用户名: 密码: 验证码:
用于NO_x吸附—分解的多酸新体系构建与过程特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮氧化物(NOx)属于危害极大又较难治理的大气污染物,不仅可以诱发酸雨,引起臭氧层空洞,还会导致对流层和平流层光化学烟雾的发生,并且严重危害人类健康。近年来,氮氧化物的去除已经引起了国内外学者的广泛关注。氮氧化物的直接催化分解法因过程中不消耗还原剂、不产生二次污染、工艺简单、经济性好等优点而逐渐成为去除NOx最具有吸引力的方法之一。
     杂多化合物兼具酸碱性和氧化还原性,已作为环境友好型催化新材料成功应用于有机合成工业催化领域。近年来,杂多化合物也作为新颖的NOx分解催化剂,吸引了海内外学者的广泛关注。杂多化合物具有大的分子体积、可调变的酸性、“假液相”行为,是NOx催化分解领域中较新颖的绿色催化剂。同时,杂多酸催化分解NOx时效率不受气流中O2和SO2的负面影响。本文以碳材料、类水滑石材料及金属氧化物等材料为载体,负载杂多酸,制备了性能优异的杂多酸/载体复合材料,构建了具有实际应用前景的NOx催化分解新体系,并开展了相关反应机理的研究。
     碳纳米管(CNT)有独特的管结构,具有大的比表面积和较高的硬度,兼具良好的化学稳定性、热稳定性,对反应物具有特殊吸附及脱附性能。活性炭纤维(ACF)表面含有不同的活性官能团,且具有大的比表面积、高的孔容积、大的吸附容量,近年来,ACF已作为一种高效吸附功能新材料被应用于NOx的脱除中。本文分别选用了CNT、羟基化碳纳米管(CNT-OH)、羧基化碳纳米管(CNT-COOH、Fenton试剂改性的碳纳米管、混酸改性的碳纳米管、硝酸蒸汽改性的碳纳米管及ACF作为载体负载磷钨酸(HPW),制备了多酸/碳材料负载型多酸催化体系;通过FTIR、 XRD、TEM等表征手段对催化剂进行表征;将HPW/碳材料负载型多酸催化剂用于NOx吸附-分解实验中,系统研究了预处理方法、浸渍液种类、负载量及负载方法对它们吸附NOx效率的影响;吸附NOx达到饱和后,通过快速升温(150℃-450℃,升温速率50℃·min-1)催化NOx分解,采用TPD-MS检测分解产物中气体的种类与含量,研究了催化剂催化分解NOx的性能;比较了电阻炉与微波作用两种方式对催化剂催化分解NOx性能的差别;通过对吸附-分解NOx前后的催化剂进行傅立叶红外分析,研究了催化剂吸附-分解NOx的机理。实验发现:经硝酸蒸汽预处理后的CNT负载HPW后,NO、吸附效率最高;机械研磨负载法所得到的负载型催化剂较等体积浸渍法具有更高的NO、吸附效率;HPW/CNT吸附NOx后,通过快速升温可实现对NOx的催化分解,通过TPD-MS检测发现,分解产物中含有N2、O2和N2O;采用电阻炉与微波作用两种方式分别对所吸附的NOx进行催化分解,发现微波作用分解NOx时有更高的N2收率;在NO、分解后,催化剂中活性成分HPW因失去结晶水而丧失吸附NOx的能力,通水蒸汽可以使催化剂再生,再生后的催化剂对NO、的吸附效率及催化分解NO、的N2收率较初次使用没有明显变化,表明该催化剂可以稳定重复利用。
     类水滑石结构化合物是一类具有催化分解NOx功能的重要催化剂,其在催化分解NOx领域的研究也得到了人们的广泛关注。本论文采用双滴法合成了一系列具有类水滑石结构的化合物;通过离子交换将Keggin结构的[PW12O40]3-、[PMo12O40]3和[SiW12O40]4引入类水滑石层间,合成了杂多阴离子柱撑水滑石结构催化剂;将类水滑石结构化合物及杂多阴离子柱撑水滑石应用于NOx吸附实验中,评价了其NOx吸附性能。实验发现:类水滑石及其多酸阴离子柱撑水滑石均有较高的的NOx吸附效率,其吸附效率受到所含过渡金属种类的影响,当过渡金属为Co时,NOx吸附效率最高;此外,多酸柱撑水滑石的NOx吸附效率还与所含多酸阴离子的种类有关,磷钨酸柱撑水滑石的吸附效率最高,而磷钼酸柱撑水滑石的吸附效率最低。而后我们选取吸附性能最佳的类水滑石化合物(钴铝类水滑石)作为前驱体,取其煅烧产物负载HPW,系统研究了该系列负载型催化剂对NOx的吸附-分解性能,研究发现:Co/Al=4:1的钻铝混合氧化物负载等量HPW较Co/A1为3:1和2:1的NO、吸附性能更高:相同钻铝配比的条件下,经不同温度煅烧后所得钻铝氧化物负载HPW后NO、吸附效率不同,500℃煅烧后NOx吸附效率高于800℃煅烧;机械研磨法所得催化剂较等体积浸渍法所得催化剂具有更高的NOx吸附性能;机械研磨法所得负载型催化剂较单一HPW而言,NOx吸附-分解性能均得到较大提高:吸附床层温度影响催化剂吸附NOx的效率;催化剂吸附NOx饱和后,通过快速升温可实现对NOx的催化分解,通过TPD-MS检测发现,分解产物中含有N2、O2和N2O,N2收率为29.7%,通过通入一定量的水蒸汽可以实现催化剂的有效再生利用。将HPW负载于钴铝氧化物后,催化剂吸附-分解NOx的性能均得到提高。
