用户名: 密码: 验证码:
基于CPW电流的全并联AT供电方式故障测距方案研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高速铁路的大规模建设及投入运营,作为高速铁路动力来源,牵引供电系统安全可靠性面临严峻挑战。高速铁路牵引供电系统采用全并联AT供电方式,该供电方式将上下行线路在AT所处并联,使线路结构更加复杂。这就对牵引供电系统故障测距装置及其自动化功能提出了更高的要求,要求选择性更好、可靠性更高、动作速度更快、故障识别、判断、恢复时间更快。因此对采用全并联AT供电方式的高速铁路牵引供电网的故障测距的分析与研究,找出适用于高速铁路故障测距的快速,准确的方案,对高速铁路的安全可靠运行有着重要的意义。
     本文首先针对高速铁路全并联AT供电方式的特点,对全并联AT牵引网的一种特殊情况下的短路故障T-F短路故障情况进行了回路电流分析,在此基础上对传统的三种测距方案:“AT中性点吸上电流比”、“区段上下行电流比”、“横联线电流比”的优劣性进行了对比分析,推导了T-R、T-F、F-R短路故障情况下的系统测量阻抗,在T-F短路故障情况下“AT中性点吸上电流比”将不再适用。在此基础上,通过分析T-F短路故障情况下系统测量阻抗与故障距离呈分段线性关系的结论,推导出了阻抗法故障测距公式,作为T-F短路故障测距方案的一种补充。
     其次针对高速铁路钢轨与保护线要进行完全横向连接的实际情况,提出了基于CPW电流的故障测距方案,通过对含有保护线的全并联AT供电系统在T-R,以及T-PW故障情况下的电流分析,结合“AT中性点吸上电流比”故障测距公式,研究了CPW电流的故障测距方案,可以快速的将故障位置确定在1.5km范围内,然后利用故障测距公式进行更加精确的故障定位。
     最后建立了全并联AT供电系统故障测距的仿真模型,对阻抗法以及CPW电流的故障测距方案以及实际情况中的短路过渡阻抗,AT漏阻抗以及钢轨对地泄露电导对CPW电流测距精度的影响进行了仿真研究,仿真结果表明阻抗法测距在“AT中性点吸上电流比”测距法失效的情况下能较准确的对T-F短路故障进行测距,测距精度随着故障位置距离牵引变电所的位置越远误差越大;而CPW故障测距方案能满足实际测距需要,测距误差随着故障点距离变电所的位置越远而变得越来越小。而实际应用中,短路点过渡阻抗以及钢轨对地泄露电导对测距精度没有影响,而AT漏阻抗对测距精度有一定的影响。
With the large-scale construction and being put into operation of high-speed railway, as a power source the reliability of high-speed railway traction power supply system faces severe challenges.The high speed railway traction power supply system adopts all parallel AT power supply mode,this way of power supply has lines in parallel in the AT the place,and will make the line structure more complex. The higher request of the fault location device of traction power supply system and its automation function is put forward, which requires that better selectivity and the higher reliability, faster action speed,and the faster fault recognition, judgment,recovery time.So the analysis and research of high-speed railway traction supply network fault location of all parallel AT power supply mode to find a quick and accurate fault location scheme that suitable for high speed railway fault location,has important significance for the safe and reliable operation of the high-speed railway.
     In this paper,firstly,according to the characteristics of high-speed railway all parallel AT power supply mode,the fault loop current of T-F short-circuit fault condition whicht is a special case of all parallel AT traction net has been analyzed,on the base of that,the superiority and inferiority of the three traditional ranging scheme:"AT neutral current ratio fault location method"," up/down line current ratio fault location method","paralleling lines current ratio fault location method"are taken some comparative analysis.The system impedance measurement of T-F,F-R,T-R short-circuit fault cases were deduced,under the condition of T-F fault the"AT neutral current ratio fault location method" will no longer applied. Then through the analysis of the conclusion that under the T-F fault condition,the relationship between the measuring impedance of the system and fault distance is piecewise linear,and the formula of impedance fault location method was deduced as a kind of supplement for T-F short circuit fault location scheme.
     Secondly,according to the actual situation that rail and protection line of high-speed railway is completely horizontal connection,the CPW current fault location scheme is presented,by the analysis of T-R, and T-PW current of fault case of all parallel AT power supply system which containing the protection line,combine with the "AT neutral current ratio fault location method" formula,the CPW current fault location scheme is studied,the fault location can fast be determined within the scope of1.5km.then more accurate fault location and fault distance measuring formula will be used.
