用户名: 密码: 验证码:
两相体介质阻挡放电研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介质阻挡放电(DBD)作为大气压条件下获得非平衡等离子体的一种重要手段,具有良好的开发和应用前景,其在理论和实验上都得到了广泛的重视与研究。然而随着工业应用的发展,越来越多地涉及到了两相体DBD,并不局限于单一气体中的放电,包括烟气催化剂脱硫、材料处理、食品保鲜等,但目前国内外对于两相体DBD的系统研究较少。
     本文的工作主要针对两相体DBD进行了理论和实验研究,取得如下成果:
     针对强耦合两相体,建立了计算局部畸变电场的能量偶极子模型,该方法简单有效,优于传统的点偶极子模型。当两相体中介电差异或颗粒体积分数较大时,颗粒间相互作用较大,传统的点偶极子模型已经不再适用,可利用能量偶极子模型计算局部电场的分布。同时,在能量偶极子模型的基础上,获得了两相体中颗粒饱和荷电量的修正公式。发现当两相体中的介电差异大到一定程度时,颗粒的荷电量主要取决于颗粒的体积分数。另外,通过能量偶极子模型在HVDC输电线离子流场求解问题中的应用,验证了能量偶极子模型在复杂问题处理应用上的可行性与有效性,进一步为其在两相体放电等问题上的应用奠定了基础。
     针对两相体放电,提出了两相体放电物理机制和计算击穿电压的近似解析模型,结果表明两相体的击穿特性存在粒径效应。提出影响两相体放电过程的三个因素:颗粒畸变电场、颗粒捕获电子和阻碍电子崩发展、电子发射以及吸收和发射光子。基于现有的气体放电理论模型,建立了有碰撞的颗粒荷电模型,结合计算颗粒畸变电场的能量偶极子模型,得到计算短间隙两相体击穿电压的表达式。计算表明,当颗粒粒径较大时,两相体击穿电压低于单一气体;当颗粒粒径较小时(微米级),两相体击穿电压高于单一气体。颗粒粒径对于放电形式也存在影响:当颗粒粒径较大时,电子崩会中断于颗粒表面,放电仅发生在颗粒与极板之间,如果颗粒体积分数较小则由于光辐射作用发生电子崩的跳跃;当颗粒粒径较小时,电子崩则可通过颗粒形成表面放电。
     针对两相体DBD,建立了能同时考虑多电子崩扩散和静电排斥作用的粒子模拟简化模型,结果表明颗粒影响放电发展的作用存在竞争效应。等离子体粒子模拟方法的特点在于通过跟踪大量单个微观粒子的运动,再进行统计平均,来反映宏观物质的物理特性,避免了求解流体方程的复杂性,但计算量仍然很大。通过在粒子模拟方法中引入近似模型,极大地减少了两相体放电模拟的计算量。两相体DBD的计算结果表明,在单一气隙中,壁电荷与空间残留电荷均会加速电子崩向流注的转变;而在两相体中,壁电荷由于颗粒畸变电场的影响使壁电荷量增大,壁电荷的加速作用增强;空间残留电荷则由于颗粒的荷电效应导致其消耗电子的作用大于其增强电场的作用,空间残留电荷的加速作用减弱,有利于电子崩的融合。另外,两相体中颗粒强场区的电子崩发展速度会快于颗粒间气隙中的电子崩;由于颗粒强场区中电子崩的快速发展、以及颗粒的极化与荷电作用,导致颗粒间气隙的电场大幅度削弱,电子崩难以发展。无论在单一气隙或两相体中,多个电子崩的并行发展会加速电子崩向流注的转变,而多个流注的并行发展则会加快流注的发展速度。
     针对两相体DBD进行了实验研究,发现两相体中颗粒的粒径与体积分数对放电形式具有影响,表面放电有抑制丝状放电的作用。在两相体中,电压-电荷的李萨茹图由单一气体中的平行四边形变为梭子形,放电形式相对单一气隙发生变化,在不同处会同时存在表面放电与丝状放电两种形式。两相体中表面放电要先于丝状放电发生,且表面放电与丝状放电不会在同一处发生,表面放电对于丝状放电具有抑制作用。这意味着颗粒强场区的放电削弱了颗粒间气隙的放电,实验结果与粒子模拟的结论相吻合,也否定了Nomura等提出的表面放电和丝状放电可能同时同地发生的推测,为Murphy、Rajanikanth等研究组得到的实验结果提供了解释。同时,随着颗粒体积分数的增大与粒径的减小,表面放电抑制丝状放电的作用增强。而且随着颗粒粒径的减小,放电功率减小,可能是表面放电的触发电压提高导致。另外,当颗粒粒径较大时,放电仅存在于极板和颗粒之间而无法贯通两个极板;当颗粒粒径减小时,放电通道则可通过颗粒形成表面放电,这也进一步证明了颗粒粒径影响放电形式的推断。
Dielectric barrier discharge (DBD) has a large number of industrial applications since DBD is an important feasible method to produce atmospherical pressure non-equilibrium plasma, and DBD has been studied extensively in theoretical and experiments. However, due to the development of industrial applications including the activation of desulfurization catalyzer for flue gas by discharge plasma, materials handling, food preservation, and so on, there are more DBDs in two phase of mixture (TPM), which not only in the pure gas. At present, there are a few researches on DBD in TPM.
