用户名: 密码: 验证码:
X70管线钢焊接接头热裂纹与冷弯性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压、大管径、高强度管线钢是石油、天然气输送管道发展的必然趋势。X70管线钢是控轧控冷的低碳微合金钢,具有高强高韧性。焊前组织为细小针状铁素体,经过埋弧焊热循环的作用,焊缝组织为先共析铁素体和针状铁素体,热影响区粗晶区(CGHAZ)组织为粗大粒状贝氏体。焊后材料性能发生恶化,焊缝中有时会出现热裂纹,冷弯试验中会出现冷弯裂纹。本课题即以X70管线钢为对象,研究焊缝裂纹和焊后冷弯裂纹形成机理,并提出改进措施。
     通过对焊缝裂纹样品的金相和成分分析,表明裂纹均为结晶裂纹。具体原因是母材中硫磷等元素的偏析、焊缝成形系数小于1和线能量太大。
     通过对冷弯裂纹样品的金相和断口扫描分析,得出裂纹起裂于CGHAZ,止裂于正火区。为了研究冷弯裂纹与CGHAZ组织和性能的关联性,利用Gleeble-2000热模拟试验机,进行了不同t8/5下CGHAZ热模拟试验。
     通过实际CGHAZ组织与螺旋焊管t8/5=40s时模拟试样组织比较,组织特征一致,表明热模拟试验能够反映实际的粗晶区组织与性能。模拟试样金相分析得出γ晶粒粗大,显微组织为粗大的粒状贝氏体。利用lepera试剂腐蚀显示M-A组元,分析其形貌、大小和分布对CGHAZ韧性的影响。随t8/5延长,γ晶界M-A组元增多变粗,铁素体条束间M-A组元由条状转变为块状,平均弦长变大,所占体积分数增加,且其平均弦长超过Griffith裂纹临界尺寸,作为脆性裂纹源,降低了CGHAZ韧性。热模拟试样硬度、拉伸和低温-20℃冲击试验结果表明,随t8/5延长,CGHAZ的硬度逐渐减小, b、s均降低,延伸率相差不大,冲击韧性降低。此外,模拟试样预应变冲击试验表明,发生应变脆化,试样冲击功降低。通过组织与性能研究结果表明,随t8/5延长,CGHAZ韧性降低,导致降低了材料冷弯性能。
High pressure, large diameter and high strength pipes are inevitable trend for the oil and natural gas transporting pipeline. X70 pipeline steels, microalloyed steel and low carbon produced by TMCP process, possess high strength and good toughness. Before welding the microstructures are fine acicular ferrite, but through the thermal cycling effect of SAW, the microstructures in WM comprise of proeutectoid ferrite and acicular ferrite, and those in CGHAZ comprise of coarsely granule bainite. After welding the materials deterioration in performance, sometimes hot cracks will appear, and cracks will take place in the cold bending test. In this thesis, the mechanics of appearing the hot cracks and cold bending cracks for X70 pipeline steel will be studied, and some improvement measurements will be proposed.
     Through analyzing the metallic phase and constitute of specimens shown hot cracks, it can be concluded the cracks are all crystal cracks. It is the main reasons for them that the segregation of Sulfur and phosphorus elements in the substrate, welding profiled coefficient less than 1 and too much energy input.
     Through the cold bending cracking specimens' metallic phase and fracture ESEM analysis, it can be concluded that the cracks start with CGHAZ and finish with normalized zone. In order to research the relationship between the cold bending cracks and CGHAZ, thermal simulation on X70 CGHAZ is performed making use of Gleeble-2000 thermal simulation machine, only changing t8/5.
     By comparing the microstructures of CGHAZ in real weld with the simulated specimens of spiral welding when t8/5 is 40s, they are approximately anastomotic. It indicates that the thermal simulation can reflect the real CGHAZ microstructures and properties. It can be shown by analyzing the simulated specimens that austenite crystal coarsens, the CGHAZ microstructures are coarse grain bainite. Making use of lepera reagent revealing the M-A constituents, its pattern, size and distribution's effect on toughness of CGHAZ are analyzed. With the t8/5 increasing, the M-A constituents alongγ grain boundary become more and coarser, the M-A constituents in ferrite strip transform strip into block, the average size grows bigger, and the bulk possessed increases, and its average size exceeds Griffith crack critical size, it can act as the cracking resources and damage the toughness of CGHAZ, and it's the dominant factor which has effect on the toughness. The experimental results of hardness, tension and -20℃impact test show that the hardness of CGHAZ decreases gradually, the b and s also decrease, the elongation percentage have no obvious change, and the impact toughness decrease, with the t8/5 increasing. In addition, the results of prestrain test show that strain embrittlement produce, the impact energy reduce. Finally, the results of microstructures and properties show that the CGHAZ toughness decreases with the t8/5 increasing, resulting in the cold bending performance decreasing.
