用户名: 密码: 验证码:
铝镁系合金强韧性能及焊接性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金作为21世纪最具生命力的新型环保结构材料,它的开发和应用对于实现人类可持续发展具有重要而深远的意义。但是,镁合金的合金系统还较少,现有镁合金的力学性能还远远不能满足人们的需求。本论文在现有镁合金系统的基础上,添加稀土元素,研究和开发了两种新型高强高韧镁合金材料,并对广泛应用的AZ31B镁合金的焊接冶金性能和焊接接头力学性能进行了深入研究。
     在AZ31镁合金系统的基础上,加入微量合金元素钇Y,研究了钇Y对AZ31合金的微观组织、室温力学性能和断裂机制的影响。AZ31镁合金中加入钇Y后,形成块状Al2Y化合物,该合金组织由α-Mg固溶体+Mg17Al12+Al2Y相组成。钇Y的加入使Mg-3Al-Zn合金系统韧性提高,铸造状态下的抗拉强度达到212 MPa,延伸率达到7%以上,拉伸断口出现撕裂棱和韧窝,使该合金系统的断裂机制由解理断裂转变为准解理断裂。
     分析了稀土元素镧La对AZ91镁合金的改性作用及其作用机理。稀土元素镧La的添加,可以有效地细化晶粒,使Mg17Al12相由原先连续、粗大的网状转变为细小的、致密的不连续状。当镧La的添加量在0.2%左右、精炼温度为993K的条件下,能得到理想的合金性能、最少的合金损耗。与国家标准AZ91镁合金材料比较,由于稀土元素镧La的添加,合金试样的硬度、冲击吸收功提高1倍以上,抗拉强度提高73%,延伸率提高了7倍。
     探究了AZ31镁合金材料TIG自熔焊、填丝TIG焊和MIG焊的焊接冶金性能。分析了三种焊接方法焊接裂纹产生原因及裂纹特征,AZ31B镁合金焊接热裂纹在接近焊缝中心处产生,裂纹向熔合区方向扩展,扩展速度很快并且过程中存在多次分叉裂纹,裂纹及其分叉都是沿晶扩展。
     研究了AZ31镁合金及其焊接接头的基本力学性能。试验所用轧制态AZ31镁合金板材静载抗拉强度为285.2 MPa,经过TIG焊接热循环的作用后,焊接接头的静载抗拉强度下降,比母材抗拉强度降低10%左右。横向非承载十字接头试件的抗拉强度为255.9 MPa,纵向非承载十字接头试件的抗拉强度为258.0 MPa。焊接接头显微硬度测试结果显示,焊缝区的显微硬度值较高,热影响区显微硬度最低。
     测试了AZ31镁合金板材在-80~340℃温度范围内的冲击韧性随温度变化的规律。结果表明:AZ31镁合金母材在-80~260℃温度范围内存在韧脆转变现象,以能量标准和延性标准测得的韧脆转变温度约为140℃。AZ31镁合金的冲击性能对缺口很敏感,试样从无缺口到有缺口,即使仅有很小的缺口,冲击韧性也突然下降,未开缺口的冲击试样的冲击韧性akv为50 J·cm-2以上,而缺口深度D = 0.1 mm的缺口试样,冲击韧性akv仅为15.95 J·cm-2。示波冲击试验结果显示AZ31镁合金母材和焊接接头的断裂过程极不相同。
     对AZ31镁合金板材及其TIG焊对接接头、纵向角接接头、非承载十字接头等三种接头的疲劳性能进行了测试。试验结果表明:在2×106的循环次数下,AZ31镁合金母材的疲劳强度为57.81 MPa,对接接头的疲劳强度为24.60MPa,纵向角接接头的疲劳强度为20.14 MPa,横向非承载十字接头的疲劳强度为17.25 MPa,镁合金焊接接头的疲劳性能远低于母材。扫描电镜观察疲劳断口发现,AZ31镁合金焊接接头断口中没有连续、清晰的疲劳辉纹,大部分区域都是由细小密集的解理台阶、扇形花样断口、河流状花样断口组成,在断口的很多地方都可以看到大小不一的二次裂纹。
     提出了采用超声冲击方法改善AZ31镁合金焊接接头的疲劳强度的措施。试验结果表明:焊接接头焊趾经过超声冲击后,纵向非承载十字接头的疲劳强度比焊态试样提高了54.5%,达到母材疲劳强度的84.2%;横向非承载十字接头的疲劳强度比焊态试样提高了43.6%,达到母材疲劳强度的68.6%。在一定应力范围的疲劳寿命延长到原来的3倍。
     研究了AZ31镁合金及其焊接接头在质量分数为3.5%的NaCl溶液中的腐蚀行为。电化学腐蚀结果显示,母材的自腐蚀电位Ecorr= -1.425 V,自腐蚀电流Icorr=1.093×10-2 A,年腐蚀率Ψ=139.8 mm/year,说明AZ31镁合金在Cl-溶液中极不耐蚀。焊接接头形成过程中存在的一些缺陷,加剧了AZ31镁合金焊接接头的腐蚀,焊缝金属的耐腐蚀性小于母材。
     采用化学镀的方法在镁合金表面获得金属涂镀层,采用XRD、SEM和TEM研究了镀层的成分和组织结构。镀层组织为非晶+少量微晶组织。耐腐蚀性能良好,原始镀层的最小腐蚀电流I corr为4.52μA/cm2,取对数约为0.66,此时的腐蚀电位Ecorr为-250mV。镀层耐腐蚀性能良好,连续盐雾八小时未出现腐蚀斑点。
As a promising and environmentally-friendly structural material in 21st century, the development and application of magnesium alloy is of far reaching importance for human sustainable development. But the existing magnesium alloys are far from the demand due to the lesser alloy systems and lower mechanical properties. In this dissertation, two new styles magnesium alloy with high tensile and high tough were developed by adding rare-earth element into AZ31 alloy system. Moreover, the welding metallurgy performance of AZ31B alloy and mechanical properties of the welded joint were studied.
