用户名: 密码: 验证码:
X80管线钢焊接工艺及可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长距离石油天然气管道输送作为经济、安全、高效的油气输送方式越来越为世界各国所重视。管道工程技术的开发与利用也得到了快速发展。随着我国“西气东输”、陕京输气管线的建成与投产,国家油气管道工程建设也得到了快速的发展。由于石油与天然气是危险的化学品,因此其输送安全性作为一个重要的课题被许多国家的科研机构所重视。高等级管线钢的开发与利用有效地降低了管道工程建设成本和难度。X80级管线钢是国际上近年来成功开发和利用的高等级管线钢的新品种之一。在工程应用前必须对其性能及在运行环境下的安全性作出准确的评价。
    本课题作为中国石油天然气集团公司“X80级管线钢管热煨弯管技术研究”的一部分。在分析研究国外有关X80级管线钢技术开发应用以及所确定的力学性能及其韧性等方面标准的基础上,结合我国开发研制的X80级管线钢热轧板卷及其卷制的螺旋缝埋弧焊管直缝埋弧焊管的力学性能、韧性的试验结果提出了我国X80级管线钢热轧板卷、卷制成的螺旋缝埋弧焊管直缝埋弧焊管的力学性能及其韧性的建议指标。
    本文首次提出了关于X80管线钢环焊工艺的技术方案,经过力学性能及组织分析表明,该焊接方案符合API的有关规定。焊接质量优良,可以作为工程实际应用的依据。首次制定了国产X80钢(Φ1016mm×7.9mm)焊接工艺方案:E7010焊条根焊+ E9018-G焊条的热焊及盖面焊,可获得合格的焊接接头。为日本产X80钢管制定了合格的焊接工艺方案为: JM 58焊丝STT半自动根焊+E10018-G的填充盖面焊。
    本文首次采用模糊随机综合评价方法,以二级综合评价模型对X80级管线钢的焊接工艺进行了模糊评价。编制了模糊综合评估软件FSAP1,采用专家评价与模糊评价相结合的方式确定了其影响焊接质量的模糊可靠度。
    本文采用“双参数法”编制了可靠性计算软件X80RW,对X80级管线钢可能产生缺陷及失效预测进行了可靠度计算。并经过实例计算,结果表明:该管线属于正常状态。
The long distance oil and gas transportation pipeline has been more and morepained attention by the world since it is an economical, safe and efficient way to oiland gas transmitting. As a result, the development and utilization of pipelineengineering technology have been greatly developted. With the construction andoperation of the West-East Gas Transportation Pipeline Project and Shangxi-BeijingGas Transportation Pipeline Project in China, our national oil and gas pipelineconstruction have been rapidly developed. Since petroleum and gas are dangerouschemicals, their safe transportation has been given top priority by the researchdepartments of many countries as a important topic. The cost and difficulty ofpipeline construction have efficiently been reduced by the development andutilization of high grade pipe steels. X80 pipe steel is one of the new varieties ofadvanced high grade pipe steels which hve been successfully developed and used inrecent years. However, a precise evaluation of its property and the safety coefficientunder service environment should be made before it is practically applied.
    This research topic is an integral part of the “Research on the Heat-stewed BendTechnology of X80 Pipe Steel” by CNPC. On the basis of the analysis and research ofthe foreign development and application of X80 pipe steel as well as its determinedmechanical properties and malleability standards, in combination with the experimentresults of the mechanical properties and malleability of X80 pipe steel hot-rollingplate as well as the spiral-seam submerged-arc and vertical-seam submerged-arcwelding pipes developed in China, the reference index of the mechanical propertiesand malleability of X80 pipe steel hot-rolling plate developed in China as well as thespiral-seam submerged-arc and vertical-seam submerged-arc welding pipes have beenadvanced.