     The paper mainly carried out theoretical and experimental researches on DBD in TPM, the result are as follows:
     For the strong coupling TPM, the paper built an approximate dipole-energy model to calculate the local field distribution. The dipole-energy model is simple and effective, and its results are better than the ideal dipole model. If TPM has a large particle volume fraction or dielectric mismatch, the interaction between particles is large too. In this case, the ideal dipole model is invalid and the dipole-energy model is valid. Based on the dipole-energy model, a correction formula to calculate the saturation charge of particles in TPM is obtained. The formula shows that when the dielectric mismatch is large enough, the saturation charge mainly depends on particle volume fraction. Besides, according to the application of dipole-energy model on calculation of ionic flow field under high voltage transmission lines, dipole-energy model is verified to be feasible and effective in the complex problem, which provides the foundation for application of dipole-energy model on DBD in TPM in further.
     For the discharge in TPM, the paper proposed the physical mechanism of discharge in TPM and the analytical formula to calculate the breakdown voltage of TPM. The results show that the particle size affects on the breakdown characteristics of TPM. There are three factors which affect the process of discharge in TPM:the field distortion; the particle captures electrons and hinders the development of avalanche; the particle absorbs photons. Based on the existing theories of gas discharge, the paper built the model of charge particles in avalanche; combined with the dipole-energy model, an analytical formula to calculate the short-gap breakdown voltage in TPM is derived. Calculations show that when particle size is large, breakdown voltage in TPM is lower than pure air; when particle size is smaller (micron), breakdown voltage in TPM is higher than pure air. Particle size also affects on the discharge form:when particle size is large, avalanche breaks on the particle surface, the discharge only occurs between particle and electrode; if the particle volume fraction is small, avalanche may jumps over the particle due to the photons; when particle size is small, avalanche can through the particle as surface discharge.
     For DBD in TPM, the paper built a simple particle simulation model which takes into account multi-avalanche and electrostatic repulsion. The results show that the competition in the effects of particles on discharge. Plasma particle simulation is characterized by tracking the movement of a large number of individual microscopic particles and the statistical average to reflect the macroscopic physical properties of substances. The method can avoid the complexity of solving the fluid equations, however, the amount of calculation remains high. According to the approximation of model, the calculation of discharge in TPM is greatly reduced. The calculations show that in pure gas gap, the speed of avalanche changes to streamer can be accelerated by charge accumulated on dielectric plate and space charge; in TPM, the amount of charge on dielectric plate increases due to the field distortion by particles, so the effect of acceleration is strong; in TPM, due to the charge of particles, the effect of electrons capture is stronger than field distortion by space charge, the acceleration of space charge is weak, which is benefit for amalgamation of avalanches. Besides, the speed of avalanche on particle is higher than avalanche in gas between particles; due to the faster avalanche on particle, polarization and charge of particles, the filed in gas between particles is greatly reduced, then avalanche is difficult to develop. Whether in pure gas or in TPM, multi-avalanche accelerates the speed of avalanche changes to streamer, multi-streamer accelerates the speed of development of streamer.
     For DBD in TPM, experimental results show that particles size and volume fraction affect the discharge form, and the surface discharge suppresses the filament discharge. In TPM, the Lissajous figure is a shuttle, which is different from the parallelogram shape in air. In TPM, there are two discharge forms:surface discharge and filament discharge, which can occur at the same time, but the different place. Surface discharge suppresses filament discharge, which means the discharge on particle suppresses the discharge in gap between particles. Experimental result is consistent with simulation, which also denies the conclusion of Nomura that surface discharge and filament discharge can occur at the same place and time, but provides the explanation to results of Murphy and Rajanikanth. When particle size is small or volume fraction is large, surface discharge suppresses filament discharge more. If particle size gets small, the onset voltage of surface discharge is reduced. Besides, experimental result shows that if particle size is large, discharge only occur at the place between particle and electrode; if particle is small, discharge can be through particle; this is the evidence of effect of particle size on discharge form.
引文
[1]R. F. Wolff. GRE sums up lightning research[J]. Electrical World,1980:72-75.
    [2]H. J. White(著),王成汉(译).工业电收尘[M].北京:冶金工业出版社,第1版,1984.
    [3]M. Cloupeau, B. P. Foch. Electrostatic spraying of liquid in cone-jet mode[J]. Journal of Electrostatics,1989,22:135-159.
    [4]Changhe Yang, Jin Li, Aijiao Zhou, et al. Pretreatment of landfill leachate by pulsed corona discharge[C]. Universities Power Engineering Conference 2005, Ireland, Sep. 2005:7-9.
    [5]胡辉,王贺礼,李劲等.脉冲电弧放电产生医用一氧化氮的放电条件研究[J].高压电器,2005,41(3):176-178.