     Finally,the simulation model of all parallel AT power supply system fault location will be established,the impedance fault location method, the fault location scheme for CPW current and the influence of short circuit transfer impedance, the AT leakage impedance, rail to earth leakage conductance on the CPW current ranging accuracy in the actual situation was researched through simulation,The simulation results show that the impedance fault location method can be accurate for T-F fault distance measurement under the condition that"AT neutral current ratio fault location method"fails,the precision of the range will change along with the change of the distance between the location of the traction substation and the fault location, the farther the distance between the location of the traction substation and the fault location, the distance-measuring error is greater, the CPW fault location scheme can meet the needs of the actual fault location, the farther the distance between the location of the traction substation and the fault location, the distance-measuring error is small.
引文
[1]曹建猷.电气化铁道供电系统[M].北京:中国铁道出版社,1983.
    [2]Hobbs. High speed power[J]. Power Eng J.2007,21(2):32-35.
    [3]Seung-Hyuk Lee, Student Member, Jin-O Kim, Senior Member, IEEE, and Hyun-Soo Jung. Analysis of Catenary Voltage of an AT-Fed AC HSR System[J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL.53, NO.6, NOVEMBER 2004.
    [4]何正友,方雷,郭东,杨建维.基于AT等值电路的牵引网潮流计算方法[J].西南交大学报.2008,43(1):1-7.
    [5]方雷,何正友.一种高速铁路AT供电方式列车电压提高方法[J].电气自动化.2010,(1):35-39.
    [6]刘宇航.牵引网谐振规律研究[D].西南交通大学硕士学位论文,2009.
    [7]赵腾.高速铁路全并联AT牵引网供电特性研究[D].北京交通大学硕士学位论文,2012.
    [8]石瑞霞.牵引网故障数字仿真系统[D].西南交通大学硕士学位论文,2007.
    [9]邢晓乾.带加强线的全并联直接供电技术的研究[D].西南交通大学硕士学位论文,2011.
    [10]李爱武.AT供电方式及变电所接线方式优选[D].西南交通大学硕士学位论文,2010.
    [11]林国松,李群湛,陈小川.电气化铁道供电牵引网故障测距综述[J].电气化铁道,2002,2:192-196.
    [12]王继芳.全并联AT供电牵引网故障测距研究[D]. 西南交通大学硕士学位论文,2006.
    [13]郭明杰,林国松,陈小川.基于横联线电流比原理的全并联AT牵引网故障测距装置[J].继电器,2006,34(22):36-39.
    [14]鲍英豪,刘静,杨健.基于转移阻抗法的带保护线的AT供电测距原理[J].供变电,2008,2: 5-7.
    [15]喻奇.客运专线牵引供电系统电气模型的研究[D].西南交通大学硕士学位论文,2009.
    [16]喻奇,高仕斌,桑丙玉.计入保护线影响的AT牵引网等值电路推导[J].电气化铁道,2008,2:14-18.
    [17]吴命利,黄足平,辛成山.降低电气化铁道钢轨电位技术措施的研究[J].铁道客运专线建设技术交流会论文集.2005:504-516.
    [18]张婧晶,张家新.客运专线综合接地系统的仿真与研究[J].电气化铁道,2007(6):24-27.
    [19]A. T. Johns, S. Jamali. Accurate Fault Location Technique for Power Transmission lines[J]. IEE Proceedings-Generation, transmission and Distribution, Volume:137, nov 1990. page(s):395-402.
    [20]R. J. Hill. Cevik. I. H. Parallel computer simulation of autotransformer feed AT traction networks[J]. ASME/IEEE joint Railroad Confernce,1990, page (s): 442-452.
    [21]Pilo. E. Rouco. L, Fernandez. A, et. A simulation tool for the design of the Electrical supply system of high-speed railway lines[J]. IEEE Power Engneering Society Summer Meeting, Volume 2, July 2000, page(s):1053-1058
    [22]卢涛,韩正庆,王继芳.全并联AT供电方式的故障测距方法[J].电力系统及其自动化学报,2006,18(2):27-30.
    [23]邹立平.电气化铁道多列车牵引负荷谐波过程动态仿真分析[D].西南交通大学硕士论文,1990.
    [24]颜文祝,石瑞霞,黄宝权.全并联AT供电网络的电气特性分析及其故障测距方法的研究[J].交通运输工程与信息学报,2007,5(1): 14-21.
    [25]杨嵘春.AT牵引网吸上电流比测距精度改进的研究[D].西南交通大学硕士学位论文,2009.
    [26]鲍英豪,刘静.带保护线的全并联AT供电方式故障测距方案研究[J].铁道技术监督,2008,36(2):24-26..
    [27]林国松,陈小川.带串联电容补偿装置的电力牵引网故障测距研究[J]电力自动化设备,2005,25(3):51-53
    [28]林国松.牵引供电系统新型保护与测距原理研究[D].西南交通大学博士学位论文,2010.