    The technical advice for the loop welding technology of X80 pipe steel has beenfor the first time proposed in this dissertation. Through the analysis of mechanicalproperties, this welding method complies with relevant API regulations. The weldingquality is satisfactory and could be the foundation of practical application. Thewelding procedure scheme of X80 pipeline steel (the pipe diameter is Ф1016mm,
    the wall thickness is 7.9mm) made in our country has been firstly established:E7010-P1 rods for root welding and hot welding, E9018-G rods for fill welding andcap welding. The qualified welding joints can be made. The qualified weldingprocedure scheme for X80 pipeline steel made in Japan is: STT semi-automatic rootwelding with JM-58 welding wires and E10018-G welding rods for the fill weldingand cap welding.Fuzzy random synthetic evaluation method is firstly adopted for conductingfuzzy assessment on the X80 pipe steel welding technology with level II syntheticevaluation module in this dissertation. , and a relevant program FSAP1 has been made.The fuzzy reliability which influences the quality of welding has been determined byexperts' evaluation in combination with fuzzy evaluation.The reliability calculation program X80RW has been established by the methodof “double coefficient” and on the possible deficiency and invalidity anticipation ofX80 pipe steel has been carried out. A number of examples has been calculated inthis dissertation. It turns out to be that the pipeline is in normal operation.
引文
[1] 刘增洁.2000 年世界天然气市场回顾及未来展望.中国能源,2001,11:13~16
    [2] 张帆,梁志鹏.我国天然气资源利用的主要途径.中国能源,2001,5:39~41
    [3] 庞名立.中国天然气市场问题的讨论. 中国能源,2001,11:17~21
    [4] H.Gaessler,G.H.Vogt. Influence of yield to tensile ratio on the safety of pipelines.3R International.1989,28:165~172
    [5] G.A.Hohl,G.H.Vogt. Allowable strains for high strength line pipe. 3R International.1992,31:696~700
    [6] 黄志潜.发展长输管道用埋弧直缝焊管适应国内外油气工业发展的需要.焊管.1998,21(4):1~9
    [7] 王茂棠.大型输气管线选材的几点看法. 焊管.2000,23⑶:32~42
    [8] 李鹤林.油气输送管发展动向及国产化探讨.北京:石油工业出版社,1999.2:29~46
    [9] 潘家华,“我国管道工业二十年”,油气储运,11(1)
    [10] 潘家华 《潘家华油气储运工程著作选集》第二卷 石油工业出版社 2001
    [11] 王仪康等.高压输气管线用钢.焊管.2002,25(3):1~10
    [12] Dr.Hans-Georg Hillenbrand,Dr.Andreas liessem,Dr.Gerhard Knauf, et al. Development of large-diameter pipe in grade X100.pipeline Technology .2000,1:469~482
    [13] G.Demofonti,G.Mannucci,C.M.Spinelli. et al. Large diameter API X100 Gas pipelines:Fracture propagation evaluation by full scale burst test. Pipeline Technology Conference.Brugye, Belgium. 2000:22~24
    [14] 马秋荣等,国外 X80 管道钢管的研究与现状,油气储运, 2000 ,19(11),
    [15] 国产 X80 高钢级流体输送钢管研制获得重大技术突破,焊管. 2003,3
    [16] 高珊 郑磊 宝钢X80管线钢热轧板卷的研制 X80钢级管线钢国际技术研讨会会议文集,2004,9
    [17] 薛小怀 杨淑芳等,“X80 管线钢的研究进展”,上海金属,26(2),2004,3
    [18] 美国石油学会标准,“API SPEC 5L 管线钢管”,1991 年 6 月
    [19] 岳进才,《压力管道技术》,中国石化出版社,2001.2
    [20] 柴业森等 “埋地管道运行整体性评估” 油气储运,18(11)
    [21]'Stress Corrosion Cracking on Canadian Oil and Gas Pipelines' National Energy Board Report of The Inquiry. November 1996.