     CeO2具有较高的氧储存释放特性,但是热力学稳定性较差,在高温条件下易烧结,为了提高它的热力学稳定性和储存释放氧的功能,可将其他过渡金属及稀土金属氧化物引入到CeO2的晶体结构中,当CeO2与过渡金属及稀土金属氧化物结合后,其氧化还原性能及催化性能都有较大改变。CeO2及其复合金属氧化物的氧化还原性能和催化性能受颗粒尺寸大小影响,降低颗粒尺寸可以增加比表面积并改变颗粒形态,以此来提供更多的边缘反应活性位。尤其是当颗粒尺寸降低到100nm以下,达到纳米结构时,晶体缺陷密度会升高,一半以上的原子将处于晶体缺陷的中心。高的晶体缺陷密度为气-固反应催化剂提供了大量的的反应活性位,气体通过纳米边界的扩散率提高,加快了催化反应动力学进程。本文通过软化学途径合成了纳米铈锆混合氧化物(CeO2-ZrO2),并以此作为载体通过等体积浸渍法和机械研磨负载法负载HPW;通过红外、XRD、透射电镜、比表面积测定等手段对铈锆氧化物及负载型多酸催化剂进行了表征,考察了催化剂制备过程中煅烧温度、HPW负载量、负载方法、吸附温度等因素对催化剂吸附NO、效率的影响;选取吸附性能最佳的催化剂进行NOx催化分解实验;通过红外光谱对吸附-分解前后的催化剂进行表征,对NOx吸附-分解机理进行了探讨。此外,通过水蒸汽再生法实现了负载型催化剂的再生使用。实验发现:经过500℃煅烧所得的CeO2-ZrO2对NOx的吸附效率高于300℃和800℃煅烧所得的CeO2-ZrO2;选取500℃煅烧所得的铈锆混合氧化物(CZOsoo)为载体,通过机械研磨法和等体积浸渍法制备HPW负载型催化剂,并用于NOx吸附-分解实验。研究发现:相对于等体积浸渍法,机械研磨法更适合此类载体负载HPW,机械研磨负载法所得的催化剂对NOx具有极高的吸附效率,均高于单一HPW及载体的脱硝效率;在20%~80%的负载量范围内,随着HPW负载量的增加,负载型催化剂吸附NOx的效率呈现先上升后下降的趋势,在HPW负载量为70%时其NOx吸附效率最佳,可达98%;吸附NOx饱和后,当温度从150℃升高至450℃(升温速率为50℃·min-1)过程中,被吸附的NOx分解为N2和O2,N2收率为27.3%。将HPW负载于Ce02-ZrO2后,催化剂吸附-分解NOx的性能均得到提高。吸附NOx过程中,HPW及载体都参与了对NOx的吸附,NOx和HPW上的质子生成质子化亚硝酸鎓离子NOH+,与金属氧化物载体发生相互作用形成M-O-N-O-M (M=Ce, Zr)。在NOx分解过程中,催化剂在吸附NOx后形成的NOH+和M-O-N-O-M减弱了N-O的键能,从而降低了反应的活化能,使吸附于其上的NOx在快速升温过程中分解为N2和O2。在HPW吸附NOx的过程中,结晶水起了关键性作用,向吸附分解NO、后的催化剂鼓入水蒸汽,可以有效的补充HPW二级结构中结晶水的数目,从而实现催化剂的再生利用。
     本论文通过软化学途径合成了铈钛混合氧化物(CeO2-TiO2),并以此作为载体通过等体积浸渍法和机械研磨法负载HPW;通过傅立叶红外、X射线衍射光谱、扫描电镜、比表面积测定等表征手段对铈钛混合氧化物及负载型多酸催化剂进行了表征;考察了煅烧温度、负载量、负载方法、吸附温度等因素对催化剂吸附NO、效率的影响,并选取吸附性能最佳的催化剂进行了NOx分解实验,考察了升温速率对分解产物中气体种类和N:收率的影响;通过红外光谱对吸附-分解前后的催化剂进行表征,对NOx吸附-分解机理进行了探讨。发现:机械研磨法更适合CeO2-TiO2负载HPW,机械研磨负载法所得的催化剂对NOx具有较高的吸附效率,均高于单一HPW及载体的脱硝效率;在0~40%的负载量范围内,随着HPW负载量的增加,HPW/CeO2-TiO2吸附NOx的效率呈上升趋势,HPW负载量为40%时其NOx吸附效率最佳,可达90%,超过这个负载量后,HPW/CeO2-TiO2吸附NO、的效率随负载量的增加呈下降趋势;当温度从150℃快速升至450℃时,被吸附的NOx被分解为N2、O2和N2O;分解产物中体种类及N2收率均受升温速率影响,升温速率越快,N2收率越高,当升温速率为50℃·min-1时,产物中只有N2和O2产生,N2收率为30.5%,高于单一HPW的N2收率。此外,向催化剂通入含有水蒸汽的空气可以实现HPW/CeO2-TiO2的再生使用。
