用户名: 密码: 验证码:
昆虫细胞系的建立及其生物学特性与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
昆虫细胞培养技术作为细胞工程基础之一,是现代实验生物学上极有价值的手段之一,广泛应用于生物学、医学及农业的各个领域。本文主要从昆虫细胞培养、细胞系建立、昆虫细胞系建立过程的生物学特性及昆虫细胞系利用等方面进行研究,通过研究为昆虫细胞系的建立提供有价值的技术手段,了解昆虫细胞在建系过程中发生的生物学变化规律,为昆虫细胞的研究与利用提供重要的理论依据。主要研究结果如下:
     1.不同目昆虫细胞培养技术。通过对来源于直翅目的短翅鸣螽(Gampsocleis gratiosa Brunner von Wattenwyl)、东亚飞蝗(Locusta migratoria manilensis Meyen);鳞翅目的柑橘凤蝶(Papilio xuthus Linnaeus)、枯叶蛱蝶(Kallima inachus Doubleday)、金斑蝶(Danaus chrysippus Linnaeus);鞘翅目的喙尾琵琶甲(Blaps rhynchoptera Fairmaire)、黄粉虫(Tenebrio molitor Linnaeus)的多种组织原代培养条件研究,得出各种组织原代培养时的适宜培养条件,研究结果显示不同目昆虫细胞培养所适宜的条件不同,(1)直翅目昆虫细胞培养的消毒时间为3min,来源于5d胚胎组织的细胞较易取得传代,适宜于改良Grace及Schneider培养基及10%Hyclone+10%民海血清的搭配中培养,培养基的更换时间在30d左右。(2)鳞翅目昆虫细胞培养宜的消毒时间为3min左右,来源于3-4d胚胎、新孵幼虫、蛹血淋巴、蛹脂肪体组织的细胞较易取得传代,适宜于在改良Grace及Grace培养基及10%Hyclone+10%民海血清的搭配中培养,培养基的更换时间在15-20d之间。(3)鞘翅目昆虫培养的消毒时间为5-8min,来源于新孵幼虫、精巢、脂肪体组织的细胞较易取得传代,适宜于改良Grace及Schneider培养基及10%Hyclone+10%民海血清的搭配中培养,培养基的更换时间在25-30d之间。
     2.昆虫细胞系的建立。在上述培养技术和条件研究基础上对多种昆虫组织进行培养,8种昆虫细胞发生增殖而进行传代培养,但大部分细胞在传至一定代数后停止增殖,使传代不能正常的进行下去。其中1个柑橘凤蝶新孵幼虫细胞及3个短翅鸣螽胚胎细胞度过了传代的危机,并能稳定增殖,传代超过50代,成为无限细胞系,分别命名为RIRI-PX1、RIRI-GG1、RIRI-GG2、RIRI-GG3。
     3.建系过程中的生物学特性研究。RIRI-GG1细胞培养初期细胞形态多样,随着细胞生长的逐渐稳定,细胞形态主要为多边形及梭形细胞,并以多边形细胞为主。增殖动力学特征表现出稳定性,50代及60代细胞的生长曲线的走向变化不大,其群体倍增时间分别为105.3h及104.6h。不同代数的RIRI-GG1细胞染色体制片的条件无明显差异,都只有在0.005M秋水仙素处理4.5h,KCl处理浓度0.50%,处理时间为15min时的效果最好。RIRI-GG1的染色体特征随着传代次数的增加而逐渐变化,在传代的前短翅鸣螽原核型特征为2n=31♂,32♀,细胞染色体平均数在传代过程中有增加的趋势,1-50代细胞染色体平均数分布与31-42之间,各代次的细胞仍是二倍体细胞占多数,各代数细胞染色体形态差异不大,两条染色单体明显,为近端部或端部着丝粒染色体。通过ITS序列及COI基因序列比对,证实RIRI-GG1确实来源于短翅鸣螽胚胎细胞。
     RIRI-PX1细胞形态随传代次数增加而逐渐变化,培养初期细胞形态多样,随着细胞生长的逐渐稳定,细胞形态以梭形细胞为主;增殖动力学特征表现较高的稳定性,在50代及60代时的生长曲线的走向变化不大,其群体倍增时间分别为42.5h及42.1h。不同代数的RIRI-PX1细胞染色体制片的条件无差异,最优的条件均为0.005M秋水仙素处理5h,0.65%的KCl低渗溶液处理15min。柑橘凤蝶的原染色体难以计数,随后代数细胞染色体变异度较大,主要表现为为染色体数目众多,且数目分布广泛,染色体异倍化及多倍化严重,且染色体数目的变化不具备规律性,7-50代RIRI-PX1细胞染色体数目平均数在103-199之间,染色体形态多为弥散型着丝粒的短杆状、颗粒状、点状或圆球状。通过COI基因比对,证实RIRI-PX1确实来源于柑橘凤蝶新孵幼虫。
     4.昆虫细胞系的利用。采用来源于3个目的14种昆虫细胞系对苜蓿银纹夜蛾核型多角体病毒AcNPV (Autographa californica nuclear polyhedrosis virus)和家蚕核型多角体病毒BmNPV (Bombyx mori nuclear polyhedrosis virus)进行敏感性测定。试验结果表明,各昆虫细胞系对AcNPV及BmNPV的敏感性不同,来源于双翅目及直翅目的细胞系均不能被这两种病毒感染,AcNPV可侵染来源于鳞翅目的Sf21、Sf9、HighFive、RIRI-PX1及HZ,而BmNPV仅能侵染BmN细胞。其中AcNPV对Sf9细胞的感染率最高,接种病毒10 d后感染率平均达84.0%,而RIRI-PX1的AcNPV病毒产量最高,形成的多角体数目为43.9PIBs/感染细胞。接种BmNPV10 d后BmN的感染率为72.2%,形成的多角体数目为23.1.PIBs/感染细胞。
     测定了氯氟氰菊酯等4种常用农药及二甲苯在不同浓度水平及时间上对7种昆虫细胞系的毒力。结果表明:4种农药对离体培养的7种昆虫细胞的生长均产生了影响,其中印楝素的毒力效果最为显著,其次是高氯?灭乳油、马拉硫磷及氯氟氰菊酯,二甲苯在设置的浓度下对7种细胞的影响不明显。在同一药剂同一浓度处理下,不同细胞系的反应不同,其中Sf9细胞系最为敏感,其次是NIAS-MaBr-85、SL2、NIH-SaPe-4、C6-36、RIRI-GG1及RIRI-PX1。研究结果表明昆虫细胞对农药的敏感性与农药的作用机理一致,昆虫细胞系用于农药的毒力测定及研究是可行的。
The technique of insect cell culture, as one of the bases of cell engineering, is a valuable method of modern experimental biology. It is widely applied in various fields of biology, medicine and agriculture. The insect cell culture, establishment of insect cell lines, characterization of insect cell lines in the establishing process, and the utilization of insect cell lines were studied in this paper. This research provided reliable methods to establish more insect cell lines, understanding of biological characteristics change rule of insect cell lines during the establishing process, and expect to find useful insect cell lines. The main results of the study are as follows:
     1.The cell culture of insects from different Orders. In this research, different tissues of Gampsocleis gratiosa, Locusta migratoria manilensis, Papilio xuthus, Kallima inachu, Danaus chrysippus, Blaps rhynchoptera, and Tenebrio molito were cultured in different culture conditions, and the suitable culture conditions of each tissue have been found out. The results showed that the suitable culture conditions of the insects from different Orders are different, (1) Cell culture for the insects from Orthoptera: Sterilized the insecst for 3min could achieved the best sterilized effects, and the 5days old embryos was easier to obtain subculture than other tissue of Orthopteran insects. The modified Grace’s medium and Schneider medium with 10% Hyclone FBS plus 10% Minghai FBS were suitable for the cell culture of Orthopteran insects, and the suitable interval of mediun change was 30d. (2) Cell culture for the insects from Lepidoptera: Sterilized the insects for 3min could achieved the best sterilized