     The effect of Y addition on microstructure, room temperature mechanical property and fracture mechanism of AZ31-Y alloy were studied. Massive Al2Y was formed and the microstrure was composed ofα-Mg, Mg17Al12 and Al2Y. The toughness of AZ31-Y alloy was improved, and the tensile strength and elongation of as cast AZ31-Y was 212Mpa and 7%, respectively. On the other hand, the tearing ridge and dimple appearanced on the tensile fracture, which revealed that the fracture mechanism transformed from cleavage fracture to quasi-cleavage fracture.
     The modification effect and modification mechanism of La in AZ91 alloy was studied. With additon of La element, the grain was effectively refined, and the continous, massive Mg17Al12 of being reticular transformed to be uncontinous, fine and dense. At the refining temperature of 993K, the perfect properties and the least alloy waste were realized When La addtion was 0.2%. Comparing with standard AZ91, The rigidity and impact energy, the tensile strength and the elongation of AZ91-La alloys were improved 100%, 73% and 700% respectively.
     The welding metallurgy performance of TIG self fluxing welding, TIG filling wire welding and MIG welding of AZ31 alloy were investigated. And the formation and characteristic of cracks in the above three welding were analyzed. Welding hot cracks of AZ31 alloy formed near the centre of the welded seam, and then growed rapidly into fusion area, in the course which branch cracks happened. The cracks and branch cracks both growed along the grain boundaries.
     The mechanical properties of AZ31 magnesium alloy and its welded joint were studied. The tensile strength of AZ31 plates as rolling used in testing is 285.2 Mpa. After the TIG welding, the tensile strength of welded joint reduces about 10% Compared with base metal. The tensile strengths of transverse and longitudinal cruciform welding joints are 255.9 Mpa and 258.0 Mpa respectively. Moreover, the microhardness testing result of welded joint reveals that the microhardness in the weld joint zone is higher, while that in heat-affected zone is at the least.
     Effect of temperatures with a rang of -80 ~ 340℃on impact toughness evolving were studied. The result indicates that in AZ31 alloy tough-brittle transition phenomena happens at about 140℃which is measured with energy standard and ductility standard. The impact property of AZ31 alloy is very sensitive to indentation, and no matter how small the indentation is, the impact toughness of AZ31 alloy decreases markedly. For example, the impact toughness of the sample with a indentation of 0.1mm depth is 15.95 J/cm2, while the impact toughness of the sample without any indentations is higher than 50 J/cm2. the result of instrument impact test reveals that the fracture processes of AZ31 magnesium alloy parent metal and welded joint are quite different.