     本文采用傅立叶红外、x射线衍射、原位漫反射红外技术对HPW吸附-分解NOx机理进行了分析,研究发现:在NOx吸附过程中,NOx与HPW上的质子生成质子化亚硝酸鎓离子NOH+;在NO、的分解过程中,NOH+减弱了N-O的键能,从而降低了反应的活化能,快速升温过程中N-O键发生断裂,生成活性N和活性O,一部分活性N相互结合形成N2,另一部分活性N与脱附的NO结合形成N2O,而活性O与HPW的端氧W=O及桥氧W-O-W结合并连接在配原子W上形成不稳定的过氧化多酸化合物中间体并滞留于催化剂上,在NOx高温分解的后期中间体上的O脱落,并相互结合以O2形式逸出。
In the past two decades, a great deal of nitrogen oxides (NOx) has been emitted by both fixed and mobile sources, and has been found to contribute to acid rain and photochemical smog, hence converting NOx into innocuous gases has become one of the main challenges for environmental catalysis.
     The main ways for NOx removal can be classified into three types:selected catalytic reduction (SCR), NOx storage and reduction (NSR) and direct NOx decomposition. Even though SCR is practically very efficient with NH3as reductant, it has to deal with the risky job of transportation and storage of ammonia; and moreover, the dosage of NH3has to be well controlled so as to minimize its remaining in the exhaust. NSR also has attracted much attention in recent years for its efficiency; however, carbon dioxide and sulphur dioxide existing in exhaust gases decrease the catalytic NOx storage capacity by the formation of sulphates and carbonates. Thus, direct NOx decomposition is the most attractive method for NOx removal without any reductant added. This method, simple and cheap, would avoid a secondary pollution. Heteropoly acids(HPAs) or heteropoly compounds, as a new type of catalyst for NOx direct decomposition, have attracted the attention of worldwide researchers during the past years. Heteropoly compounds are environmental-friendly catalysts and have been applied successfully in organic synthesis, but to date there has been no report on the industrial application of the NOx catalytic decomposition by heteropoly compounds. Heteropoly acids have low surface area and poor thermal stability, which limits its use. Thus, solids with high surface area are employed as supports to enhance the surface of HPAs.