    [6]叶齐政.混合体两相体放电及其在水处理中应用的研究:[博士学位论文][D].武汉:华中科技大学图书馆,2001.
    [7]N. O. Morales, E. S. Asenjo. Calculation of 3-dimensional fields in a medium with several dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1997,4(2):172-176.
    [8]B. F. Gordiets, C. M. Ferreira. Charge distribution function of dust particles in low temperature plasma[J]. Journal of Applied Physics,1998,84(3):1231-1235.
    [9]P. C. Chaumer, J. P. Dufour. Electric potential and field between two different spheres[J]. Journal of Electrostatics,1998,43:145-159.
    [10]T. C. Halsey, W. Toor. Structure of electrotheological fluids[J]. Physics Review Letter,1990,65(22):2820-2823.
    [11]Qizheng Ye, Jin Li, Jiacong Zhang. A dipole-enhanced approximation for a dielectric mixture[J]. Journal of Electrostatics,2004,61:99-106.
    [12]H. J. White. Particle charging in electrostatic precipitation[J]. AIEE Trans.,1951,70: 1189-1196.
    [13]L. Dascalescu, M. Mihailescu, A. Mizuno. The behavior of conductive particles in pulsed corona fields[J]. Journal of Physics D:Applied Physics,1996,29:522-528.
    [14]赵志斌,刘建民,吴彦等.脉冲放电粒子荷电机理的研究[J].环境科学学报,1999,19(2):113-119.
    [15]Qizheng Ye, Jin Li, Hui Wan. The limits of validity for the dipole approximation for a dielectric mixture[J]. Electromagnetics,2004,24(3):143-152.
    [16]W. R. Tinga, W. A. Voss. Generalized approach to multiphase dielectric mixture theory[J]. Journal of Applied Physics,1973,44(9):3897-3902.
    [17]L. C. Davis. Polarization force and conductivity effects in electrotheological fluids[J]. Journal of Applied Physics,1992,72(4):1334-1340.
    [18]R. Tao, Q. Jiang, H. K Sim. Finite-element analysis of electrostatic interactions in electrotheological fluids[J]. Physics Review E,1995,52(3):2727-2735.
    [19]T. B. Jones, R. D. Miller. Multipolar interactions of dielectric spheres[J]. Journal of Electrostatics,1989,22:231-244.
    [20]Changhe Yang, Qizheng Ye, Jin Li. The validity range of the dipole approximation for a dielectric mixture[J]. Journal of Electrostatics,2006,64:247-253.
    [21]Changhe Yang, Qizheng Ye, Jin Li. A modified dipole-enhanced approximation for a dielectric sphere[J]. Istanbul University-Journal of Electrical & Electronics Engineering,2005,5(2):1391-1394.
    [22]T. Matsuyama, H. Yamamoto, M. Washizu. Potential distribution around a partially charged dielectric particle located near a conduction plane[J]. Journal of Electrostatics,1995,36:195-204.
    [23]M. Sancho, G Martinez, M. Llamas. Multipole interaction between dielectric particles[J]. Journal of Electrostatics,1988,21:135-144.
    [24]W. Massao. Precise calculation of dielectrophoretic force in arbitrary field[J]. Journal of Electrostatics,1992,29:177-188.
    [25]W. Masao, T. B. Jones. Multipolar dielectrophoretic force calculation[J]. Journal of Electrostatics,1994,33:187-198.
    [26]W. Masao, T. B. Jones. Dielectrophoretic interaction of two spherical particles calculated by equivalent multipole-moment method[J]. IEEE Transactions on Industrial Application,1996,32(2):233-242.
    [27]R. Friedberg, Y. K. Yu. Energy of an electrorheological solid calculated with inclusion of higher multipoles[J]. Physics Review B,1992,46(10):6582-6585.
    [28]H. J. Clerex, G. Bossis. Many-body electrostatic interactions in electrorheological fluids[J]. Physics Review B,1993,48(4):2721-2737.
    [29]Y. Chen, A. F. Sprecher, H. Conrad. Electrostatic particle-particle interactions in electrorheological fluids[J]. Journal of Applied Physics,1991,70:6796-6803.
    [30]R. Tao, J. M. Sun. Three-dimensional structure of induced electrorheological solid [J]. Physics Review Letter,1991,67(3):398-401.
    [31]V. L. Ismo, C. E. Johan Sten, I. N. Keijo. Electrostatic image method for the interaction of two dielectric spheres[J]. Radio Science,1993,28(3):319-329.
    [32]J. M. Robert. Nearest-neighbor approximation for the dipole moment of conducting-particle chains[J]. Journal of Electrostatics,1994,33:133-146.
    [33]姜泽辉,许素娟,陈唯等.镜像偶极子法计算导体颗粒簇团的偶极矩[J].物理学报,2000,49(8):1457-1463.
    [34]L. C. Davis. Finite-element analysis of particle-particle forces in electrorheological fluids[J]. Applied Physics Letter,1992,60(3):319-321.
    [35]曾竟成,罗青,唐羽章.复合材料理化性能[M].长沙:国防科技大学出版社,第1版,1998.