effects, and the 3-4days old embryos, neonate larvae, hemocytes of pupa, fat body of pupa were easier to obtain subculture than other tissue of Lepidopteran insects. The Grace’s medium and modified Grace’s medium with 10% Hyclone FBS plus 10% Minghai FBS were suitable for the cell culture of Lepidopteran insects, and the suitable interval of mediun change was 15-20d. (3) Cell culture for the insects from Coleoptera: Sterilized the insecst for 5-8min could achieved the best sterilized effects, and the neonate larvae, testes, fat body were easier to obtain subculture than other tissue of Coleopteran insects. The modified Grace’s medium and Schneider medium with 10% Hyclone FBS plus 10% Minghai FBS were suitable for the cell culture of Coleopteran insects, and the suitable interval of mediun change was 25-30d.
     2.The establishment of insect cell lines. There were 8 insect cell lines proliferated and got subculture, but most of the cells stop proliferated after several passages, so that the subculture could not to be continued. Just one cell line from the neonate larvae of Papilio xuthus and three cell lines from embryos of Gampsocleis gratiosa have lived through the crisis of subculture, and the cells exhibited stable growth and proliferation. Therefore, they were considered to be a cell line after the fiftieth passage and named RIRI-PX1, RIRI-GG1, RIRI-GG2, and RIRI-GG3.
     3.Characterization of insect cell lines in the establishing process. The morphology of RIRI-PX1 have been gradually changed with the times of subculture. At the early stages of culture, cells exhibited variable morphologies, the morphologies of the cells gradually changed from diversiform to spindle with the gradual stable growth of the cells. The proliferation characteristics of RIRI-PX1 showed high stability, the growth curve of passage50 and passage60 were similar, and the population doubling time of the two passages were approximately 42.5h and 42.1h. There was no difference for the karyotype conditions of the different passages of RIRI-PX1, The suitable karyotype conditions for RIRI-PX1 were 0.005M colchicines solution treated with 5h and 0.65% hypotonic KCl solution treated with 15min. The original chromosome numbers of Papilio xuthus was difficult to count, then the chromosomes of RIRI-PX1 exhibited deeply mutation, these cells had a great variation in chromosome number, and had deeply heteroploid. The change of the chromosome number did not have the regularity, the chromosome range of passage7 to passage 50 was from 103 to 199. Chromosomes without apparent centeromere were short pole-like and pellet-like. The mitochondrial cytochrome c oxidase subunit I gene sequence analysis indicated that the RIRI-PX1 cell line was derived from Papilio xuthus.
     4.The utilization of insect cell lines. The morphology of RIRI-GG1 have been gradually changed with the times of subculture. At the early stages of culture, cells exhibited variable morphologies, the morphologies of the cells gradually changed from diversiform to polygonal and spindle with the gradual stable growth of the cells,and polygonal cells were predominant.
     The proliferation characteristics of RIRI-GG1 showed high stability, the growth curve of passage50 and passage60 were similar, and the population doubling time of the two passages were approximately 105.3h and 104.6h. There was no difference for the karyotype conditions of the different passages of RIRI-GG1. The suitable karyotype conditions for RIRI-GG1 were 0.005M colchicines solution treated with 4.5h and 0.50% hypotonic KCl solution treated with 15min. The chromosome numbers of RIRI-GG1 cells changed with increasing passages of subculture. The original chromosome numbers of Gampsocleis gratiosa were 2n=31 for males and 2n=32 for females, the average number of chromosomes was increased with increasing passages of subculture, ranging from 31 to 42 at the passage1 to passage 50, but most of the cells remained as diploid cells at every passage. The chromosome profile exhibited no obvious changes at every passage, the two chromatids were obvious, all chromosomes were acrocentric. The rDNA internal transcribed spacer and the mitochondrial cytochrome c oxidase subunit I gene sequence analysis indicated that the RIRI-GG1 cell line was derived from Gampsocleis gratiosa.