     Carbon nanotube (CNT) has been used in many fields due to its enormous versatility, however, very few reports have been given on its promotive effect as support on the adsorption of NOx with solid tungstophosphoric acid (H3PW12O40), and no results on the use of surface modified CNT in this process can be found in the literatures. In this study, we have conducted systematic works on this issue and found some relations between pre-treatment method of CNT and NOx adsorption efficiency of H3PW12O40/CNT, and the relations between differernt impregnating solvent used in loading process and NOx adsorption efficiency of H3PW12O4/CNT, which may be very helpful to the development of new effective adsorbent/catalyst for the adsorption-conversion of NOx. In our present work, intact CNT, surface modified CNT and pre-treated ACF (activated carbon fiber) were employed as supports for the adsorption of NOx with H3PW12O40. The main conclusions derived are as follows: absolute ethyl alcohol was the superior solvent to water for HPW loading on CNT; the resultant-OH containing CNT shows better promotive effect on the adsorption of NOx than that containing-COOH when using absolute ethyl alcohol as solvent; in both cases, with the increase of H3PW12O40loading, the NOx adsorption efficiency tends to reach a peak value close to that in the case of pure H3PW12O40, before dropping down; compared to pre-treated activated carbon fiber, modified CNT, especially CNT-OH, is favorable to be used as support of H3PW12O40for effective adsorption and even further conversion of NOx
     Layered double hydroxides (LDHs) has found applications in many fields due to its enormous versatility, however, very few report has been given on its promotive effect as host material on the adsorption of nitrous oxide (NOx) with solid HPAs, and no results on the use of LDHs contaning different transition metals in this process can be found in literatures. In this study, supermolecular compounds M-Al-LDH-HPAs (M=Co, Ni, Cu, Zn) were synthesized from M-Al-LDHs (M=Co, Ni, Cu, Zn) intercalated with HPAs (H3PW12O40, H3PM012O40, and H4SiW12O40) to improve the NOx adsorption efficiency of single HPAs. Our study indicates that these supermolecular compounds prepared can achieve higher deNOx capacity than HPAs, because of their special features caused by different types of cations M (M=Co, Ni, Cu, Zn) and anions (PW12O403-,PMo12O403-、and SiW12O404-) in the pillared clays, which have a major influence on their NOx adsorption performance. The nature of the cations M was found to be a main factor affecting deNOx efficiency which followed the order: Co-Al-LDH-HPAs> Zn-Al-LDH-HPAs> Ni-Al-LDH-HPAs> Cu-Al-LDH-HPAs. And the heteropoly anions were another main factor affecting deNOx efficiency in the order of M-Al-LDH-HPW>M-Al-LDH-HSiW> M-Al-LDH-HPMo, which was in accordance with the comparisons of the deNOx efficiency of pure HPAs:HPW> HSiW> HPMo. In this paper, Co-Al mixed oxides were employed as supports of H3PW12O40for the adsorption and decomposition of NOx. And the NOx adsorption efficiency was found to depend on varied preparing conditions. Co-Al mixed oxides calcinated at500℃was the suitable supports to load with HPW, and showed remarkable promotive effect on the adsorption of NOx. The mechanical grinding method is much more suitable for Co-Al mixed oxides to load with HPW than isovolume impregnation method. In the Co/Al ratio of2~4, the NOx adsorption efficiency was significantly influenced by the Co/Al ratio and when the ratio was4, the highest NOx adsorption efficiency occoured. Subsequent to the adsorption of NOx,29.7%of the adsorbed NOx was found to be converted to N2upon heating at a rate of50℃C·min-1from150℃to450℃. Both the NOx adsorption capacity and N2yield coefficient of70%PW/Co4A10M500are higher than pure HPW.
