in endoglucanase and cellobiohydrolase from Trichoderma pseudokiningii S-38: effects of pH, quenching agents, and ligand binding. J. Protein Chem. 1997,16:681-688.
    Yan B.X., & Sun Y.Q. Domain Structure and conformation of a cellobiohydrolase I from Trichoderma pseudokoningii S-38. J. Protein.Chem. 1997,16:59-66.
    Ye D.Y., Farriol X. Improving accessibility and reactivity of celluloses of annual pulps for the synthesis of methylcellulosel Cellulose 2005, 12(5):507-512.
    Yomo T., Yamano T., Yamamoto K., and Urabe I. General equation of steady-state enzyme kinetics using net rate constants and ins application to the kinetic analysis of catalase reaction. J. Theory Biol. 1997,188:301-312.
    Yon J.M., Perahia D., & Ghelis C. Conformational dynamics and enzyme activity. Biochimie 1998, 80:33-42.
    Yoon J. J., and Kim Y.K. Degradation of crystalline cellulose by the brown-rot basidiomycete Fomitopsis palustris. J Microbiol. 2005,43:487-492.
    Zhao Y, Wu B., and Gao P.J. Mechanism of cellobiose inhibition in cellulose hydrolysis by cellobiohydrolase. Science in China Ser. C. Life Science 2004, 47:18-24.
    Zhang S., Dolfgang D.E., and Wilson D.B. Substrate heterogeneity causes the nonlinear kinetics of insoluble cellulose hydrolysis. Biotech. & Bioeng. 1999, 66:35-41.
    Zhang D., and Wang Y. Establishes of model of quasi-parabola regressive function model and parametric estimation. Common App. Math, and Comput. 2006,20:11-18.
    Zhang Y.H.P., and Lynd L.R. Cellodextrin production from mixedacid hydrolysis and chromatographic separation. Anal Biochem. 2003, 322:225-232.
    Zhang Y.H.P., Lynd L.R. Determination of the number-average degree of polymerization of cellodextrins and cellulose with application to enzymatic hydrolysis. Biomacromolecules 2005, 6:1510-1505.
    Zhang Y.H.P., Lynd L.R. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng. 2004, 88:797-824.
    Zhbankov G, Firsov S.P., Buslov D.K., Nikonenko N.A., Marchewka M.K., Ratajczak H. Structural physico-chemistry of cellulose macromoleculars. J. Molecular Structure, 2002, 614:117-125.
    Zhu W.T., and Qiu X.P. Relations of reaction heat-activation energy and activation enthalpy-activation energy in chemical dynamics J.Tsinghua University (Sci & Tech) 1999, 39:23-24.
    Zverlov V., Mahr S., Riedel K., Bronnenmeier K. Properties and gene structure of a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile Anaerocellum thermophilum with separate glycosyl hydrolase family 9 and 48 catalytic domains. Microbiology 1998, 144:457-465.
    Zverlov V.V., Schantz N., Schwarz W.H. A major new component in the cellulosome of Clostridium thermocellum is a processive endobeta-1,4-glucanase producing cellotetraose. FEMS Microbiol Lett 2005, 249:353-358.
    Zverlov V.V., Velikodvorskaya G.A., Schwarz W.H. Two new cellulosome components encoded downstream of cell in the genome of Clostridium thermocellum: the non-processive endoglucanase CelN and the possibly structural protein CseP. Microbiology 2003, 149:515-524.
    Zugenmaier P. Conformation and packing of various crystalline cellulose fibers. Progress in Polymer Science 2001, 26:1341-1417.
    高培基 纤维素酶活力测定方法研究进展 工业微生物.1985,6:5-8.
    高培基 纤维素滤纸酶活测定方法的改进 植物生理通讯.1986,2:46-48.
    高培基 纤维素酶解过程的分析和测定 生物工程学报.1988,4:321-326.
    高培基 纤维素酶活力测定方法 工业微生物.1994,24:27~32.
    高培基 纤维素酶制剂中葡聚糖纤维二糖水解酶活力的测定 山东大学学报.1990,25:250-257.
    黄小葳 阿伦尼乌斯活化能的统计分析.首都师范大学学报.1995,16:62-66.
    金家骏 愈峰 生物化学反应动力学 上海交通大学出版社.上海,1996,p66.
    李京京等 中国生物质资源可获得性评价 北京,中国环境科学出版社 1998,pp.1-22,78-79,101-106.
    李佐虎 固体表面物理吸附的一个新模型 化工学报.1983,3:221-233.
    潘纲 亚稳态平衡吸附(MEA)理论—传统吸附热力学理论面临的挑战与发展 环境科学学报.2003,23(2):156-173.
    齐飞 张颖舒 高培基 生孢噬纤维细菌的分离纯化及鉴定 山东大学学报.1999,34(4):484-487.
    唐姆茨 K.H.,盖姆斯 W.农业土壤真菌 北京,科学出版社.1979,pp.285-292.
    王红斌 杨敏 宁平 等 腐殖酸自水溶液中吸附亚甲基蓝的热力学研究 化学研究与应用.2002,14(4):449-451.
    王镜岩 朱圣庚 徐长法 生物化学 第三版.北京高等教育出版社.2002:378-379.
    王蔚 高培基 褐腐真菌木质纤维素降解机制的研究进展 微生物学通报.2002,29:90-93.
    王援祥 农业微生物学.北京,中国农业大学出版社.2003,pp.340.
    阎伯旭 高培基 纤维素酶的底物专一性 生命科学.2000,12:85-88.
    阎伯旭 高培基 拟康氏木霉纤维素酶的动力学研究 纤维素科学与技术.1997,1:16-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700