     The fourteen inscet cell lines which from three different orders were used to be infected with AcNPV and BmNPV. The result showed that the susceptibility for two viruses were different among different insect cell lines. The cell lines which come from Diptera and Orthoptera could not be infected with AcNPV and BmNPV. The five cell lines, Sf21、Sf9、HighFive、RIRI-PX1 and HZ which come from Lepidoptera original, could be infected with AcNPV. The BmN cell line could be infected only with BmNPV. The infection rate of AcNPV to Sf9 was the highest, reached 84.0% after 10 days infection. RIRI-PX1 infected with AcNPV could produce the highest yield of polyhedral inclusion bodies which reached 43.9 PIBs/cell at 10 day post infection. The infection rate of BmNPV to BmN was 72.2% after 10 days infection, and the yield of polyhedral inclusion bodies was 23.1PIBs/cell.
     The toxicity of lambda-cyhalothrin、beta-cypermethrin plus emulsion, E,C、alathion、azadirachtin and xylene at the different concentration and treat time was studied in seven insect cell lines. The results showed that the four types of pesticides have toxic effect on the seven cell lines, while the xylene at the three concentrations has no obvious toxic effect on the cell lines. The tests indicated that azadirachtin was significantly more toxic than other pesticides, then in turn are beta-cypermethrin plus emulsion,E,C, alathion, and lambda-cyhalothrin. Respectively, the extent of cytotoxic effect among different cell lines at the same test concentration of same pesticide was different, the sensitivity different of seven cell lines was obvious. sf9 was more sensitive than other cell lines, which in turn are NIAS-MaBr-85,SL2,NIH-SaPe-4,C6-36,RIRI-GG1 and RIRI-PX1。The results indicated that the sensitivity of insect cell lines to the pesticides is accord to the mechanism of pesticides, and the insect cell lines used for the determination of pesticide cytotoxicity is feasible.
引文
[1] Grace T D C. Establishment of four strains of cells from insect tissues grown in vitro. Nature, 1962, 195(195): 788-789.
    [2] Smith G E, Summer M D. Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol cell Biol, 1983, (13): 183-192.
    [3]张寰,张永安,秦启联,等.昆虫细胞系的培养和建立技术.昆虫学报, 2007,50(8):834-839.
    [4] Mitsuhashi J. Establishment and Characterization of Continuous Cell Lines from Pupal Ovaries of the Cabbage Armyworm, Mamestra Brassicae (Lepidoptera: Noctuidae). Development, Growth and Differentiation, 1977, 19(4): 337-344.
    [5] Chen Y, Solter L F, Chien T, et al. Characterization of a new insect cell line (NTU-YB) derived from the common grass yellow butterfly, Eurema hecabe (Linnaeus) (Pieridae: Lepidoptera) and its susceptibility to microsporidia. Journal of Invertebrate Pathology, 2009, 102(3): 256-262.
    [6] Iwanaga M, Arai R, Shibano Y, et al. Establishment and characterization of the Bombyx mandarina cell line. Journal of Invertebrate Pathology, 2009, 101(2): 124-129.
    [7] Pan M, Cai X, Liu M, et al. Establishment and characterization of an ovarian cell line of the silkworm, Bombyx mori. Tissue and Cell, 2010, 42(1): 42-46.
    [8]南方,宋建华,王瑞青,等. AcMNPVP35抑制HaSNPV诱导的Tn-Hi5细胞凋亡.中国病毒学, 2005,20(2):173-178.
    [9]侯建文,赵烨烽. ACNPV在甜菜夜蛾增殖后的分离提纯及观察.南京农专学报, 1999,15(1):5-8.
    [10]朱顺义,高斌.替代宿主传代后的SfaMNPV的毒力测定及电镜观察.湖北农学院学报, 1996,16(2):102-108.
    [11]王林美,范琦,张波,等.柞蚕核型多角体病毒感染离体细胞的研究.辽宁农业科学, 2006(6):5-7.
    [12]李艳红,潘国庆,胡军华,等.家蚕微孢子虫Nosema bombycis侵染草地贪夜蛾卵巢细胞Sf21体系的建立.蚕业科学, 2005,31(2):151-154.
    [13]钱永华,鲁兴萌,金伟,等.家蚕微孢子虫Nosema bombycis向家蚕BmN细胞接种与增殖的观察.蚕业科学, 2003,29(3):260-263.
    [14]邓宁,陈曲侯,洪华珠.昆虫细胞大规模培养和杆状病毒的生产.昆虫知识, 1995,32(04):236-239.
    [15]朱江,吴祥甫.昆虫杆状病毒表达系统研究进展及其应用展望.蚕业科学, 2003,29(2):114-119.
    [16]刘高强,章克昌,王晓玲,等.昆虫杆状病毒表达系统的研究与应用进展.中国生物工程杂志, 2004,24(7):40-44.
    [17] Kreutzer R, Morales A, Cura E, et al. Brain cell karyotypes of six new world sand flies (Diptera: Psychodidae). J Am Mosq Cont Ass, 1988, 4: 453-455.
    [18]曾庆韬,钱远槐,杨官品.果蝇细胞系中反转录病毒样粒子的电镜观察.电子显微学报, 1999,18(2):183-187.
    [19]葛广稻,邓可京,王瑾,等.人RP2基因在果蝇胚胎细胞中的表达.复旦学报(自然科学版), 2001,40(5):498-503.
    [20]张瑞,彭建新.放线菌D诱导的SL-1细胞凋亡的初步研究. 2008: 27,10-14.
    [21] Ndez-Crespo P H, Bergoin M, Lopez-Blachere C, et al. Establishment of two new orthopteran cell lines. In Vitro Cell. Dev. Biol.—Animal, 2000, 36(10): 559-562.
    [22] Hoshino K, Hirose M, Iwabuchi K. A. new insect cell line from the longicorn beetle Plagionotus christophi (Coleoptera: Cerambycidae. In Vitro Cell.Dev.Biol.—Animal, 2009, 45: 19-22.