    [22] W. Y. Chu, L. J. Qiao, Y. B. Wang etc. Quantitative study for sulifide stress corrosion cracking of tubular steel. Corrosion. 1999, 55(7): 667~673
    [23] 褚武扬. 氢损伤和滞后断裂. 北京: 冶金工业出版社. 1988: 55,189~253
    [24] R. W. Revie, V. S. Sastri, G. R. Hoey etc.. Hydrogen-induced cracking of linepipe steels part 1-theshold hydrogen concentrition and pH. Corrosion. 1993, 1(49):449~454
    [25] J. Xiao, Stress contributin to the undetrstanding of the mechanism of hydrogen induced cracking of materials in hydrogen effects on material behavior Ed. By N.R. Moody and A.W.Thompsow,TMS.1990: 845~860
    [26] J. Xiao, Stress contributin to the undetrstanding of the mechanism of hydrogen induced cracking of materials in hydrogen effects on material behavior Ed. By N.R. Moody and A.W.Thompsow,TMS.1990: 845~860
    [27] Chi-mei Hsiao, The mechanism of stress corrosion cracking of austinitic stainless steels in hot chloride solution in Corrosion control 7th APCCC, Intern,Academic publishers.1991: 3~11
    [28] W. W. Gerberich, P. G. Marsh, J. W. Hoehn. Hydrogen induced cracking mechanisms are three critical experiments, Hydrogen effect in materials Proc 1994 5 Int Conf. Effect Hydrogen Behavior Mater 1996, Minerals, Metals& Materials Soc (TMS). 1996: 539~551
    [29] T. V. Bruno, B. D. Craig , J. H. Mchanney. Welding sructure for sour service. Welding Design & Fabrication. 1996, 69(7): 38~41,
    [30] R. Li ,M. G. S. Ferreira. Thermodynamic conditions for hydrogen genertation inside a stress corrosion crack. Corros. Sci.. 1996, 38(2): 317~327
    [31] B.J.Berkowitz, F.H.Heubaum. The role of hydrogen in sulifide stress cracking of low alloy steels. Corrosion. 1984, 40(5): 240~244
    [32] H. Asahi, M.ueno, T. Yonezawa. Prediction of sulfide stress cracking on high-strength tubular. Corrosion. 1994, 50(2): 537~545
    [33] Shibuya, Taruo, Misawa, et al. Transition from HIC to SSCCtype cracking of carbon steel with increase of applied stresses in hydrogen sulifide solutions. Corrosion Engineering. 1996, 45(11): 645~666
    [34] G H Vogt. Toughness requirements are syudied for larger diameter gas pipeline. Oil and Gas Journal. 1984, 82(33): 104,106~108
    [35] Maxey, W. A. Kiefiner, etc. Ductile fracture initiation propagation, and arrest in cylindrical vessel. ASTM Special technical publication. 1972:518
    [36]Troiano A. R.. The role of hydrogen and other interstitials in the mechanical behavior of metals. Trans. ASTM. 1960: 52, 54
    [37] 褚武扬. 氢致开裂和应力腐蚀机理的前沿问题. 腐蚀科学与防护技术. 1993, 5(3): 151~157
    [38] 柯克. 金属体系中氢进入破坏过程的电化学方法研究. 腐蚀科学与防护技术. 2001, 13(1): 42~45
    [39] R.W. Revie, V.S. Sastri,M. Elboujdaini. Hydrogen-Induced Cracking of Line Pipe Steels used in sour service. Corrosion.1993, 49(7): 531~535
    [40] W. Sloterdijk, N. V. Nederlandse Gasunie. Effect of tensile properties on the safety of pipelines. EPRG 25TH ANNIVERARY. 1997
    [41] C. M. Liao and J. L. Lee. Effect of molybdenum on sulifde stress cracking resistance of low-alloy. Corrosion. 1994 , 50(9): 695~704
    [42] S.B.Tiwari, A.K.Ray, A.mitra, et al. Investigation on the mechanical degration of a steel line pipe due to hydrogen ingress during exposure to a simulated sour enviroment. Corrosion Science. 1995, 37(6): 885~896
    [43] H.Gao, W.Cao, C.Fang, et al. Correlation betweenhydrogen induced cracking initiation sites and critical stress intensity factors. Fatigue and Fracture of engineering Materials & Structure. 1994, 17(9): 1069~1074
    [44] T. Kaneko, Y. Okad, A.Ikeda. Influence of microstructure on SSC susceptibility of low-alloy, high-strength oil country tubular goods. Corrosion. 1989, 45(1): 2~6
    [45] Z. Szkiarska-Smialowska, Z. Xia, R. B. Rebak. Stress corrosion cracking of X-52 carbon steel in dilute aqueous solutions. Corrosion. 1994, 50(5): 334~338
    [46] R.N.Parkins, W.K.Bianchard Jr., B.S.Delanty . Transgranular stress corrosion cracking of high-pressure pipelines in contact with solutions of near neutral pH. Corrosion. 1994, 50(5): 394~408
    [47] 董俊明, 戚继皋, 薛锦. 高强钢焊接接头在 H2S 介质中的应力腐蚀性能. 焊接. 1998(6): 2~7
    [48] 曲文卿,张彦华等,‘管道环焊接头断裂评定方法分析'油气储运,18(7)
    [49] David Knott, ‘gas-to-liquids rite of passage' Oil & Gas J. Jul,28,1997.