     The fatigue properties of base metal, TIG butt joint, transverse cross joint and longitudinal cross joint were tested. The results indicate that when the cycle index N is 2×106 times, the fatigue resistances of base metal, butt joint, transverse cross joint and longitudinal cross joint were 57.81 MPa, 24.60 MPa, 17.25 Mpa and 20.14 Mpa, respectively. It is obvous that the fatigue resistances of the welding joints is far lower than that of base metal. Moreover, SEM analysis of the fatigue fracture finds that there is no continuous and legible fatigue stripe on the fractures of the welding joints which is mainly composed of dense cleavage step, sector pattern fracture and river pattern fracture where there are secondary cracks with different sizes.
     The was put forward to improv fatigue strength of welding joint of AZ31 alloy. After treated by the ultrasonic peening method, Fatigue life is improved three times in certain stress extent. The fatigue resistance of longitudinal cross joint (2×106) is improved 54.5%, which is 84.2% of parent metal and that of transverse cross joint (2×106) is improved 43.6%, which is 68.6% of parent metal.
     The corrosion behaviors of AZ31 magnesium alloy and its welded joints in 3.5wt% NaCl solution were studied. The corrosion potential (Ecorr), corrosion current (Icorr), corrosion rate (Ψ) of AZ31 alloy were -1.425 V, 1.093×10-2 A and 139.8 mm/year respectively, which reveals that AZ31 magnesium alloy is very easily corrupted in cl- solution. On the other hand, the corrosion resistance of the welded joint is lower than that of AZ31 parent alloy because due to some defects in the welded joint.
     Metal coated layer was obtained on the surface of magnesium alloy by electroless plating method, and the chemical composition and structure of coated layer were studied using XRD, SEM and TEM. The coated layer is mainly composed of amorphous structures and a few microcrystalline structure. The corrosion current and corrosion potential of the original coated layer are 4.52μA/cm2 and -250 mV respectively. Moreover, there are no corrosion spots when the coated layer is exposedin in salt mist for 8h.
引文
[1]陈振华,严红革,陈吉华等.镁合金[M].北京:化学工业出版社,2004.
    [2]刘正,张奎,曾小勤.镁基轻质合金理论与应用[M].北京:机械工业出版社, 2002.
    [3]国家发展和改革委员会技术产业司,中国材料研究学会.中国新材料产业发展报告-镁及镁合金(潘复生等编写)[M],北京:化学工业出版社, 2004.9:115~142.
    [4]余馄,黎文献,王日初等.变形镁合金的研究、开发及应用[J].中国有色金属学报, 2003, 13(2):277~288.
    [5] Maeng D Y, Kim T S, et al. Microstructure and strength of rapidly solidified and extruded Mg-Zn alloys [J]. Scripta mater, 2000,43: 385.
    [6] Watanabe H. et al. Realization of high-strain-rate superplasticity at low temperatures in a Mg-Zn-Zr alloy [J]. Materials Science and Engineering,2001, A307: 119.
    [7] Rosen. Gady Isaac. Large profile magnesium alloys extrusions for automotive applications[J]. JOM. 2004, 56(11):32.
    [8] Benedyk. Joseph C. Magnesium advances in automotive applications[J]. Light Metal Age.2005(5). 63(3):36.
    [9]林裴[译].镁合金手册-工艺与性质[M].北京:冶金工业出版社,1998.
    [10]刘正,张奎等.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社, 2002.
    [11] Watanabe H. et al. Realization of high-strain-rate superplasticity at low temperatures in a Mg-Zn-Zr alloy [J]. Materials Science and Engineering,2001, A307: 119-128.
    [12]马图哈K.H.材料科学与技术丛书———非铁合金的结构与性能[M].丁道云,等译.北京:科学出版社, 1999.
    [13]黄晓锋,王渠东,刘六法,朱燕萍,袁广银,卢晨,丁文江.混合稀土对Mg-5Al-1Si组织及性能的影响[J].稀有金属材料与工程,2005,34(5):795-798.
    [14]肖代红,宋旼,陈康华,黄伯云. Er对铸态Mg-Al-Zn-Mn合金组织与力学性能的影响[J].特种铸造与有色合金,2007(11):165-169.
    [15] Yoshihito K. Akihisa I.High intensity magnesium alloy’s exploitation by nano crystal [J]. Material,2002,41(9):644—649.
    [16]钟皓,张慧,翁文凭等.热挤压对AZ31镁合金组织与性能的影响[J].金属热处理, 2006,31(8):79.
    [17]陈礼清,郭金花等,原位反应自发渗透法TiC/AZ91D镁基复合材料及AZ91D镁合金的拉伸变形与断裂行为[J].稀有金属材料与工程,2006,36(1), 29-33.