    [23] Fedoroff S. Proposed usage of animal tisse culture term. In Vitro, 1966, 2: 155-159.
    [24]张寰.昆虫脂肪体细胞体外增殖方法及同源病毒敏感脂肪体细胞系建立研究.中国林业科学研究院, 2006.
    [25] Goldschmidt R, Kaise W. Some experiments on spermatogenesis in vitro. Proc Natl Acad Sci, 1915, 1(4): 220-222.
    [26] Watty S S. Culture in vitro of tissue from the silkworm Bombyx mori. J.Gen.Physiol, 1956,39:841-852.
    [27] Lynn D E. A new embryonic cell lines from the Colorado patato betlle (Lepinotrasa clecemlineate). In Vitro, 1993, 12: 85.
    [28]张欣.两种鞘翅目昆虫细胞培养及昆虫细胞系染色体分析.北京:中国林业科学研究院, 2006.
    [29] Lynn D E, Miller S G, Oberlander H. Establishment of a cell line from lepidopteran wing imaginal discs: induction of newly synthesized proteins by 20-hydroxyecdysone. Proc.Natl.Acad.Sci.USA, 1982, 79: 2589-2593.
    [30]弗雷谢尼R. I.动物细胞培养—基本技术指南.北京:科学出版社, 2004,18-22.
    [31]刘凯于,杨芳,刘克金,等.改良的L-15培养基对鳞翅目昆虫细胞生长和芹菜夜蛾核型多角体病毒增殖的影响.中国生物防治, 2007,23(1):39-43.
    [32]张佑红,陈燕,杜进,等.培养基Grace's对棉铃虫细胞HzAm1培养的改进.化学与生物工程, 2007,24(7):49-51.
    [33] Lynn D E. Effects of long- and short-term passage of insect cells in different culture media on baculovirus replication. J. Invertebr. Pathol., 2000, 76: 164-168.
    [34] Zhang H, Zhang Y A, Qin Q, et al. New cell lines from larval fat bodies of Spodoptera exigua: Characterization and susceptibility to baculoviruses (Lepidoptera: Noctuidae). J. Invertebr. Pathol., 2006, 91: 9-12.
    [35] Iwanaga M, Arai R, Shibano Y, et al. Establishment and characterization of the Bombyx mandarina cell line. J. Invertebr. Pathol., 2009, 109: 124-129.
    [36] Mitsuhashi J. Invertebrate Tissue Culture Methods. Tokyo: Springer-Verlag, 2002, 73-86.
    [37] Rey G J, Ferro C, Bello F J. Establishment and Characterization of a New Continuous Cell Line from Lutzomyia longipalpis (Diptera: Psychodidae) and its Susceptibility to Infections with Arboviruses and Leishmania chagasi. Mem Inst Oswaldo Cruz, Rio de Janeiro, 2000, 95(1):1 03-110.
    [38]王新建,余泽华,姚汉超,等.一种适合粉纹夜蛾5B1细胞生长的无血清培养基的研究.华中师范大学学报(自然科学版), 2001,35(2):206-208.
    [39] Mitsuhashi J. Invertebrate Tissue Culture Methods. Tokyo: Springer-Verlag, 2002, 22-23.
    [40] Koval T M, Suppers D L. PH dependency of cell attachment and growth at both clonal and subculture densities of cultured Lepidoptera cell. In vitro cell.Dec. Biol, 1990, 26: 665.
    [41] Vaughn J. A review of thr use of insect tissue culture for the study of insect-associated viruses. Curr.Top.Mocrobiol.Immunol, 1968, 42: 108-128.
    [42]沈中建,陈梅琴,吴祥甫.蓖麻蚕血细胞系的建立及同源核型多角体病毒的体外复制.病毒学报, 1997,13(4):382-385.
    [43]裘卫,朱国凯.苜蓿银纹夜蛾核型多角体病毒在几株昆虫细胞系内增殖的研究.微生物学报, 1998,28(3):216-220.
    [44]曾卫东,董清.动物细胞培养中微生物污染的检测.浙江畜牧兽医, 2003,2:12.
    [45] Lynn D E. Novel techniques to establish new insect cell lines. In Vitro Cell Dev Biol-Animal, 2001, 37: 319-321.
    [46]薛庆善.体外培养的原理与技术.北京:科学出版社, 2001,233.
    [47]张欣,冯颖,丁伟峰,等.七种鳞翅目昆虫细胞系染色体分析.林业科学研究, 2008,21(4):493-499.
    [48]张欣,冯颖,马涛,等.五种双翅目昆虫细胞系染色体分析.林业科学研究, 2007,20(4):551-555.
    [49]王俊平,檀建新,王勤英,等.昆虫组织培养研究进展.河北农业大学学报, 2002,25:210-214.
    [50] Mitsuhashi J. A Continuous Cell Line from Pupal Ovaries of the Common Cutworm, Spodoptera litura (Lepidoptera: Noctuidae). Japanese Journal of Applied Entomology and Zoology, 1995, 30(1): 75-82.
    [51] Mitsuhashi J. A Continuously Growing Cell Line from Larval Hemocytes of Malacosoma neustria testacea. Japanese Journal of Applied Entomology and Zoology, 1996, 64(3): 692-699.
    [52]关国平,潘敏慧,陈敏,等.家蚕胚胎细胞系BmE_SWU2同工酶的研究.蚕业科学, 2006,32(1):110-113.
    [53] Hodge K T, Sawyer A J, Humber R A. RAPD-PCR for identification of Zoophthora radicans isolates in biological of the potato leafhopper. J Invertebr Pathol, 1995, 65: 1-9.
    [54] McIntosh A H, Grasela J J, Matted R L. Identification of insect cell lines by DNA amplification fingerprinting (DAF). Insect Molecular Biology, 1996, 5(3): 187-195.
    [55] Alhag S K N, Chao Y H, Xin P J. Identification of Insect Cell Lines from 8 Lepidopteran species by DNA Amplification Fingerprinting. Journal of Applied Sciences, 2007, 7(24): 4040-4043.