    [50]David Knott, ‘New niche for gas-to-liquids' Oil & Gas J. May,28,1997
    [51]Agreement sighed for commercial GTL Plant, Oil & Gas J. Dec, 15, 1997.
    [52] David Knott, ‘LNG vs. GTL;taking the battle to see', Oil & Gas J., Oct,27,1997.
    [53] Micheal J.Corke, ‘GTL technologies focus on lowering costs' Oil & Gas J. Sep,21,1998.
    [54] Second group eyes gas-to liquids membrane process, Oil & Gas J., Sept. 15, 1997,27
    [55] PD 6493 Guidance on Methods for Assessing the Acceptability of Flaws in Fusion Welded Structures, 1991.
    [56] 董玉华,高惠临等,“长输管道环焊接头缺陷评定方法研究”,油气储运,20(7)
    [57] The American Petroleum Institute API Standard 1104: Standard for Field Welding Pipelines and Related Facilities, Appendix A, 1988.
    [58] Milne, I. and Aimsworth, R. A., et,al.: Background to end Validation of CEGB Report R/H/R6 Revision 3, Int, J. Pre. Ves. & Piping, 1988.
    [59] 王志文,“焊缝区中裂纹 J 积分失效评定曲线的研究(二)”,压力容器,1994,11(4)
    [60] 郭奇,“焊缝区中裂纹 J 积分失效评定曲线的研究(一)”,压力容器,1994,11(2)
    [61] 薛和,“力学性能不均匀性对焊接接头三点弯曲试样塑性区发展规律的影响”,机械强度,1999,1(4)
    [62] 雷永平,“焊接接头非均匀力学性能对 J 积分和失效评定曲线的影响”,核动力工程,1999,20(2)
    [63] 张建勋,“材料力学性能不均匀裂纹体弹塑性断裂工程准则的研究”,西安交通大学博士论文,1989
    [64] 张敏,“带缺陷焊接结构完整性评价的工程方法研究”,西安交通大学博士论文,1997
    [65] Wang, Y.X. and Kirk, M.T. et al.: ‘Incorporating Weld Metal Mismatch into Structural Integrity Assessment', Pipeline Technology, Vol. 1, Elsevier Science B.V, 1995
    [66] Joch, Ainsworth, R.A. et. al. :'Limit load and J-estimation for idealized problems of deeply cracked welded joints in plane-strain bending and tension'. Fatigue fract. & Mater, Struct. 1993,16
    [67] Burstow,M.C. and Ainsworth,R.A.: ' Comparison of analytical, numerical and experimental solutions to problems of deeply cracked welded joints in bending', Fatigue Fract. & Mater. Struct. 1995,18
    [68] Hornet, P. and Eripret, C.: ‘Experimental J-evaluation from a load-displacement curve for homogeneous and overmatched SENB or CCT specimens', Fatigue Fract. & Mater. Struct. 1995,18
    [69] Battelle Columbus Division, ‘Guidelines for Hazard Evaluation Procedures', New York, American Institute of Chemical Engineers, 1985.