    [18] Nakata, Kazuhiro. Weldability of magnesium alloys. Journal of Light Metal Welding and Construction [J], 2001, 39(12): 26~35.
    [19] Lockwood L.F.. Automatic gas tungsten-arc welding of magnesium. Welding Journal [J], 1965, 44(5): 213~220.
    [20] Asahina Toshikatsu, Tokisue Hiroshi. Some characteristics of TIG welded joints of AZ31 magnesium alloy [J]. Journal of the Japan Institute of Light Metals, 1995, 45(2): 70~75.
    [21] Asahina Toshikatsu, Tokisue Hiroshi, Katoh Kazuyoshi. Solidification crack sensitivity of TIG welded AZ31 magnesium alloy. Journal of the Japan Institute of Light Metals [J], 1999, 49(12): 595~599.
    [22] Munitz A.,Cotler C., Stem A., et al. Mechanical properties and microstructure of gas tungsten arc welded magnesium AZ91D plates [J]. Materials Science and Engineering A, 2001, 302: 68~73.
    [23] Stern A., Munitz A.. Partially melted zone microstructure characterization from gas tungsten-arc bead on plate welds of magnesium AZ91 alloy [J]. Journal of Materials Science Letters, 1999, 18: 853~855.
    [24] Marya M., Edwards G. R., Liu S. An investigation on the effects of gases in GTA welding of a wrought AZ80 magnesium alloy [J]. Welding Journal, 2004, 83(7): 203~212.
    [25] Liu Liming, Miao Yugang, Song Gang, et al. Effect of Heat Input on Microstructure and Properties ofWelded Joint in Magnesium Alloy AZ31 [J]. The Chinese Journal of Nonferrous Metals, 2004, 14(1): 88~92.
    [26]董长富,刘黎明,赵旭.变形镁合金填丝TIG焊接工艺及组织性能分析[J].焊接学报. 2005,26(2): 33~36.
    [27]张福全,王响群,陈振华等. AZ31镁合金薄板的交流钨极氩弧焊[J].湖南大学学报(自然科学版). 2004,31(6):9~12.
    [28]柯黎明,刑丽,徐卫平. AZ8lA镁合金焊接接头的组织与性能[J].材料工程, 2005,(1):41~44.
    [29]徐锦峰,翟秋亚. AZ91B镁合金TIG焊接接头组织与性能[J].特种铸造及有色合金. 2004,4:23~25.
    [30] Lockwood L.F. Gas metal-arc welding of AZ31B magnesium alloy sheet. Welding Journal [J], 1993, 42(10): 807~818.
    [31] Wohlfahrt Helmu, Rethlemeier Michael Bouaifi Belkacem. Metal-inert gas welding of magnesium alloys [J]. Welding and cutting, 2003, 55(2): 80~84.
    [32] Rethmeier M., Kleinpeter B., Wohlfahrt H., et al. MIG welding of magnesium alloys metallographic aspects [J]. Welding in the World, 2004, 48(3/4): 28~33.
    [33] X. Cao, M. Jahazi, J.P. Immarigeon, et al. A review of laser welding techniques for magnesium alloys [J]. Journal of Materials Processing Technology, 2006 (171): 188~204.
    [34] Zhao H.; Debroy T.. Pore formation during laser beam welding of die-cast magnesium alloy AM60B-Mechanism and remedy [J]. Welding Journal, 2001, 80(8): 204~210.
    [35] Marya M., Edwards G. R.. Factors controlling the magnesium weld morphology in deep penetration welding by a CO2 laser [J]. Journal of Materials Engineering and Performance, 2001, 10(4): 435~443.
    [36] Hitoshi, Takashi, Kamado, Shigeharu, et al. Effect of shielding gas and laser wavelength in laser welding of magnesium alloy sheet [J]. Yosetsu Gakkai Ronbunshu, 2001, 19(4): 591~599.
    [37] U. Dilthey, H. Haferkamp, M. Niemeyer, et al. Laser and EM welding of magnesium alloys [J].ⅡW Document No. IV-701-98, American Institute of Welding , 1998.
    [38]宋刚,刘黎明,王继锋.变形镁合金的激光焊接工艺研究[J].应用激光. 2003,23(6): 327~330.
    [39]刘黎明,王继锋,宋刚等.激光电弧复合焊接AZ31B镁合金[J].中国激光. 2004,31(12): 1523~1526.