    [56]潘敏慧,冯振月,田志强,等.家蚕胚胎细胞系的DNA指纹图谱分析.分子细胞生物学报, 2006,39(6):537-543.
    [57] Khurad A M, Kanginakudru S, Qureshi S Q, et al. A new Bombyx mori larval ovarian cell line highly susceptible to nucleopolyhedrovirus. J. Invertebr. Pathol., 2006, 92:5 9-65.
    [58] Wu C Y, Lin H F, Wang C H, et al. Identification of insect cell lines and cell-line cross-contaminations by nuclear ribosomal ITS sequences. Journal of Applied Entomology, 2010: 1-10.
    [59] Sieburth P J, Maruniak J E. Susceptibility of an eatablished cell line of Anticarsia gemmatalis (Lepidoptera: Noctuidae) to three nuclear polyhedrosis virues. J Invertebr Pathol, 1988, 52: 453-458.
    [60] Sudeep A B, Mourya D T, Mishra A C. Insect cell culture in research:Indian scenario. Indian J.Med.Res, 2005, 121: 725-738.
    [61]洪华珠,彭建新.一株高水平重组蛋白昆虫细胞系的建立.昆虫学报, 2001,44(3):276-281.
    [62]曾庆韬,钱远槐.不同品系黑腹果蝇细胞系的建立(Ⅱ).湖南大学学报, 1998,20(4):373-376.
    [63] Kevin A I, Huazhu H, Elian V H, et al. Establishment of New Triochoplusia ni Cell Lines in Serum-Free Medium for Baeulovirus and Recombinat Protein Production. J. Invertebr. Pathol, 1998, 71(7): 82-90.
    [64] Guarino L A, Summers M D. Nucleotide sequence and temporal expression of a baculovirus regulatorygene. Virol, 1987, 61: 2091-2099.
    [65] Jarvis D L, Oker B C, Summers M D. The role of glycosylation in the transport of foreign glycoproteins through the secretary pathway of Le idopteran insect cells. Cell Biochem., 1990, 42: 181-191.
    [66] Bernard A R, Handson J F, Stoltz D B, et al. Recombinant protein expression in a Drosophila cell line : comparison with the baculovirus system. Cytotechnology, 1994, 15(1): 139-144.
    [67]马明,李长友,郑桂玲,等.粉纹夜蛾细胞系QB-Tn9-4s的克隆以及克隆株生物学特性的研究.环境昆虫学报, 2009,31(1):35-40.
    [68] Granados R R, Dwyer K G, Derksen A C G. In Biotechnology in Invertebrate Pathology and Cell Culture. New York: Academic Press, 1987, 167-181.
    [69]李文青,肖成祖.昆虫细胞的大规模培养.生物技术, 1995,5(1):5-8.
    [70]李守信,李长友,郑桂玲,等.昆虫细胞培养研究进展.西北农业学报, 2005,14(3):41-48.
    [71]温发园.杨扇舟蛾等几种重要林业昆虫细胞系的建立及颗粒体病毒体外增殖研究.北京:中国林业科学研究院, 2009.
    [72]李艺丹,程罗根,张晓飞.鳞翅目昆虫细胞株的建立与应用.植物保护, 2001,27(4):38-40.
    [73] Maeda S, Kawai T, Obinata M. Production of human 22interferon in silkworm using a baculovirus vector. Nature, 1985, 315: 592-594.
    [74]李元,常炳圣.人可溶性白细胞介素-6受体基因在昆虫细胞内的克隆与表达.中国医学科学院学报, 2001,23(1):36-37.
    [75]卢业成,龚兰,陈盛强,等.乙型肝炎病毒核心抗原HBcAg基因重组杆状病毒的构建及鉴定.国际医药卫生导报, 2005,11(24):8-10.
    [76]黄亚东,郑青,李校,等.天蚕抗菌肽AD基因在AcNPV载体系统中的表达研究.中国抗生素杂志, 2003,28(5):304-307.
    [77]吕正兵,张文平,于威,等.家蚕表达人表皮生长因子gp67信号肽融合蛋白及生物活性的研究.生物工程学报, 2008,24(1):111-116.
    [78]王丹, Bhaskar R.,李兴华,等.利用杆状病毒Bac-to-Bac系统在家蚕表达猪繁殖与呼吸综合征病毒的E蛋白和M蛋白.蚕业科学, 2010,36(5):855-859.
    [79]宋德伟,马艳,冯颖,等.昆虫细胞工程研究进展.林业科学研究, 2004,17(1):116-124.
    [80]胡远扬.昆虫病毒研究的回顾与展望.中国病毒学, 2004,19(3):303-308.
    [81]小池胜.利用昆虫细胞大量培养法生产天敌病毒.农业科技情报, 1993,4:10-14.
    [82]张超,王玉霞.微生物农药在害虫防治中的应用及发展前景.西南园艺, 2003,31(4):58-59.
    [83]冉红凡,潘文亮,冯书亮.昆虫微孢子虫及其应用的研究进展.河北农业大学学报, 2002,25(5):206-209.
    [84] Mitsuhashi J, Grace T D C, Waterhouse D F. Effects of insecticides on cultures of insect cells. Entomol. Exp. Appl, 1970, 13: 327-331.
    [85]杨红,周青春,王家坤,等.利用菜青虫细胞检测几种有机溶剂和有机磷农药的毒力.植物保护学报, 1996,23(1):79-83.
    [86]郑丙莲,杨红,洪华珠,等.八种昆虫细胞系对灭多威农药的敏感性研究.生物技术通报, 2000, 5: 0-32.
    [87] Waterhouse D F. Some aspects of Australian entomological research. London: Proc XII Congr Ent, 1965, 46-50.
    [88] Yoshida M. Inhibitory effects of pesticides on growth and respiration of cultured cells. Pesticides Biochemistry and Physiology, 1979, 10: 313-321.