    [36]A. H. Sihvola, J. A. Kong. Effective permittivity of dielectric mixtures[J]. IEEE Transactions on Geoscience Remote Sensing,1988,26(4):420-429.
    [37]A. H. Sihvola. How strict are theoretical bounds for dielectric properties of mixtures?[J]. IEEE Transactions on Geoscience Remote Sensing,2002,40(4): 880-886.
    [38]E. A. Skirta, N. A. Khizhnyak. Dielectric properties of bulk anisotropic structure and multiphase mixtures[J]. Electromagnetics,1993,13:389-405.
    [39]A. H. Sihvola. Homogenization of a dielectric mixture with anisotropic spheres in anisotropic background[J]. Electromagnetics,1997,17:269-286.
    [40]J. C. M. Garnett. Colors in metal glasses and in metal films. Philosophical Transactions of the Royal Society(London),1904, CCⅢ:385-420.
    [41]A. H. Sihvola. On the dielectric problem of isotrophic sphere in anisotropic medium[J]. Electromagnetics,1997,17:69-74.
    [42]D. N. Chigrin, A. V. Lavrinenko. Generalization of the effective medium method for continuously inhomogeneous media[J]. Electromagnetics,1997,17:287-294.
    [43]S. W. Werner, L. Akhlesh. On electromagnetic waves in biaxial bianisotropic media[J]. Electromagnetics,1999,19:351-362.
    [44]K. Asano, K. Anno, Y. Higashiyama. The behavior of charged conducting particles in electric fields[J]. IEEE Transactions on Industrial Application,1997,33(3): 679-686.
    [45]K. Asano, K. Yatsuzuka, Y. Higashiyama. The motion of charged metal particles within parallel and tilted electrodes[J]. Journal of Electrostatics,1993,30(1):65-74.
    [46]K. Asano, K. Yatsuzuka, T. Yamaki. DC corona discharge of a metal filament particle within parallel-plate electrodes[J]. IEEE Transactions on Industrial Application,2000,36(1):87-92.
    [47]K. Asano, R. Hishinuma, K. Yatsuzuka. Bipolar DC corona discharge from a floating filamentary metal particle[J]. IEEE Transactions on Industrial Application,2002, 38(1):57-63.
    [48]W. Ziomek, E. Kuffel. Activity of moving metallic particles in prebreakdown state in gas[J]. IEEE Transactions on Dielectrics and Electrical Insulation,1997,4(1):39-43.
    [49]M. Kubuki, R. Yoshimoto, K. Yoshizumi, et al. Calculation of electric field and estimation of flashover characteristics in air gap with floating metals (1)-Investigation for Laplace field[R]. Technology Reports of Kyushu University, 1995,68(3):195-201.
    [50]M. Kubuki, R. Yoshimoto, K. Tanoue, et al. Breakdown characteristic in air gaps with artificial floating metals under DC voltage[J]. IEEE Transactions on Dielectrics and Electrical Insulation,1995,2(1):155-166.
    [51]S. Birlasekaran. The measurement of charge on single particles in transformer oil[J]. IEEE Transactions on Dielectrics and Electrical Insulation,1991,26(6):1094-1100.
    [52]王淑娟,王景春.变压器油中大颗粒杂质对油局部放电的影响[J].高电压技术,1994,20(4):26-29.
    [53]K. Arii, M. Fujii, I. Kitani. Breakdown of gas-liquid composite in divergent fields[J]. IEEE Transactions on Dielectrics and Electrical Insulation,1991,26(4):673-678.
    [54]F. Roman, V. Cooray, V. Scuka. Comparison of the breakdown of rod-plane gaps with floating electrode[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1998,5(4):622-624.
    [55]M. Skarja, M. Berden, I. Jerman. Influence of ionic composition of water on the corona discharge around water drops[J]. Journal of Applied Physics,1998,84(5): 2436-2442.
    [56]A. Mizuno, Y. Yamazki, H. Yoshida. AC Energized ferroelectric pellet bed gas clearer[J]. IEEE Transactions on Industrial Application,1992 28(3):535-540.
    [57]H. Russ, M. Neiger, J. E. Lang. Simulation of micro discharges for the optimization of energy requirements for removal of NOX from exhaust gases[J]. IEEE Transactions on Plasma Science,1999,27(1):38-39.
    [58]张新平.颗粒引发真空间隙放电现象的研究[J].中国电机工程学报,1996,16(5):316-317.
    [59]李胜利,李劲,李端娇.催化剂对脉冲放电转化CO2为CO的影响[J].高电压技术,1999,25(4):41-42.
    [60]李胜利,郑彩红,李劲等.脉冲电压作用下多介质球间放电[J].高电压技术,2001,27(5):37-38.
    [61]李胜利,龚建英,李劲.填充床反应器中多介质球表面电场分析[J].高电压技术,2002,28(11):41-42.
    [62]Changhe Yang, Jin Li, Yonglin Yang, et al. Research on the corona-onset and breakdown voltages in the two-phase mixtures of gas and solid in non-uniform electric field[C]. The 12th Asia Conference on Electrical Discharge(ACED2004), Shenzhen,2004.