引文
[1] M Mohitpour et al. High Pressure Pipelines Trends for the New Millennium [A]. 2000 International Pipeline Conference Processings. ASME,2000,Oct:515~528.
    [2] Nagai K. State of the Art of 800MPa Steel Project in Japan[C]. Proceedings of NG Steel,Beijing,2001:8.
    [3] J.Malclm,G.Q. Liu. Modern Pipeline Technology Specification Trends and Production Experience[C]. HSLA Steel’s 2000,Xi’an,2000:71.
    [4] Zhiping Zhao,Zhenmin Wang,Hongmei Zhang et al. Effect of Deformation and Cooling Rate on the TransformationBehavior and Microstructure of X70 Steels[J]. Journal of University of Science and Technology,Beijing,Vol.14,№.5,Oct 2007:410~413.
    [5] Adem B. Effect of Processing Parameters on the Microstructure and Properties of an Nb Microalloyed Steel[J]. Materials Letters,2002,56:200~209.
    [6]张彩军,蔡开科,袁伟霞等.管线钢的性能要求与炼钢生产特点[J].炼钢,2002,18(5):40~46.
    [7]杨政,郭万林,董蕙茹等. X70管线钢静态和动态韧性试验研究[J].西安交通大学学报,2003,37(5):488~491.
    [8] Xue Xiaohua. Development of Submerged Arc Welding Wire,Techniques and Weldability of X80 Pipeline Steels [D]. Shenyang:Institute of Metal Research Chinese Academy of Sciences,2001.
    [9] Zhou Yun,Xue xiaohuai,Li Jingli et al. Microstructure and Property of Coarse Grain HAZ X80 Pipeline Steel [J]. J. Iron & Steel Res.Vol.12,№.6,Nov.2005:54-58.
    [10]郑瑞.由“西气东输”工程谈管线钢的生产与发展[J].首钢科技.2003,(3):7~11.
    [11]高惠临.管线钢:组织,性能,焊接行为[M].陕西:陕西科学技术出版社.1995.1,51.
    [12]高惠临,董玉华,周好斌.管线钢的发展趋势与展望[J].焊管,1999.5,22(3):4~8.
    [13] Alan Glover . Application of grade 550 (X70) and grade 690 (X80) in arctic climates pipe dreamer’s conference,Yokomama,2002:33~52.
    [14]翁宇庆.超细晶钢:钢的组织细化理论与控制技术[M].北京:冶金工业出版社,2003:333.
    [15] M.Graef, J.Schroeder, V.Schwinn and K.Hulka. Production of Large Diameter Pipes Grade X70 with High Toughness Using Acicular Ferrite Microstructures[C]. proceeding of the intermational pipe dreamer’s conference,Nov.2002:7~8.
    [16]王茂堂,牛冬梅,王丽等.高强度管线钢的发展和挑战[J].焊管,2006.9,29(5):9~16.
    [17]彭云,陈武柱,许祖泽.管线钢大电流双面高速埋弧焊接用焊丝研制[J].焊接学报,2001,22(2):62~64.
    [18]李为卫,刘亚旭,霍春勇等.我国大口径X70输气钢管焊接技术和质量现状[C].第十一次全国焊接会议论文集,144~147.
    [19] Hiroshi Tamehiro,Toshiro Yoshino. Processings of the International Symposium on Structural Technique of Pipeline Engineering,1992.9.
    [20] Takeuehil,Fujino J,Yamamoto A,Okaguehi S. The Prospects for High-grade Steel Pipes for Gas Pipelines[C].Pipes and pipelines international,2003,48(1):33~43.
    [21] Huo C,Li H,Ma W et al. Development of large diameter X70 high toughness HSAW linepipe for gas transmission [C]. Proceedings of the international pipeline conference,2002(A):403~407.