    [89] Stipanovic R D, Elissalde M H, Altman D W, et al. Cell culture bioassay to evaluate allelochemicat toxicity to Heliothis viresecn (Lepidopterera:Noctuideal). J Eoon Entomol, 1990, 83: 737-741.
    [90] Rahiouid I, Laugier C, Balmand S, et al. Toxicity,binding and internalization of the pea-Alb entomotoxin in Sf9 cells. Biochimie, 2007, 89(9): 1-5.
    [91] Salehzadeh A, Jabbar A, Jennens L, et al. The effects of phytochemical pesticides on the growth of cultured invertebrate and vertebrate cells. Pest Management Science, 2002, 58: 268-276.
    [92] Das G P, Shaik A P, Jamil K, et al. Cytotoxicity and Genotoxicity Induced by the Pesticide Profenofos on Cultured Human Peripheral Blood Lymphocytes. Drug and Chemical toxicology, 2006, 29: 313-322.
    [93]陈曲候,洪华珠,肖明.应用家蚕胚胎细胞系检测苏云金杆菌的毒力.生物防治学报, 1990,6:31-38.
    [94]洪华珠,杨红.病毒杀虫剂的发展.中国生物防治, 1995,11(2):84-88.
    [95]毛黎娟,魏芳林,朱国念.利用MTT法测定杀虫剂对家蚕细胞的毒力.农药学学报, 2005,7(1):45-48.
    [96]钟国华,水克娟,黄劲飞,等.植物源物质诱导的斜纹夜蛾细胞凋亡.昆虫学报, 2008,51(4):449-453.
    [97]程东美,张志祥,胡美英,等.昆虫细胞在杀虫剂研究上的应用.世界农药, 2002,24(4):28-30.
    [98] Yamano Y, Mstsumoto M, Inoue K, et al. Cloning of cDNA for acropings A and B,and expression of the genes in the silkworm Bombyx mori. Biotechnol Biochem, 1994, 58: 476-1478.
    [99]杨博,王永华.抗菌肽研究进展.生命科学, 2002,14:144-145.
    [100] Fallon A M, Sun D. Exploration of mosquito immunity using cells in culture. Insect Biochemistry and Molecular Biology, 2001, 31: 263-278.
    [101] Tsang K R, Freeman F A, Kurtti T J, et al. New cell lines from embryos of Melanoplus sanguinipes(Orthoptera:Acrididae). Acrida, 1981, 10: 105-111.
    [102] Mitsuhashi J. Invertebrate Tissue Culture Methods. Tokyo: Springer-Verlag, 2002, 117.
    [103] Pant U, Athawale S S, Sudeep A B, et al. A new cell line from larval ovaries of Sopdoptera litura(Lepidoptera,Noctuidae). In Vitro Cell. Dev. Biol., 1997, 33A: 161-163.
    [104] Mitsuhashi J. Invertebrate Tissue Culture Methods. Tokyo: Springer-Verlag, 2002, 48.
    [105] Mitsuhashi J. Invertebrate Tissue Culture Methods. Tokyo: Springer-Verlag, 2002, 84.
    [106] Mitsuhashi J. Invertebrate Tissue Culture Methods. Tokyo: Springer-Verlag, 2002, 66-68.
    [107] Felio J B, Jaime A R, Jesue E, et al. A New Continous Cell Line from the Mosquito Psorophora Confinnis (Diptera:Culicidae) and its Susceptibility to Infection with Some Arbovirus. Rio de Janeiro, 2001, 96: 1-8.
    [108]李长友,郑桂玲,王晓云,等.八字地老虎血球细胞系的建立.昆虫学报, 2002,45(2):279-282.
    [109]薛庆善.体外培养的原理与技术.北京:科学出版社, 2001,153.
    [110]浦秋文,胡敏,卢文筠.蓖麻蚕蛹卵巢细胞的离体培养及其病毒感染实验.蚕业科学, 1981,15(1):56.
    [111]谢荣栋.三种鳞翅目昆虫的血球细胞和卵巢的体外培养.昆虫学报, 1980,23(3):249-251.
    [112] Mitsuhashi J, Maramorosch K. Insect muscle cell line from contractile tissue network in vitro. In Vitro Cell Dev Biol, 1991, 27A: 837-840.
    [113]张寰.昆虫脂肪体细胞体外增殖方法及同源病毒敏感脂肪体细胞系建立研究.北京:中国林业科学研究院, 2006.
    [114] Chen Y R, Solter L F, Chien T Y, et al. Characterization of a new insect cell line (NTU-YB) derived from the common grass yellow butterfly, Eurema hecabe (Linnaeus) (Pieridae: Lepidoptera) and its susceptibility to microsporidia. J. Invertebr. Pathol, 2009, 102: 256-262.
    [115] Folmer O, Black M, Hoeh W, et al. DNA primers for amplification of mitochondrial cytochrome coxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol, 1994, 3(5): 294-299.
    [116] Zhang H, Zhang Y, Qin Q, et al. New cell lines from larval fat bodies of Spodoptera exigua: Characterization and susceptibility to baculoviruses (Lepidoptera: Noctuidae). Journal of Invertebrate Pathology, 2006, 91(1): 9-12.
    [117] Wu C Y, Wang C H. New cell lines from Lymantria xylina (Lepidoptera: Lymantriidae):Characterization and susceptibility to baculoviruses. J. Invertebr.Pathol., 2006, 93: 186-191.
    [118] Meng M, Juan T, Li T L, Li C Y, et al. A suspended cell line from Trichoplusia ni (Lepidoptera):Characterization and expression of recombinant proteins. Insect Science, 2008, 15: 423-428.
    [119]李兵,沈卫德.家蚕和野蚕的细胞系研究进展.中国蚕业, 2002,23(4):67-69.
    [120]郑桂玲,李长友,周洪旭,等.两株棉铃虫胚胎细胞系的建立及其对杆状病毒侵染的反应.昆虫学报, 2010,53(2):167-174.
    [121]贺莉芳,万启惠,刘晖,等.家蝇胚胎细胞系的建立及其生物学特性.昆虫知识, 2009,46(5):788-791.