    [63]安萍,杨咏林,李劲.非均匀电场中流化床状态气固混合体直流击穿特性的试验研究[J].高电压技术,2004,30(4):50-52.
    [64]杨咏林,安萍,李劲等.非均匀电场中流化床状态气固混合体直流电晕特性的试验研究[J].高电压技术,2004.30(10):60-61.
    [65]齐军,叶齐政,顾温国等.运动水滴在球-球直流电场中的放电研究[J].高压电器,2000,36(2):12-14.
    [66]顾温国,叶齐政,齐军等.稳态线板电场中水滴放电现象的研究[J].高电压技术,2000,26(2):22-23.
    [67]叶齐政,顾温国,齐军等.运动水滴在尖板式直流电场中的放电研究[J].高电压技术,1999,25(4):7-8.
    [68]叶齐政,齐军,顾温国等.气液混合体直流放电的初步研究[J].高电压技术,2001,27(2):25-26.
    [69]杨长河,叶齐政,李劲.EHD水处理装置放电现象的研究[J].高电压技术,2001,27(5):11-12.
    [70]鲁非,叶齐政,李劲等.球-球电极气液两相体直流击穿现象的研究[J].高压电器,2005,41(4):268-269,278.
    [71]覃世勋,叶齐政,程虎等.气液混合两相体中脉冲放电现象的研究[J].高压电器,2007,43(2):97-99.
    [72]张家聪.气液混合两相体放电发射光谱研究:[硕士学位论文][D].武汉:华中科技大学图书馆,2004.
    [73]U. Kogelsehatz. Filamentary, patterned, and diffuse barrier discharges[J]. IEEE
    Transactions on Plasma Science,2002,30(4):1400-1408.
    [74]董丽芳.气体放电等离子体动力学[M].保定:河北大学出版社,2004.
    [75]Eliasson, M. Hirth, U. Kogelsehatz. Ozone synthesis from oxygen in dielectric barrier discharges[J]. Journal of Physics D:Applied Physics,1987,20(11): 1421-1437.
    [76]Eliasson, U. Kogelsehatz. Modelling and application of silent discharge plasmas[J]. IEEE Transactions on Plasma Science,1991,19(2):309-322.
    [77]Braun, U. Kuehle, G J. Pietseh. Mierodischarges in air-fed ozonizers[J]. Journal of Physics D:Applied Physics,1991,24(4):564-572.
    [78]A. Chirokov, A. Gutsol, A. Fridman, et al. Analysis of two-dimensional microdischarge distribution in dielectric-barrier discharges[J]. Plasma Sources Science and Technology,2004,13:623-635.
    [79]张锐,刘鹏,詹如娟.大气压辉光放电研究现状及应用前景[J].物理,2004,33(6):430-434.
    [80]Massines, G Gouda. A comparison of polypropylene-surface treatment by filamentary, homogeneous and glow discharge in helium at atmospheric pressure [J]. Journal of Physics D:Applied Physics,1998,31:3411-3420.
    [81]Massines, A. Rabehi, P. Decomps, et al. Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier[J]. Journal of Physics D:Applied Physics,1998,83(6):15.
    [82]N. Naude, J. P. Cambronne, N. Gherardi, et al. Electrical model and analysis of the transition from an atmospheric pressure Townsend discharge to a filamentary discharge[J]. Journal of Physics D:Applied Physics,2005,38:530-538.
    [83]R. Bartnikas. Note on discharges in helium under AC conditions[J]. Journal of Physics D:Applied Physics,1968,1(2):659-661.
    [84]M. M. Kekez, M. R. Barrault, J. D. Craggs. Spark channel formation[J]. Journal of Physics D:Applied Physics,1970,3(12):1886-1896.
    [85]K. G. Donohoe. The development and characterization of an atmospheric pressure nonequilibrium plasma chemical reactor[D]. Ph. D. dissertation, Calif. Inst. Teehnol., Pasadena, CA,1976.
    [86]K. G. Donohoe, T. Wydeven. Plasma polymerization of ethylene in an atmospheric pressure discharge[J]. Journal of Applied Polymer Science,1979,23(9):2591-2601.
    [87]S. Yagi, M Hishii, N. Tabata, et al. Silent discharge CO laser[J]. Laser Engineering,
    1977,5(3):171-176.
    [88]A. J. Beaulieu. Transversely excited atmospheric pressure CO lasers[J]. Applied Physics Letter,1970,16(12):504-505.
    [89]P. D. Slade, A. Serafetinides. Stable discharges in an HF laser with large electrode seperation[J]. IEEE Journal of Quantum Electronics,1978, QE-14(5):321-322.
    [90]E. E. Kunhardt, K. Beeker, L. Armorer, et al. Suppression of the glow-to-arc transition in glow discharges[C]. American Physical Society, Gaseous Electronics Conference on Gas Discharges and Their applications, Greifswald, Germany, SePt. 1997, P.87.
    [91]E. E. Kunhardt. Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas[J]. IEEE Transactions on Plasma Science,2000,28(1):189-200.