    [70] W. Kent Muhibucer, ‘Pipeline Risk Management Manual'. Gulf Publishing Company, 1992
    [71] 潘家华,“油气管道的风险分析”,油气储运,14( 3).
    [72] 曲慎扬,“油气管道可靠性评价指标及其计算”,油气储运,15(4).
    [73] Μ.Г.苏哈列夫等,“干线管道设计中的可靠性问题”,油气储运,16( 12).
    [74] 董绍华,吕英民,“管道裂纹的随机有限元可靠性研究”油气储运,18(10)
    [75] 国旭明,‘输气管线用埋弧焊丝的研制及外场处理对熔敷金属显微组织和性能的影响'中国科学院博士学位研究生学位论文,2000
    [76] 龙伟,周明等,‘在役管道超声波系统的现状及发展趋势‘中国机械工程,1996.7
    [78] 王茂棠等,X80 钢级管线钢技术条件制订若干问题探讨,X80 钢级管线钢国际技术研讨会会议论文集,2004 年 9 月
    [79]美国石油学会标准,“API SPEC 5L 管线钢管”,1991 年 6 月
    [80] 庄传晶,冯耀荣等,国内 X80 管线钢的发展及今后的研究方向,X80 钢级管线钢国际技术研讨会会议论文集,2004 年 9 月
    [81] 孔君华 郑琳等,武钢 X80 热轧存板卷的研制与生产,X80 钢级管线钢国际技术研讨会会议论文集,2004 年 9 月
    [82] 高珊 郑磊, 宝钢 X80 管线钢热轧板卷的研制,X80 钢级管线钢国际技术研讨会会议论文集,2004 年 9 月
    [83]BY D.P.FAIRCHILD, N.V.BANGARU , etc, A study concerning intercritical HAZ microstructure and toughness in HSLA steels, Welding Journal, 1991,70(12):321-s~329-s]
    [84] M.M.Kostic, S.A.Gedeon, J.T.Bowker,D.Dorling, Development and manufacture of X80 gas line pipe, Pipeline Technology, 1995
    [85]G.M.Eans. The Effect of Carbon On the Microstructure and Properties of C-Mn All-weld Metal Deposits, Welding Journal, Nove. 1983,313-s~320-s
    [86] E.Surian, J.Trontti, R.Herrera, L.A.de Vedia. Influence of Carbon On Mechanical Properties and Microstructure of Weld Metal from a High-Strength SMA Electrode, Welding Journal, June, 1991, 133-s~140-s
    [87] G.M.Eans. Weld Research Abroad, 1991, XXXVII(7/8):42~55
    [88] E.Surian,T. Boniszewski. Effect of Mangaanese and Type of Current on the Properties and Microstructure of All-Weld-Metal Deposited with E7016-1 Electrodes, Welding Journal, Sept. 1992, 348-s~363-s
    [89]“八五”国家重点企业技术开发项目,石油天然气输送管线用焊管项目技术资料汇编, 宝鸡石油钢管厂, 394
    [90] G.M.Eans. Effect of Manganses on the Microstructure and Properties of All-Weld-Metal Deposits, Welding Journal, Mar. 1980, 67-s~75-s
    [91]L.E.Svensson, B. Gretoft, Microstructure and Impact Toughness of C-Mn Weld Metals, Welding Journal, Dec. 1990, 454-s~461-s
    [92] G.M.Eans. The Effect of Silicon on the Microstructure and Properties of C-Mn All-Weld Metal Deposit, Welding in the World, 20~31
    [93] G.M.Eans. The Effect of Molybdenum on the Microstructure and Properties of C-Mn All-Weld Metal Deposit, Welding in the World, 42~55
    [94]J.A.Gianetto, et al. Effect of Compositon and Energy input on Structure and Properties of High-Strength Weld Metal. Welding Journal, Nov. 1992, 407-s~419-s
    [95]M. ES-SOUNI et al. Microstructure and Mechanical Properties of Cu-Bearing Shielded Metal Arc C-Mn Weld Metal. Welding Journal, Mar. 1991, 80-s~90-s
    [96] 杨玉壁, 焊管,1993,1696):52~60