    [40] Liming Liu, Gang Song, Guoli Liang, et al. Pore formation during hybrid laser-tungsten inert gas arc welding of magnesium alloy AZ31B-mechanism and remedy [J]. Materials Science and Engineering A, 2005 (390): 76~80.
    [41] Liu Liming, Wang Jifeng, Song Gang. Hybrid laser-TIG welding,laser beam welding and gast tungsten arc welding of AZ31B magnesium alloy [J]. Materials Science and Engineering A,2004,381: 129~133.
    [42] Asahina Toshikatsu, Tokisue Hiroshi.. Electron beam weldability of Pure magnesium and AZ31 magnesium alloy [J]. Journal of Japan Institute of Light Metals,2000,50(10): 512~517.
    [43] Draugelates Ulrich, Bouaifi Belkacem, Bartzsch Jorg, et al. Welding of magnesium alloys by means non-vacuum electron-beam welding [J]. Welding and cutting,2000,52(4): 62~67.
    [44]关桥,栾国红.搅拌摩擦焊的现状与发展[J].第11次全国焊接会议论文集(第1册), 2005: D-16.
    [45] Esparza J. A., Davis W. C., Trillo E. A., et al. Friction-stir welding of magnesium alloy AZ31B [J].Journal of Materials Science Letters,2002,21: 917~920.
    [46] Nakata K., Inoki S. Weldability of friction stir welding of AZ9lD magnesium alloy thixomolded sheet [J]. Keikinzoku, 2001, 51(10): 528~533.
    [47]张华,林三宝,吴林等. AZ31镁合金搅拌摩擦焊接头的力学性能.焊接学报, 2003,24(6): 65~68.
    [48]张华,郭力杰,林三宝等.镁合金AZ31搅拌摩擦焊塑性流体流动.焊接学报, 2004,25(4): 67~69.
    [49]邢丽,柯黎明,孙得超等.镁合金薄板的搅拌摩擦焊工艺[J].焊接学报,2001,22(6): 18~20.
    [50]张晓宏,蔡智鹏,吴甦等.镁合金AZ31B的电阻点焊[J].焊接,2003(10): 20~23.
    [51]王亚荣,张忠典,冯吉才等. AZ31B镁合金交流电阻点焊接头的力学性能及显微组织分析[J].机械工程学报, 2004, 40(5): 131~135.
    [52]王亚荣,张忠典,冯吉才等.交流点焊工艺参数对AZ31B镁合金接头性能的影响[J].焊接, 2003(7): 18~20.
    [53]王亚荣,张忠典,冯吉才等.镁合金交流和直流点焊接头组织分析[J].焊接学报, 2004, 25(6): 11~14.
    [54]王亚荣,张忠典,冯吉才等.表面状态对镁合金点焊接头质量的影响[J].焊接学报,2004,25(3): 27~30.
    [55]王亚荣,冯吉才,张忠典等. AZ31B镁合金交流点焊的金相组织[J].焊接,2005(6): 47.
    [56]王亚荣,冯吉才,张忠典等. AZ31B镁合金直流点焊的金相组织[J].焊接,2004(12): 43.
    [57]涂铭旌.镁合金的应用共性基础问题[J].国际材料科学与工程学术研讨会(太原)论文集, 2005:6~8.
    [58] Asahina Toshikatsu, Katoh Kazuyoshi, Tokisue Hiroshi. Fatigue Strength of Friction Welded Joints of AZ31 Magnesium Alloy [J]. Light Metal, 1994, 44(3): 147~151.
    [59] Tsujikawa Masato, Somekawa Hidetoshi, Higashi,Kenji; et al. Fatigue of welded magnesium alloy joints [J]. Mater. Trans. (Japan), 2004,45(2): 419~422.
    [60]张华,林三宝,吴林等. AZ31镁合金搅拌摩擦焊接头断裂机制[J].材料工程. 2005(1): 33~36.
    [61]潘际銮.镁合金结构及焊接.电焊机, 2005, 35(9): 1~7.
    [62]王文先,张金山,许并社.镁合金材料的应用及其加工成型技术[J].太原理工大学学报, 2001,32(6): 34~39.
    [63]王文先,赵彭生,武振龙.变形镁合金钨极氩弧焊接及其焊接接头力学性能的试验研究[J].兵器材料科学与工程, 2001(1): 56~59.
    [64]李保成,张星,马丹.镁合金冲击性能研究[J].新技术新工艺, 2005(7): 54~55.