    [92]J. R. Roth, Y. Ku, P. P. Tsai, et al. A study of the sterilization of nonwoven webs using one atmosphere glow discharge plasma[C]. Proceedings of the 1996 TAPPI Conference, N.C., March 11-13,1996, PP.225-230.
    [93]J. R. Roth, D. M. Sherman, R. B. Gadri, et al. A remote exposure reactor(RER) for plasma processing and sterilization by plasma active species at one atmosphere[J]. IEEE Transactions on Plasma Science,2000,28(1):56-63.
    [94]P. P. Tsai, L. C. Wadsworth, J. R. Roth. Surface modification of fabrics using a one-atmosphere glow discharge plasma to improve Fabric wettability[J]. Textile Research Journal,1997,67(5):359-369.
    [95]T. C. Montie, K. K. Wintenberg, J. R. Roth. An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials[J]. IEEE Transactions on Plasma Science,2000,28(1):41-50.
    [96]K. K. Wintenberg, D. M. Sherman, J. R. Roth, et al. Air filter sterilization using a one atmosphere uniform glow discharge plasma (the volfilter)[J]. IEEE Transactions on Plasma Science,2000,28(1):64-71.
    [97]R. B. Gadri, J. R. Roth, T. C. Montie, et al. Sterilization and plasma processing of room temperature surfaces with a one atmosphere uniform glow discharge plasma (AOUGDP)[J]. Surface and Coatings Technology,2000,131:528-524.
    [98]M. Kogoma, S. Okazaki. Raising of ozone formation efficiency in a homogeneous glow discharge plasma at atmospheric pressure[J]. Journal of Physics D:Applied Physics,1994,27(9):1985-1987.
    [99]Y. B. Golubovskii, V. A. Maiorov, J. Behnke, et al. Influence of elementary processes over an homogeneous barrier discharge in helium[C]. Proceedings of 8th
    International Symp. on High Pressure Low Temperature Plasma Chemistry, Puhajarve, Estonia,21-25 July,2002,1:48-52.
    [100]Y. B. Golubovskii, V. A. Maiorov, J. Behnke, et al. Some aspects of modeling of an uniform barrier discharge in nitrogen[C]. Proceedings of 16th ESCAMPIG, Grenoble, France,14-15 July,2002,1:233-234.
    [101]Y. B. Golubovskii, V. A. Maiorov, J. Behnke, et al. Modeling of the homogeneous barrier discharge in helium at atmospheric pressure[J]. Journal of Physics D: Applied Physics,2003,36(1):39-49.
    [102]Y. B. Golubovskii, V. A. Maiorov, J. Behnke, et al. On the stability of a homogeneous barrier discharge in nitrogen relative to radial perturbations[J]. Journal of Physics D:Applied Physics,2003,36(8):975-981.
    [103]Radul, R. Bartnikas, M. R. Wertheimer. Dielectric barrier discharges in atmospheric pressure helium in cylinder-plane geometry:experiments and model[J]. Journal of Physics D:Applied Physics,2004,37:449-462.
    [104]Radul, R. Bartnikas, M. R. Wertheimer. Dielectric barrier discharges in helium at atmospheric pressure:experiments and model in the needle-plane geometry [J]. Journal of Physics D:Applied Physics,2003,36:1284-1291.
    [105]G. E. Georghiou, A. P. Papadakis, R. Morrow, et al. Numerical modeling of atmospheric pressure gas discharge leading to plasma production[J]. Journal of Physics D:Applied Physics,2005,38:303-328.
    [106]王新新,芦明泽,蒲以康.空气中大气压下均匀辉光放电的可能性[J].物理学报,2002,51(12):2662-2667.
    [107]王艳辉,王德真.介质阻挡均匀大气压辉光放电数值模拟研究[J].物理学报,2003,52(7):1694-1700.
    [108]王艳辉,王德真.大气压下多脉冲均匀介质阻挡放电的研究[J].物理学报,2005,54(3):1295-1300.
    [109]张远涛,王德真,王艳辉.大气压介质阻挡丝状放电时空演化数值模拟[J].物理学报,2005,54(10):4808-4815.
    [110]方志,邱毓昌,王辉等.介质阻挡放电的电荷传输特性研究[J].高压电器,2004,40(6):401-403.
    [111]罗毅,方志,邱毓昌.材料性质对介质阻挡放电特性的影响[J].绝缘材料,2003,4:45-47.
    [112]方志,邱毓昌,王辉.介质阻挡放电的放电过程仿真研究[J].高电压技术,2006, 32(8):62-65.
    [113]董丽芳,刘峰,李树峰等.大气压氩气/空气介质阻挡放电中分子振动温度[J].光谱学与光谱分析,2006,26(5):802-804.
    [114]董丽芳,李雪辰,尹增谦等.大气压介质阻挡放电中的自组织斑图结构[J].物理学报,2002,51(10):2296-2301.
    [115]詹花茂,李明,李成榕.介质阻挡放电中的紫外线预电离[J].高电压技术,2005,31(2):62-66.