    [97]A.O.Kluken, T.A. Siewert, R.S.Mith. Effects of Copper, Nickel and Boron on Mechanical Properties of Low-Alloy Steel Weld Metals Deposited at High Heat Input, Aug. 1994, 193-s~199-s
    [98]D.W.OH et al. The Influence of Boron and Titanium on Low-Carbon Steel Weld Metal. Welding Journal, Apr. 1990, 151-s~158-s
    [99]A. Bellrose. Titanium and Boron Addtions in the S.A.W. of High Strength Steels, Australian Welding Research, Dec. 1985,4~10
    [100] G.M.Eans. The Effect of Micro-Alloying Elements in C-Mn steel Weld Metal, Welding in the World, 1993, 31(1):12~19
    [101]王莲芳等:V、N 共存埋弧焊焊缝中 V 的析出相行为的研究,焊接学报, 9(3)
    [102] 胡礼木: 铌对焊缝氢致裂纹敏感性及显微组织的影响,焊接学报,11(1), 27~34
    [103] 薛小怀, 钱百年,国旭明等,高强高韧性管线钢埋弧焊用焊丝的研制[J],焊接学报,2002,23(5)
    [104] 潘家华,管材中 N 含量偏高对焊缝韧性的影响,焊管,1996,19(2):24~25
    [105] T.Lau, G.C.Weatherly, A.MC Lean. The Sources of Osygen and Nitrogen Contnmination in Submerged Arc Welding Using CaO-Al2O3 Based Fluxes, Welding Journal, Dec. 1985, 343-s~347-s
    [106] J.Wgrzyn. Oxygen in the Submerged Arc Welding Process, Metal Construction, Nov. 1985, 2~7
    [107] 罗兴宏,微合金化对抗氢蚀钢使用性能的影响,中国科学院金属研究所博士论文,沈阳,1997
    [108] 薛小怀,国旭明,钱百年等,熔敷金属力学性能人工神经网络模型的研究, 机械工程材料,201,25(11)
    [109]Alan G. Glover etc. High-strength steel becomes standard on Alberta gas system[J]. Oil & Gas Journal. 1999,97(1):44~50
    [110] Jeremy C.Price etc. Welding needs specified for X-80 offshore line pipe[J]. Oil & Gas Journal. 1993,91(51):95~100
    [111] Frank J Barbaro etc. Quality and productivity improvements in the field welding of high strength thin walled pipelines[C]. International pipeline conference.1998(2):673687
    [112] 罗志昌.X80 与 X100 级管线钢的焊接性[J].焊管,1990,13(1):3~9
    [113] Kobayashi Y., Ume K., Hyodo T., Taira T.. The resistance of welded linepipes to sulifide stress cracking. Corrosion Science. 1987, 27(10/11):1117~1135
    [114] Takahashi, Aklhiko, Ogawa, et al.Influence of softened heat-affect zone on stress oriented hydrogen induced cracking of a high strength line pipe steel. ISU International.1995, 35(10):1190~1195
    [115] Y. Kobayashi, K. Ume, T. Hyodo, et al. The resistance of welded linepipes to sulfide stress cracking[J]. Corros. Sci.. 1987, 27(10): 1174~1135
    [116]熊林玉,杜则裕,陶勇寅,董丽红. X80 钢管的焊接.油气储运,2003(10)
    [117] 马秋荣,霍春勇等,国外 X80 管道钢管的研究与应用现状,油气储运,19(11)
    [118] 陆岳璋 周玉红 TSE 550 级(X80)大口径管线钢的现状、开发和认证,宽厚板,6(6)
    [119] 潘家华,油气管道断裂力学分析,石油工业出版社,1989
    [120] 王晓香,X80 管线钢管及感应加热弯管的研制和试验,X80 钢级管线钢国际技术研讨会会议论文集,2004 年 9 月
    [121] 李清富,高健磊,乐金朝,李宗坤编著,《工程结构可靠性原理》,黄河水利出版社,1999 年 5 月
    [122] 赵建平,压力容器概率安全评定进展,化工设备与管理,2001,2(3)