    [65]王昶.铸镁合金ZM5在±70℃工作温度范围内冲击韧性与温度关系的测定[J]. 30~33.
    [66] Y. Z. Lu, Q. D. Wang, W. J. Ding.Fracture behavior of AZ91 magnesium alloy [J].Materials Letters, 2000, (44): 265~268.
    [67] WANG Li-guo, ZHANG Bao-feng, ZHU Shi-jie, et al. Effects of silicocalcium on microstructure and properties of Mg-6A1-0.5Mn alloy [J]. Trans. Nonferrous Met. Soc, 2006 (16): 551~555.
    [68]刘子利,潘青林,陈照峰等. Sb对AE41镁合金组织和性能的影响[J].航空材料学报, 2005,25(6): 1~4.
    [69]张诗昌,魏伯康,蔡启舟等.钇及混合稀土对Mg-Y、Mg-RE合金组织及冲击韧度的影响[J].机械工程学报, 2003(5): 130~133.
    [70] Zhang Shi-Chang, Wei Bo-Kang, Cai Qi-Zhou, et al. Effect of mischmetal and yttrium onmicrostructures and mechanical properties of Mg-Al alloy [J]. Transactions of Nonferrous Metals Society of China (English Edition), 2003, 13(1): 83~87.
    [71]张义清,李保成,张星等.热处理对AZ80镁合金组织性能的影响[J].机械工程与自动化, 2006(5): 58~60.
    [72] Vedani M.. Microstructural and impact toughness properties of a magnesium AM60B die cast alloy [J]. Key Engineering Materials, 2000, 188: 129~138.
    [73] M. F. Horstemeyer, N. Yang, K. Gall, etc. High Cycle Fatigue of a Die Cast AZ91E-T4 magnesium alloy [J]. Acta Materialia. 2004, 52(5): 1327~1336.
    [74] M. Papakyriacou, H. Mayer, U. Fuchs, etc. Influence of Atmospheric Moisture on Slow Fatigue Crack Growth at Ultrasonic Frequency in Aluminum and Magnesium Alloys [J]. Fatigue and Fracture of Engineering Materials and strecture. 2002, 25(8~9): 795~804.
    [75]曾荣昌,韩恩厚,刘路等.轧制组织对镁合金AM60疲劳性能的影响[J].材料研究学报,2003,17(3):241~246.
    [76]高玉侠,刘马宝,张英杰等.压铸镁合金AZ91HP疲劳性能的研究[J].汽车技术. 2005,(5): 38~40.
    [77] G. Eisenmeier, B. Holzwarth, H. W. Hoppel, etc. Cyclic Defoemation and Fatigue Behavior of the Magnesium Alloy AZ91 [J]. Materials Science and Engineering. 2001, A319-321: 578~582.
    [78] M. Hilpert, L. Wagner. Corrosion Fatigue Behavior of the Highstrength Magnesium Alloy AZ80 [J]. Journal of Materials Engineering and Performance. 2000 (9): 402~407.
    [79] A. Eliezer, E. M. Gutman, E. Abramov, etc. Corrosion Fatigue of Die-cast and Extruded Magnesium Alloys [J]. Journal of Light Metals. 2001 (1): 179~186.
    [80] H. Mayer, M. Papakyriacou, B. Zettl, etc. Inflounce of Porosity on the Fatigue Limit of Die-casting Magnesium and Alluminum Alloys [J]. International Journal of Fatigue. 2003, (25): 245~256.
    [81] Z. Y. Nan, S. Ishihara, T. Goshima, etc. Scanning Probe Microscope Obserbations of Fatigue Process in Magnesium Alloy AZ31 Near the Fatiue limit [J]. Scripta Materialia. 2004, 50 (4): 429~434.
    [82] M. F. Horstemeyer, N. Yang, K. Gall, etc. High Cycle Fatigue of a Die Cast AZ91E-T4 Magnesium Alloy. Acta Materialia [J]. 2004, 52 (5): 1327~1336.
    [83]高洪涛,吴国华,丁文江.镁合金疲劳性能的研究现状[J].铸造技术.2003,24(4):266~268.
    [84] T. S. Shih, W. S. Liu, Y. J. Chen, Fatigue of As-extruded AZ61A Magnesium Alloy [J]. Materials Science and Engineering. 2002, A325: 152~162.