    [29]鲍英豪.全并联AT供电方式保护和测距方案研究[J].电气化铁道.2010,2:15-19.
    [30]王茜.基于BP的全并联AT牵引网故障测距方案研究[D].西南交通大学硕士学位论文,2011.
    [31]喻奇.吴江涛.客运专线牵引供电系统电气特性的仿真研究[J].供变电,2010(12):21-22.
    [32]A, Mariscotti, P. Pozzobon, M, Vanti. Distribution of the traction return current in AT electric railway systems. Power Delivery, IEEE Transactions, Volume 20, Issue 3, July2005, page(s):2119-2128
    [33]R. J. Hill, I. H. Cevik. On-line simulation of autotransformer-fed AC electric railroad traction networks[J]. IEEE Trans. Veh. Technol,1993,42(3):365-372.
    [34]李伟,王倩,刘超.行波法应用于复线牵引网故障测距的仿真研究[J].铁道运输与经济.2008,30(6):89-95.
    [35]何正友,胡海涛,方雷,张民,高仕斌.高速铁路牵引供电系统谐波及其传输特性研究[J].中国电机工程学报,2011,31(16):55-62.
    [36]周建辉,康劲松,徐国卿.基于复小波分析的牵引网故障测距算法[J].同济大学学报(自然科学版),2010,38(12):1819-1821.
    [37]蔡玉梅,何正友,王志兵,等.行波法在10KV铁路自闭/贯通线故障测距中的应用[J].电网技术.2005,29(1):15-19.
    [38]李强,宋琳琳,李波,等.永久性故障对全并联AT供电距离保护的影响[J].电气化铁道.2010,5:21-23.
    [39]Richard A Uher.. The Transportation System Energy Management Model for the Personal Computer, July 1989, Fourth Edition.
    [40]Kutsmeda K J, Fehrle K G, Trick P J. Computer modeling, simulation, and validation by field testing of a traction power system for electric trolley buses. Railroad Conference, Proceedings of the 1995 IEEE/ASME 4-6 April 1995:87-91.
    [41]陈小川,贺威俊,高仕斌,等.电牵引系统新型微机自适应馈线保护故障测距原理与特性[J].铁道学报,1995,17.
    [42]陈豪.AT供电方式牵引网故障定位[D].电气化铁道.昆明理工大学硕士学位论文,2010.
    [43]高仕斌.高速铁路牵引供电系统新型保护原理研究[D].西南交通大学博士学位论文,2004.
    [44]周文卫.直流牵引供电系统短路电流计算与故障测距研究[D].西南交通大学硕士学位论文,2012.
    [45]张婧晶.高速铁路综合接地系统的研究[D].西南交通大学硕士学位论文,2008.
    [46]林国松.高速铁路AT供电牵引网故障测距研究[J].前沿动态.2012.2:17-20.
    [47]胡海涛,高朝晖,何正友,袁林.基于FTA和FMEA法的地铁牵引供电系统可靠性评估[J].铁道学报.2012.34(10):48-54.
    [48]李群湛.牵引变电所供电分析及综合补偿技术[M].北京:中国铁道出版社,2006.
    [49]胡海涛,何正友,王江峰等.基于车网耦合的高速铁路潮流计算[J].电机工程学报.2012,32(19):101-108.
    [50]李群湛.我国高速铁路牵引供电发展的若干关键技术问题[J].铁道学报,2010,32(4):119-124.
    [51]张民,何正友,方雷,钱清泉.自耦变压器供电方式下降低高速铁路钢轨电位的方法及其仿真分析[J].电网技术,2011,35(3):(80-84).
    [52]蒋先国.高速铁路四电系统集成[M].四川:西南交通大学出版社,2010.
    [53]李群湛,贺建闽.牵引供电系统分析[M].四川:西南交通大学出版社,2007.
    [54]吴命利.牵引供电系统电气参数与数学模型研究[D].北京:北京交通大学,2006.
    [55]吴命利.电气化铁道牵引网的统一链式电路模型[J].中国电机工程学报,2010,30(28):52-58.
    [56]姚楠,吴命利.基于多导体传输线模型的牵引网电气参数计算方法[C].2008年铁路电气化新技术学术年会,武汉,2008: 25-31.
    [57]李爱武,解绍峰等.电气化铁道复线AT供电网络研究[J].铁道运营技术.2010,16(3)(44-47).
    [58]方雷.高速铁路牵引供电系统数字建模及仿真[D].西南交通大学硕士论文,2010.
    [59]张秀峰.AT牵引网故障测距原理研究与改进[J].铁道建筑技术,2003.44-48.
    [60]Han Zhengqing, Zhang Yuge, Liu Shuping, Gao Shibin. Modeling and Simulation for Traction Power Supply System of High-Speed Railway 2009,21(3):115-120.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700