    [123] Rahman,M.,Melcher.R E,reliability estimation of pressure pipelines subject to localized corrosion defects, Int. J pres.ves& pipeling, 1996,69
    [124] ZHOU Jian-qiu,SHEN Shi ming, A study on reliability assessment methodology for pressure piping contain circumferential defects, I: computation method of failure probability of welded joint containing circumferential defects, International journal of pressure vessels and piping, 1998,75
    [125] 燕秀发,谢禹钧,戴耀,压力管道可靠性评定,机械设计与制造,No1 2004
    [126] 杨松林,工程模糊方法及其应用,国防工业出版社,北京,1995
    [127] 黄华梁,赵刚,系统可靠性的失效模式影响模糊评估分析,广西大学学报,27(2),2002
    [128] 李明,任嘉卉,模糊综合评判在机械设计中的应用,北京航空航天大学学报,23(4),1997
    [129] 余建星,李建辉等,基于模糊综合评判的输油管道系统安全风险评估方法中,中国海上油气,10(2),1998
    [130] singer D.A Fuzzy Set Approach to Fault Tree and Reliability Analysis, Fuzzy sets and System, 34(5) ,1990
    [131] 涂文戈 林丽川 结构的模糊可靠度分析,四川建筑,20(2),2000
    [132] tanaka H. Fuzzy Data Analysis by Possibilistic Linear Models , Fuzzy Sets and System, 24,1987
    [133] Tanaka H. Ishibuchi H. Identification of Possitbilistic Linear System by Guadratic Menbership Function of Fuzzy Parameters , Fuzzy Sets and System, 41, 1991
    [134] Wu Hsien-Chung, Fuzzy Reliability Analysis Based on Close Fuzzy Number, Information Science, 103(4), 1997
    [135] Sawyer J P, Rao S S. Strength-Based Reliability and Fracture Assessment of Fuzzy Mechanical and Structural System, Aiaa Journal, 37(1), 1999
    [136] 尹益辉 徐兵 螺栓强度的随机可靠性与模糊可靠性分析,强度与环境,31(3),2004
    [137] 刘 敏,在役焊接管道结构环焊缝失效概率的评定理论及方法研究,天津大学博士研究生毕业论文,1998
    [138] bruckner,A. and Munz,D.,Curve Fitting to Defect Size Distributions for the Calculation of Failure Probabilities, Nuclear Engineering and Design, 1982(Vol. 74)
    [139] Provan,J.W., Probabilistic Fracture Mechanics and Reliability, Martinus Nijhoff Publishers Pordrecht, The Netherlands, 1987
    [140] Schomburg,U. and Schmidt,T., Probability of Fracture in the Main Coolant Pipe of a Pressure Water Reactor, International Union of Theoretical Applied Mechanics Symposium, New York, 1984
    [141] Harris,D.O., The Influence of Crack Kinetics and Inspection on the Integrity of Scensitized NWR Piping Welds. EPRI NP-1163, 1979
    [142] Buckner,A. and Munz, D., Prediction of Failure Probabilities for Cleavage Fracture from the Scatter of Crack Geometry and of Fracture Toughness Using the Weakest Link Model, Engineering Fracture Mechanics, Vol.18, 1983
    [143] Silk,M.G., Flaw Size Distribution in Pressure Vessels and Flaw Detection Probabilities in NDT, British Journal of NDT, Vol.133,1991
    [144] 郑洪龙,油气管道断裂安全分析,西南石油学院硕士学位论文,2002
    [145] 李泽震 周则恭, 断裂力学在锅炉及压力容器上的应用,劳动人事出版社,北京,1984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700