    [85] P. Cavaliere, P. P. De Marco, Fatigue behaviour of friction stir processed AZ91 magnesium alloy produced by high pressure die casting [J]. Materials Characterization. 2007, 58 (3): 226~232.
    [86] Tsujikawa Masato, Somekawa Hidetoshi. Higashi Kenji et al. Fatigue of Welded Magnesium Alloy Joints. Materials Transactions [J]. 2004, 45 (2): 419~422.
    [87]张华,林三宝,吴林等. AZ31镁合金搅拌摩擦焊接头断裂机制[J].材料工程.2005, (1):33~36.
    [88] Wohlfahrt Helmut, Rethlemeier Michael, Bouaifi Belkacem, etc. Metal-inert gas welding of magnesium alloys [J]. Welding and Cutting. 2003, 55 (2): 80~84.
    [89] Draugelates Ulrich, Bouaifi Belkacem, Bartzsch Jorg, etc. Welding of magnesium alloys by means of non-vacuum electron-beam welding [J]. Welding and Cutting. 2000, 52 (4): E62~E67.
    [90]董长富,刘黎明.变形镁合金填丝TIG焊接工艺及组织性能分析[J].焊接学报. 2005,26(2):33~36.
    [1]李忠盛,潘复生,张静. AZ31镁合金的研究现状与发展前景[J].金属成形工艺, 2004,22(1):54-57.
    [2] Xu Guangxian. Rare Earth[M]. Beijing: Metallurgy Industry Press, 1995: 386.
    [3]钟皓,张慧,翁文凭等.热挤压工艺对AZ31镁合金组织与性能的影响[J].金属热处理, 2006,31(8):79.
    [4]刘正,张奎等.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社, 2002.
    [5]黄晓锋,王渠东,刘六法,朱燕萍,袁广银,卢晨,丁文江.混合稀土对Mg-5Al-1Si组织及性能的影响[J].稀有金属材料与工程,2005,34(5):795-798.
    [6]肖代红,宋旼,陈康华,黄伯云. Er对铸态Mg-Al-Zn-Mn合金组织与力学性能的影响[J].特种铸造与有色合金,2007(11):165-169.
    [7]张世军,黎文献,余昆.铈对镁合金AZ31晶粒大小及铸态力学性能的影响[J].铸造, 2002,12:81.
    [1]黎文献,镁及镁合金[M],中南大学出版社, 2005.
    [2]裴丽霞,张金山,高义斌等.稀土元素镧对AZ91镁合金显微组织及硬度的影响[J],铸造设备研究,2005,1,20-22.
    [3]龚丽勤,李建国,周鹏等.Al3Ti3B中间合金对AZ91D镁合金组织及力学性能的影响[J],中国有色金属学报, 2004,14(12), 2003-2008.
    [4]刘生发,黄尚宇,徐萍.Ce对AZ91镁合金铸态组织细化的影响[J],金属学报, 2006, 42(4), 443-448.
    [5]吴国华,高洪涛,朱燕萍等,.熔剂中添加LaCl3对镁合金显微组织与性能的影响[J],金属学报, 2004, 40(7), 694-698.
    [6]樊昱,吴国华,高洪涛等.La对AZ91D镁合金力学性能和腐蚀性能的影响[J],金属学报, 2006, 42(1), 35-40.
    [7]余琨,黎文献,张世军.Ce对镁及镁合金中晶粒的细化机制[J],稀有金属材料与工程, 2005, 34(7), 1013-1016.
    [8]非铁合金的结构与性能[M],北京,科学出版社, 1999.
    [9]傅杰.钢冶金过程动力学[M],冶金工业出版社, 2001.
    [10]宋雨来,刘耀辉,朱先勇等.钕对AZ91镁合金组织及机械性能的影响[J].吉林大学学报, 2006, 36(3):289-293.
    [11]周海涛,曾小勤,刘文法等.稀土铈对AZ61变形镁合金组织和力学性能的影响[J],中国有色金属学报,2004,14(1), 99-104.
    [12]刘正,张奎,曾小勤.轻型镁合金的理论基础和应用[M],北京,机械工业出版社, 2002.
    [13]陈礼清,郭金花等.原位反应自发渗透法TiC/AZ91D镁基复合材料及AZ91D镁合金的拉伸变形与断裂行为[J],稀有金属材料与工程, 2006, 36(1), 29-33.
    [14] L.Engel, H.Klinger,孟希明译.金属损伤[M] ,北京,机械工业出版社, 1990.