    [116]许金豹,李成榕,詹花茂等.大气中电极结构对介质阻挡放电的影响[J].高压电器,2008,44(2):132-134,138.
    [117]杨津基.气体放电[M].北京:科学出版社,第1版,1983.
    [118]I. Gallimberti. A computer model for streamer propagation[J]. Journal of Physics D: Applied Physics,1972,5:2179-2189.
    [119]E. Hantzsche, L. W. Wieczorek. Energy distribution functions in a normal glow discharge[C]. Proceedings of International Conference on Phoneme in Ionized Gases VII,1965,1:339-342.
    [120]J. M. Guo, C. H. J. Wu. Two-dimensional non-equilibrium fluid models for streamers[J]. IEEE Transactions on Plasma Science,1993,21(6):684-695.
    [121]M. A Tas, E. M. van Veldhuizen, W. R. Rutgers. Plasma excitation processes in flue gas simulated with Monte Carlo electron dynamics[J]. Journal of Physics D:Applied Physics,1997,30:1636-1645.
    [122]T. N. An, E. Marode, P. C. Johnson. Monte Carlo simulation of electrons within the cathode fall of a glow discharge in helium[J]. Journal of Physics D:Applied Physics, 1977,10:2317-2328.
    [123]N. Y. Babaeva, G. V. Naidis. Two-dimensional modeling of positive streamer dynamics in non-uniform electric fields in air[J]. Journal of Physics D:Applied Physics,1996,29:2423-2431.
    [124]P. A. Vitello, B. M. Penetrante, J. N. Bardsley. Simulation of negative-streamer dynamics in nitrogen[J]. Physics Review E,1994,49(6):5574-5593.
    [125]宁成,李劲,李谦.窄脉冲电晕放电中流注形成和传播的数值模拟[J].高电压技术,1996,12:8-10.
    [126]A. J. Davies, C. S. Davies, C. J. Evans. Computer simulation of rapidly developing gaseous discharges[J]. IEE Proceeding of Science, Measurement and Technology, 1971,118(6):816-823.
    [127]M. C. Wang, E. E. Kunhardt. Streamer dynamics[J]. Physics Review A,1990,42(4): 2366-2373.
    [128]G. E. Georghiou, R. Morrow, A. C. Metaxas. A two-dimensional, finite-element, flux-corrected transport algorithm for the solution of gas discharge problems[J]. Journal of Physics D:Applied Physics,2000,33(19):2453-2466.
    [129]A. A. Kulikovsky. Positive streamer in a weak field in air:a moving avalanche-to-streamer transition[J]. Physics Review E,1998,57(6):7066-7074.
    [130]R. Lohner, K. Morgan, J. Peraire, et al. Finite element flux-corrected transport for the Euler and Navier-Stokes equation[J]. International Journal for Numerical Methods in Fluids,1987,7(10):1093-1109.
    [131]张赞,曾嵘,黎小林等.大气中短空气间隙流注放电过程数值仿真[J].中国电机工程学报,2008,28(28):6-12.
    [132]邵瑰伟.两相体放电实验和仿真研究及其在环保中的应用初探:[博士学位论文][D].武汉:华中科技大学图书馆,2005.
    [133]W. M. Merrill, R. E. Diaz, M. M. Lore, et al. Effective medium theories for artificial materials composed of multiple sizes of spherical inclusions in a host continuum[J]. IEEE Transactions on Antennas and Propagation,1999,47:142-148.
    [134]黎小林,张波,王琦等.特高压直流线路的场分布影响因素分析[J].高压电器,2006,42(6):407-409.
    [135]A. Koshcheev. Environmental characteristics of HVDC over-head transmission lines: prepared for the third workshop on power grid internation in northeast Asia[C]. Vladivostok, Russia:[s. n.],2003:93-103.
    [136]张文亮,吴维宁,胡毅.特高压输电技术的研究与我国电网的发展[J].高电压技术,2003,29(9):16-18.
    [137]C. Neil. Evidence that electromagnetic fields from high voltage power lines and in buildings, are hazardous to human health, especially to young children[D]. New Zealand:Environmental Manage2ment and Design Division, Lincoln University, 2001.
    [138]A. S. Mazen, M. A. Hassan. Transmission-line electric field induction in humans using charge simulation method[J]. IEEE Transactions on Biomedical Engineering, 1995,42(11):1105-1109.
    [139]M. Hara, N. Hayashi, K. Shiotsuki, et al. Influence of wind and conductor potential on distribution of electric field and ion current density at ground level in DC high voltage line to plane geometry[J]. IEEE Transactions on Power Apparatus and Systems,1982,101(4):803-814.
    [140]侯远航,邬雄,万保权等.±500kV直流线路极导线垂直排列的合成场强[J].高电压技术,2005,31(5):37-38,57.
    [141]干喆渊,邬雄,张广州等.±500kV直流输电系统电磁环境调查研究[J].高电压技术,2006,32(9):146-148,152.
    [142]B. L. Tie, J. Zhao, C. Xiang, et al. Analysis of ionized field under ±800kV HVDC transmission lines[C].17th International Zurich Symposium on Electromagnetic Compatibility. C-Zurich,2006:416-419.