    [122]薛庆善.体外培养的原理与技术.北京:科学出版社, 2001,158.
    [123]黄国洋,王荫长,尤子平.鳞翅目昆虫染色体的研究方法.华东昆虫学报, 1994,3(1):71-74.
    [124]张礼生,张青文,蔡青年,等.中国昆虫染色体研究现状与展望.昆虫学报, 2003,46(6):773-782.
    [125]陈晓虹,陈广文.我国己建立的昆虫细胞系及其生物学特性与应用.昆虫知识, 1999,36(4):233-238.
    [126] Keita H, Mami H, Kikuo I. A new insect cell line from the longicorn beetle Plagionotus christophi (Coleoptera: Cerambycidae). In Vitro Cell.Dev.Biol.—Animal, 2009, 45: 19-22.
    [127] Hernandez-Crespo P, Bergoin M, Lopez-Blachere C, et al. Letter to the Editor:Establishemnt of two new orthopteran cell lines. In Vitro Cell. Dev. Biol.—Animal., 2000, 36: 559-562.
    [128] Esteves E, Lara F A, Lorenzini D M, et al. Cellular and molecular characterization of an embryonic cell line (BME26) from the tick Rhipicephalus (Boophilus) microplus. Insect Biochemistry and Molecular Biology, 2008, 38(5): 568-580.
    [129] Charoentier C, Tian L, Cossette X J, et al. Characterization of cell lines developed from the colorado patato beetle,Leptinotarsa Decemlineata Say(Coleoptera:Chrysomelidae). In Vitro Cell. Dev. Biol.—Animal., 2002, 38: 73-78.
    [130]徐鑫成.污水诱导大蒜细胞微核及异常有丝分裂的研究.植物研究, 2006,26(3):361-364.
    [131]李宏.亚硫酸氢钠诱发蚕豆根尖细胞有丝分裂异常性的研究.渝州大学学报(自然科学版), 1997,14(4):1-7.
    [132]彩万志.昆虫细胞分类学的基本问题及染色体系统发育的重建方法.昆虫分类学报, 1994,16(1):4-14.
    [133] Beard C B, Hamm D M, Collins F H. The mitochondrial genome of the mosquito Anopheles gambiae: DNA sequence, genome organization, and comparisions with mitochondrial sequences of other insects. Insect.Mol. Biol., 1993, 2: 103-124.
    [134] Gennis R B. Site-directed mutagenesis studies on subunit I of the aa3-type cytochrome coxidase of Rhodobacter sphaeroides: a brief review of progress to date. Biochim. Biophys. Acta., 1992, 1101: 84-187.
    [135]王鑫,黄兵. DNA条形编码技术在动物分类中的研究进展.生物技术通报, 2006,4:67-72.
    [136] Hebert P D, Cywinska A, Ball S L, et al. Biological identifications through DNA barcodes. Proc. Biol. Sci., 2003, 270: 313-321.
    [137] Ratnasingham S, Hebert P D N. Bold: The barcode of life data system(http://www.Barcoding-life.org). Molecular Ecology Notes, 2007, 7(3): 355-364.
    [138]代金霞,张大治.从COI基因序列探讨叶甲科部分昆虫的系统关系.宁夏大学学报(自然科学版), 2010,31(1):78-82.
    [139]刘勇,宋毓,李晓宇.基于线粒体COI基因的DNA条形码技术在昆虫分子鉴定中的应用.植物检疫, 2010,24(2):46-50.
    [140]池宇,王诗迪,张春田.基于线粒体COI基因的双翅目昆虫研究进展.昆虫分类学报, 2010,32:71-77.
    [141]方雪梅.利用线粒体COI基因序列对中国叶甲科3亚科9属系统分化的研究.宿州学院学报, 2009,24(1):113-117.
    [142]孙娜,郭晓华,刘广纯.金龟子部分种类COI基因序列比较分析.沈阳农业大学学报, 2009,40(6):688-692.
    [143]诸立新,吴孝兵,晏鹏,等.从COⅠ和COⅡ基因部分序列研究中国翠凤蝶亚属(鳞翅目:凤蝶科)的分子系统关系.动物学报, 2007,53(2):257-263.
    [144]诸立新,吴孝兵,晏鹏.基于COⅠ基因部分序列对尾凤蝶属(鳞翅目,凤蝶科)四种蝴蝶分子系统关系及相关问题的探讨.动物分类学报, 2006,31(1):25-30.
    [145]许丽,郝家胜,朱国萍,等.基于线粒体COⅠ和Cyt b基因的粉蝶亚科及黄粉蝶亚科(粉蝶科)部分类群的分子系统发生.动物分类学报, 2007,32(4):842-850.
    [146]张大秀,郝家胜,邹方振,等.基于线粒体Cyt b基因和CO I基因序列研究豹蛱蝶亚科(鳞翅目,蛱蝶科)10属间的系统发生关系.动物分类学报, 2009,34(3):522-530.
    [147]刘殿锋,蒋国芳.核基因序列在昆虫分子系统学上的应用.动物分类学报, 2005,30(3):184-492.
    [148]刘延滨,姬兰柱.核rDNA-ITS序列在昆虫学研究上的应用.应用生态学报, 2007,18(5):1137-1142.
    [149] Yeh S C, Lee S T, Wu C Y, et al. A cell line (NTU-MV) established from Maruca vitrata (Lepidoptera: Pyralidae): Characterization, viral susceptibility, and polyhedra production. J. Invertebr. Pathol., 2007, 96: 138-146.
    [150]张传溪.昆虫杆状病毒ph、pk基因分析和人EPO基因在杆状病毒-昆虫系统中的表达.北京:高等教育出版社, 2001,39-41.
    [151]吴小锋,曹翠平,许雅香,等. BmNPV和AcNPV扩大寄主域杂交重组病毒表达载体的构建和改进.中国科学C辑生命科学, 2004,34(2):156-164.