    [22] Mendoza R,Huante J,Camacho V et al. Development of an API 5L X70 grade steel for sour gas resistance Pipeline application. Journal of Materials Engineering and Performance,1999,8(5):549~555.
    [23] Kawabata F,Amano K,Tanigawa O et al. High strength X80 grade Pipe with super weldability and improved resistance to unstable ductile fracture [J]. Proceedings of the International Offshore Mechanics and arctic Engineering Symposium,Pipeline Technology,1992:597~603.
    [24] Wang Yikang,Pan Jiahua,Yang Ke et al. Pipeline Steel for Transmission with High Properties [J]. Welded Pipe And Tube,2007.3,30(2):13~18.
    [25]宝钢成功完成X120管线钢焊接试验.中国钢管网.
    [26]王仪康,潘家华,杨柯等.高性能输送管线钢[J].焊管,2007.3,30(2):13~18.
    [27] Sang Yong Shin, Byoungchul Hwang, Sunghak Lee et al. Correlation of microstructure and charpy impact properties in API X70 and X80 line-pipe steels[J]. Materials Science and Engineering,2007(A):281~289.
    [28] Coulter L.P,Wu Hong,Buster L A. Pipeline across china offers life-altering experience[J].Pipeline & gas journal,2004,231(8):37~45.
    [29]郑磊.针状铁素体X70高强度高韧性管线钢板卷的组织和性能[C].2003年国际管线钢学术报告会论文集。廊坊:中国石油学会石油储运学会,2003,65~70.
    [30]黄开文,王颖,庄传晶.从2006年国际管道会议看高钢级管道建设[J].焊管,2007.5,30(3):11~14.
    [31]王小香.从2006年微合金钢应用国际研讨会看国际高钢级管线钢的发展动向[J].焊管,2006.11,29(6):9~14.
    [32]王春明,吴杏芳,刘玠等. X70针状铁素体管线钢析出相[J].北京科技大学学报,2006.3,28(3):253~258.
    [33]郑磊.管线钢的碳含量和碳当量与焊接性的关系[J].焊管,2004.7,27(4):72~76.
    [34] Ni Shumin. Discussion on Elements Responsible for Mechanical Properties of SAW Spiral Weld Pipe [J]. steel pipe,2002.12,31(6):19~23.
    [35]杨专钊,杨延华,廖淑梅.国产X80级直缝埋弧焊接钢管低温韧性[J].焊管,2006.1,29(1):19~22.
    [36] Wang Qingjiang,Wang Yikang. Microalloyed Controlled Rolling Steel[J].Welded Pipe and Tube,1994.7,17(4):14~20.
    [37]孔君华.高钢级X80管线钢工艺、组织与性能的研究:[博士学位论文].武汉:华中科技大学,2005.7.
    [38]高惠临,石凯.管线钢控制轧制与控制冷却技术的应用和进展[J].焊管,1995.5,18(3):7~11.
    [39]牛济泰.材料和热加工领域的物理模拟技术[M].北京:国防工业出版社,2007.1.
    [40]陈楚,张月嫦.焊接热模拟技术[M].北京:机械工业出版社,1985.
    [41]华中工学院,冶金部钢铁研究总院编译.焊接热模拟试验装置及其应用[M].北京:机械工业出版社,1980.
    [42]张文钺.金属熔焊原理及工艺[M].北京:机械工业出版社,1980.
    [43]郑磊,高珊.西气东输工程大口径X70输气管线用板卷的研制[J].钢铁研究学报,2006,18(3):46-50.
    [44]吕德林,李砚珠.焊接金相分析[M].北京:机械工业出版社,1987.10,42.
    [45]周玉、武高辉.材料分析测试技术——材料X射线衍射与电子显微分析[M].黑龙江:哈尔滨工业大学出版社,1998.8,183.
    [46]刘哲. X80高强管线钢焊接性的模拟研究:[博士论文].天津:天津大学,2006.2.
    [47]束德林.工程材料力学性能[M].北京:机械工业出版社,2003.7,68.
    [48] Sun Hong,Wang Delin,Tong Jianhui. Notice of Charpy Impact Test for Pipeline Steel [J]. Welded Pipe and Tube,2007.5,30(3):58~60.