    [143]李秋玮,赵宇明,惠建峰等.直流电晕笼中的合成场强和离子电流的计算[J].高电压技术,2008,34(2):285-288.
    [144]肖冬萍,何为,张占龙等.特高压输电线工频磁场三维优化模型[J].中国电机工程学报,2009,29(12):116-120.
    [145]田冀焕,邹军,刘杰等.高压直流双回输电线路合成电场与离子流的计算[J].电网技术,2008,32(2):61-70.
    [146]王毅,孙成秋,汤涛等.不同运行方式下特高压直流输电线路的地面电场与离子流分布[J].电网技术,2008,32(2):29-33.
    [147]P. S. Maruvada, J. Wasyl. Analysis of corona losses on DC transmission lines part I-Unipolar lines[J]. IEEE Transactions on Power Apparatus and Systems,1969, 88(5):718-731.
    [148]P. S. Maruvada, J. Wasyl. Analysis of corona losses on DC transmission lines part II-Bipolar lines[J]. IEEE Transactions on Power Apparatus and Systems,1969, 88(10):1476-1492.
    [149]傅宾兰.高压直流输电线路地面合成场强与离子流密度计算[J].中国电机工程学报,1987,7(5):57-63.
    [150]杨勇,陆家榆,雷银照.极导线垂直排列直流线路地面合成电场的一种计算方法[J].中国电机工程学报,2007,27(21):13-18.
    [151]杨勇,陆家榆,雷银照.同塔双回高压直流线路地面合成电场的计算方法[J].中国电机工程学报,2008,28(6):32-36.
    [152]G. B. Johnson. Degree of corona saturation for HVDC transmission lines[J]. IEEE Transactions on Power Engineering Review,1990,5(2):695-703.
    [153]赵畹君.高压直流输电工程技术[M].北京:中国电力出版社,2004.
    [154]W. Janischewskyj, G. Gela. Finite element solution for electric field of coronating DC transmission lines[J]. IEEE Transactions on Power Apparatus and Systems,1979, 98(3):1000-1012.
    [155]S. M. Abdel, A. Z. Hamouz. A new finite-element analysis of an ionized field in coaxial cylindrical geometry[J]. Journal of Physics D:Applied Physics,1992,25(10): 1551-1555.
    [156]A. Z. Hamouz, S. M. Abdel. Finite-element solution of monopolar corona on bundle conductors[J]. IEEE Transactions on Industry Applications,1999,35(2):380-386.
    [157]J. Vinay, J. Thomas. Finite element modeling of ionized field quantities around a monopolar HVDC transmission line[J]. Journal of Physics D:Applied Physics,2003, 36(23):3089-3094.
    [158]A. Kasdi, H. Yala, Y. Zebboudj. Finite element analysis of bipolar corona[C].2004 International Conference on Solid Dielectrics. Toulouse, France,2004.
    [159]G M. Comber, B. G. Johnson. HVDC field and ion effects research at UHV project results of electric field and ion current measurement[J]. IEEE Transactions on Power Apparatus and Systems,1982, PAS-101(7):1998-2006.
    [160]B. G Johnson. Electric fields and ion currents of a ±400kV HVDC test line[J]. IEEE Transactions on Power Apparatus and Systems,1983, PAS-102(8):2559-2568.
    [161]周浩.一种计算不同气象条件下双极HVDC线路离子流场的方法[J].高电压技术,1991,17(2):19-22.
    [162]P. S. Maruvada, R. D. Dallaire, P. Heroux, et al. Corona studies for bipolar HVDC transmission at voltage between ±600kV and ±1200kV, part 2:special bipolar cage and bus studies[J]. IEEE Transactions on Power Apparatus and Systems,1981, PAS-100(3):1462-1479.
    [163]M. Farzaneh, I. Fofana. Experimental study and analysis of corona discharge parameters on an ice surface[J]. Journal of Physics D:Applied Physics,2004,37: 721-729.
    [164]G W. Penney, G T. Hummert. Photoionization measurements in air, oxygen and nitrogen[J]. Journal of Applied Physics,1970,41(2):572-577.
    [165]M. B. Zheleznyak, A. K. Mnatsakanian, S. V. Sizykh. Photoionization of nitrogen and oxygen mixtures by radiation from gas discharge[J]. High Temperature,1982, 20(3):357-362.
    [166]梁曦东,陈昌渔,周远翔.高电压工程[M].北京:清华大学出版社,2003.
    [167]T. Nomura, Y. Ehara, H. Kishida, et al. A study of NO removal by packed-beads discharge reactor[J]. IEEE Transactions on Industrial Application,1999,35: 1318-1322.
    [168]A. B. Murphy, R. Morrow. Glass sphere discharges for ozone production[J]. IEEE Transactions on Plasma Science,2002,30:180-181.
    [169]B. S. Rajanikanth, V. Ravi. Pulsed electrical discharges assisted by dielectric pellets/catalysts for diesel engine exhaust treatment[J]. IEEE Transactions on Dielectric Electric Insulation,2002,9:616-626.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700