    [15] J.M.Ldridgr, R.Miller, K.L.Komark. The mechanism of fracture in hexagonal metals [J], Trans AIME , 1967 , 239 , 775-781.
    [16] M.H.Yoo, S.Twining. Fracture in hexagonal close-packed metals [J], Metal Mater Trans, 1981, 12A(3), 409-418.
    [1] Nakata, Kazuhiro. Weldability of magnesium alloys. Journal of Light Metal Welding and Construction, 2001, 39(12): 26~35.
    [2]中华人民共和国国家标准.焊接性试验GB4675.1-84《斜Y型坡口焊接裂纹试验方法》[S].1984.
    [1]唐振廷,李久林,张钰彦,等. ISO 14556:2000,MOD.GB/T 19748-2005.钢材夏比V型缺口摆锤冲击试验仪器化试验方法.北京:中国标准出版社, 2005.
    [1] A.Hobbacher. Recommendations for Fatigue Design of Welded Joints and Components IIW Document XIII-1539-96/XV-845-96, Update June 2002.
    [2]上海交通大学《金属断口分析》编写组.金属断口分析[M].北京:国防工业出版社,1979:151~216
    [3]许海生.铝合金焊接接头疲劳行为局部准则研究[J].天津大学硕士学位论文,2004.
    [4]张中平,霍立兴,王东坡,等.等离子喷涂改善1Cr18Ni9Ti接头的疲劳性能[J].焊接学报,2005,26(9):49~51.
    [5]唐振廷,李久林,张钰彦,等. ISO 14556:2000,MOD.GB/T 19748-2005.钢材夏比V型缺口摆锤冲击试验仪器化试验方法[M].北京:中国标准出版社, 2005.
    [1]王东坡,霍立兴,张玉凤等.超声冲击法改善LF21铝合金焊接接头的疲劳性能[J].中国有色金属学报.2001,11(5):754~759.
    [2]柳锦铭.基于双逆变技术的超声冲击电源的研制[学位论文].天津:天津大学,2005.
    [1]郭志军,苏敏,麦青.酸性化学镀镍工业生产的控制.电镀与环保[J],1995,15(1):10~13.
    [2]罗守福,胡文彬.铝镁合金的化学镀镍.轻合金加工技术[J],1997,2(25):28~30.
    [3]向阳辉,胡文彬,沈彬等.镁合金直接化学镀镍的初始沉积机制[J].上海交通大学学报,2000,34(12):1638~1644.
    [4] Xu-Cheng Wang, Wen-Bin Cai,Wei-Jiang Wang, etc. Effects of ligands on electroless Ni-P alloy plating from alkaline citrate-ammonia solution [J]. Surface and Coating technology, 2003(168):300~306.
    [5]牛振江,沈洁军,李则林等.原位XRD研究热处理Ni-P化学镀合金的结构[J].材料保护,2003,36(7):45~47.
    [6] H. Ashassi-Sorkhabi, S.H.Rafizadeh. Effect of coating time and electroless Ni–P alloy deposits [J].Surface and Coatings Technology, 2004,176 :318~326.
    [7] T.S.N, Sankara Narayanan a, K. Krishnaveni a, S.K. Seshadri b. Electroless Ni–P/Ni–B duplex coatings: preparation and evaluation of microhardness, wear and corrosion resistance [J]. Materials Chemistry and Physics, 2003,82 :771~779.
    [8]李宁.化学镀实用技术[M].北京:化学工业出版社,2003.
    [9] Aleksinas M.J,Andre.R.C. Stress of High Phosphorus Electroless Nickel Deposits [J]. Metal Finishing,1992,90(6):103~107.
    [10] Hexing Li, Haiying Chen,Shuzhong Dong.Study on Crystallization Process of Ni-P Amorphous Alloy [J]. Applied Surface Science, 1998,125:115~119.
    [11]姜晓霞.化学镀理论及实践[M].北京,国防出版社,2000.
    [12]李深涛,司徒海文.李志辉化学镀Ni-P合金的热处理复合强化[J].金属热处理, 1997, 1:39~42.
    [13]高岩,刘贵昌.热处理对化学镀Ni-P镀层性能的影响[J].铸造,1998,(4):39~41.
    [14]高诚辉.非晶态合金镀及其镀层性能[J].北京:科学出版社,2004.
    [15]刘永健等.化学镀镍工艺对镀层耐蚀耐磨性的影响[J].腐蚀与防护, 2001. 22(7):293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700