    [152]王文兵,马双双,李兵,等.利用双色荧光观察分析重组家蚕杆状病毒对昆虫细胞及蚕体组织的感染.蚕业科学, 2009,35(3):634-637.
    [153]李充壁,庞义.杆状病毒侵染的分子基础.微生物学通报, 2001,28(5):80-84.
    [154] Mori H, Nagazawa H, Shiai N, et al. Foreign gene expression by a baculovirus vector with an expanded bost rarge. J. Gen. Virol, 1992, 73: 1877-1880.
    [155] Argaud O, Croizier L, Lopez-Ferber M, et al. Two key mutations in the host-range specificity domain of the p143 gene of Autographa californica nucleopolyhedrovirus are required to kill Bombyx mori larvae. J Gen Virol, 1998, 79: 931-935.
    [156]于洪春,王晓云,李国勋.四株昆虫细胞系对粘虫核型多角体病毒敏感性的测定.东北农业大学学报, 2000,31(4):342-345.
    [157]包建中,古德祥.中国生物防治.太原:山西科学出版社, 1998,422-447.
    [158]程东美,张志祥,田永清,等.印楝杀虫作用机理.植物保护, 2007,33(4):11-15.
    [159]钟国华,水克娟,吕朝军,等.印楝素对SL-1的细胞凋亡诱导作用.昆虫学报,2008,51(6):618-627.
    [160]颜桂军,荣凤芝,王勃,等. 4%啶虫脒?高氯微乳剂配方的研究与室内毒力测定.农药, 2005,44(11):514-515.
    [161]周炳,赵美蓉,张安平,等.马拉硫磷对映体对人成神经细胞瘤细胞生长影响的选择性差异.农药学学报, 2007,9(3):263-268.
    [162]黄建忠,李学锋,胡涛,等. 5%高效氯氟氰菊酯WP防治十字花科蔬菜蚜虫的田间药效试验.农药, 2008,47(5):375-377.
    [163]周青春,万树青,刘钊杰,等.利用MTT法测定杀虫剂对细胞的毒力.植物保护学报, 1996,23(4):343-348.
    [164]周青春,汪虹,洪华珠,等.农药生物制定新方法的研究Ⅰ:几种有机溶剂对中国棉铃虫( Heliothis armiger)细胞生长的影响.华中师范大学学报(自然科学版), 1997,31(1):92-95.
    [165] Felio J B, Jaine A R, Jesces E. A New Continuous Cell Line from the Mosquito Psorophora confinnis (Diptera:Culicldae) and its Susceptibility to Infection with Some Arboviruse. Rio de Janeiro, 2001, 93: 1-8.
    [166]彭建新,杨红,洪华珠,等.粉纹夜蛾5BI细胞的悬浮培养.华中师范大学学报(自然科学版), 1995,30(4):472-475.
    [167] Hunter W B, Hsu H B. Formulation of an Insect Medium for Thrips Monolayer Cell Cultures (Thysanoptera:Thripidae:Frank liniella occodentalis). Journal of Invertebrate Pathology, 1996, 67(2): 125-128.
    [168]赵佼,周燕,谭文松,等.贴壁培养方式中昆虫细胞生长限制性因素研究.生物工程学报, 1999,15(3):383-387.
    [169]崔淑燕.昆虫中海藻糖代谢的研究进展.安徽农业科学, 2008,36(23):9998-9999.
    [170]董关木.细胞培养用牛血清现状与进展.中国生物制品学杂志, 2007,20(9):697-700.
    [171]董社琴.柞蚕蛹卵巢细胞的初代培养.生物技术通讯, 2004,15(6):588-590.
    [172] Mitsuhashi J. Utilization and requirements of amino acids by a cell line derived from the butterfly Papilio xuthus. Journal of Insect Physiology, 1976, 22(3): 397-402.
    [173] Mitsuhashi Jun. Invertebrate Tissue Culture Methods. Tokyo: Springer-Verlag, 2002, 118-120.
    [174] Munderloh U G, Kurtti T J, Liu Y, et al. Arthropod cell culture systems. Florida: CRC Press, 1994, 51-64.
    [175] Tsang K R, Freeman F A, Kurtti T J, et al. New cell lines from embryos of Melanoplus sanguinipes(Orthoptera: Acrididae). Acrida, 1981, 10: 105-111.
    [176]周亚竞,张志芳,何家禄.家蚕悬浮培养细胞系的建立及悬浮培养.蚕业科学, 2000,26(1):34-37.
    [177]陈敏荣.鲫鱼异倍体细胞系的建立及其生物学特性.水产学报, 1986,9(2):121-130.
    [178]沈锦玉,尹文林,曹铮,等.鳙鱼吻端细胞系BHS的建立及特性观察.浙江水产学院学报, 1993,12(4):265-270.
    [179]张锡元.体细胞遗传学.武汉:武汉大学出版社, 1986,30.
    [180]曾灵芳,李文鑫,李杰,等.人肺癌转移胸水细胞系HLAMP的建立和生物学特征,无血清细胞培养的研究.武汉:湖北科学技术出版社, 1993, 160-167.
    [181] Peter R, Francise M. Cytogenetic effects of sodium azide encapsulated in liposomes on heteroploid cell culture. Mutation Research Letter, 1992, 283(3): 215-219.
    [182] Taylor W G, A. Richter A, Virginia J E. Influence of Oxygen and PH on Plating Efficiency and Colony Development of WI-38 and Vero Cells. Experimental Cell Research, 1974, 86(1): 152-156.
    [183] Maria B, Bartha A, A K M. Heteroploid Permanent Cell Line Originating from Embryonic Calf Thyroid Supporting the Replication of all Known Bovine Adenovirus Serotypes. Veterinary Microbiology, 1989, 19(4): 317-324.
    [184] Meek R L, Bowman P D, Daniel C W. Establishment of Rat Embryomic Cells in Vitro Relationship of DNA Synthesis and Acquisition of Unlimited Growth Potentia. Experimental Cell Research, 1980, 27(1): 127-132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700