    [49]田德蔚,钱百年,陈晓风等.用图像仪测定M-A组元的腐蚀方法的比较研究[J].理化检验-物理分册,Vol.30,No.1(1994):28~29。
    [50] Jia Kunning,Gao Cairu,Du Linxiu et al. Effect of Simulated Welding Thermal Cycle on Microstructure And Properties of HAZ for Miro-Calcium Steel[J]. Research on Iron & Steel,Apr.2007,35(2):17~21.
    [51]史耀武主编.中国工程材料大典第22卷材料焊接工程(上)[M].北京:化学工业出版社,2006.1.1:157.
    [52]陈平昌,朱六妹,李赞.材料成形原理[M].北京:机械工业出版社,2003.3.
    [53]哈尔滨焊接研究所编著.焊接裂纹金相分析图谱[M].黑龙江:黑龙江科技出版社出版,1981:10~19.
    [54]刘恒,高惠临,丁学光.焊接热循环对X80管线钢粗晶区组织性能的影响[J].热加工工艺,2007,36(7):4~6.
    [55]辛希贤等.管线钢的焊接[M].陕西:陕西科学技术出版社,1997.9.1:90.
    [56]王红霞,吉玲康.高钢级管材冷弯过程中的变形影响[J].焊管,2006.3,29(2):19~21.
    [57]中国机械工程学会焊接学会.焊接手册第二卷:材料的焊接[M].北京:机械工业出版社,2001.7:16~17.
    [58]傅积和,孙玉林.焊接数据资料手册[M].北京:机械工业出版社,1994.6:49~51.
    [59]李鹤林,郭生武,冯耀荣等.高强度微合金管线钢显微组织分析与鉴别图谱[M].北京:石油工业出版社,2001.9:10.
    [60] Mutsuo Nakanishi,Yu-ichi komizo. Improvement of welded HAZ toughness by dispersion with nitride particles and oxide particles [J]. J. Jpn. Weld Soc.1983,52(2):117~131.
    [61] Muzuki S. Solution of TiN during synthetic weld thermal cycling and HAZ toughness in low carbon steels [J].Trans.JWS,1987,18(2):58~68.
    [62]高国良译.M-A组织对热影响区缺口韧性的影响[J].钢管,1998.8,27(4):55~60.
    [63]许祖译.中-瑞冶金科技合作第二阶段共同研究论文集[C].北京:冶金工业出版社,1990.
    [64]洪永昌,高甲生,尹桂全等.微合金钢焊接粗晶区晶粒长大的热模拟研究[J].宝钢技术,1996.1:53~58.
    [65] Xu Xueli,Xin Xixian,Shi Kai et al. Influence of Welding Thermal Cycle on Toughness and Microstructure in Grain-Coarsening Region of X80 Pipeline Steel[J]. Transaction of The China Welding Institution,Aug.2005,26(8):69~72.
    [66] Sungtak Lee, Byung Chun Kim, Dongil Kwon. Fracture toughness analysis of heat-affected zones in high-strength low-alloyed steel welds. Metall Trans,1993,24A:2803.
    [67]陈玉华,王勇,韩彬等. X70钢在役焊接热循环及粗晶区组织性能研究[J].兵器材料科学与工程,2005.7,28(4):16~19.
    [68]王庆鹏. X80管线钢粗晶区相变的模拟及性能研究:[博士学位论文].天津:天津大学,2005.1:69.
    [69] Jin Haicheng,Wang Yong,Han Bin and Chen Yuhua. Influence of coolingconditions on X70 pipeline steel in-service welding HAZ[J]. CHINA WELDING,Vol.15№.2 June 2006:68~72.
    [70]霍春勇,杨政,李为卫等. X70管线钢拉伸性能试验研究[J].压力容器,2004.7,21(8):8~11.
    [71]杜百平,李年,朱维斗.油(气)管用钢板的包辛格效应[J].机械工程材料,2006.2,30(2):13~15.
    [72]辛希贤,姚婷珍,张刊林等.高屈强比管线钢的安全性分析[J].焊管,2006.7,29(4):36~39.
    [73]黄振东等.钢铁金相图谱[M].香港:中国科技文化出版社,2005,1284~1296.
    [74]李为卫,刘亚旭,高惠临等. X80管线钢焊接热影响区的韧性分析[J].焊接学报,2006.2,27(2):43~46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700