     Cerium oxide has broad range of applications in catalysis because of its unique elevated oxygen transport ability and its capacity to shift easily between Ce3+-Ce4+Nevertheless, the application of pure CeO2was discouraged because CeO2sintered easily at high temperature and then lost its oxygen storage and release characteristics. Hence, other metal ions (Si4+, Ti4+, Zr4+, etc) were introduced into the ceria cubic structure to improve its thermostability. Meanwhile, when the particle size of Ce-Zr mixed oxide was reduced, especially when the size decreased to around100nm, the material became nanophasic, and would provide more active sites for gas-solid catalysis. Thus, it should be advantageous for nano Ce-Zr mixed oxide to be used as suitable support. In our present work, nano Ce-Zr mixed oxides (CeZrO) were prepared to support HPW for NOx adsorption-decomposition. Relationship between preparing conditions and NOx adsorption efficiency of H3PW12O40/CeZrO was obtained; decomposition of NOx to N2over H3PW12O40and70%H3PW12O40/CeZrO was studied. Compared to single HPW, HPW/CeZrO was a favourable catalyst for NOx adsorption and decomposition. The nano Ce-Zr mixed oxide supports had positive contribution to the obtained catalysts. Furthermore, the adsorbed NOx is decomposed into N2, O2and N2O, where a yield of27.3%is achieved for N2over the supported catalyst at a temperature ramp of50℃·min-1
     Ce-Ti mixed oxides (CeO2-TiO2) were prepared as the support for solid tungstophosphoric acid (H3PW12O40). FTIR, XRD, BET surface area measurement, SEM and TPD-MS were employed for characterization and mechanism analysis. CeO2-TiO2is an excellent support for H3PW12O40By loading on CeO2-TiO2, the NOx adsorption efficiency of H3PW12O40increases, with a peak efficiency of90%, which is much higher than that of single H3PWi2O40(60%). With the increase of H3PW12O40loading, the NOx adsorption efficiency tends to reach a peak value before dropping down. The mechanical grinding method is superior to the incipient impregnation method for preparing H3PW12O40/CeO2-TiO2. In NOx adsorption process, NOx reacts with H3PW12O40to produce NOH. The crystal water in the secondary structure of H3PW12O40plays an important role in NOx adsorption. And the lost crystal water and oxygen vacancy can be effectively compensated by adding water vapor to regenerate the catalyst. Furthermore, the adsorbed NOx is decomposed into N2, O2and N2O, and rapid heating contributes significantly to the decomposition of NOx over the catalyst, where a yield of30.5%is achieved for N2over the supported catalyst at a temperature ramp of50℃·min-1.
引文
[1]郝吉明,马广大.大气污染控制工程(第二版)[M].北京:高等教育出版社,2002:354-355.
    [2]宋淑美,王睿.具有低温活性的高效脱硝催化体系研究进展[J].现代化工,2007,(S1):108-112.
    [3]刘杨先,张军,盛昌栋.NOx低温选择性催化还原催化剂研究进展[J].化工进展,2008.27(8):1198-1203.
    [4]王恩波,胡长文,许林.多酸化学导论[M].北京:化学工业出版社.1998.
    [5]Ma J.W., Ye X.K., Wu Y.. Study on the catalytic property of heleropoly compound:synthesis, characterization and catalytic action on H2O2 decomposition of hetcropoly tungstophosphoric compound substituted by transition metal ion [J]. Journal of catalysis, 1991, 12(6): 443-450.
    [6]毛宣,殷元骐.杂多酸催化研究新进展[J].分子催化,2000,14(6):483-489.
    [7]Alexander M.K., Neumann R.. Mixed-addenda vanadium-substituted polyfluorooxometalatcs: synthesis, characterization, and catalytic aerobic oxidation [J]. Inorganic. Chemistry. 2000, 39: 3455-3462.
    [8]Yang Y, Guo Y. H., Hu C.W., et al. Lacunary Keggin-type polyoxometalates based macroporous composite films: preparation and photo catalytic activity [J]. Applied CatalysisA: General, 2003, 252. 305-314.
    [9]Li D., Guo Y, Hu C, et al. Preparation, characterization and photocatalytic property of the PW11O39l-/TiO2 composite film towards azo-dye degradation [J]. Journal of Molecular Catalysis A: Chemical, 2004, 207. 183-193.
    [10]韩华俊,陈彤,王公应.负载杂多化合物催化酯类反应研究进展[J].工业催化,2006,14:1-6.
    [11]周广栋,甄开吉,王海水等.杂多化合物及其负载型催化剂的研究进展[J].化学进展,2006,18:382-388
    [12]李强,王蕾,闫睿一等.异丁烯制备甲基丙烯醛催化剂的研究进展[J].化学工业与工程,2007,24(5):433-437.
    [13]谢杨林,刘霞,冯长根.多金属氧酸盐抗肿瘤活性研究进展[J].肿瘤纺织研究,2007,34:225-228.
    [14]宋华,徐骞,李正光.杂多化合物催化剂在异丁烷选择氧化中的研究进展[J].工业催化,2008,16:12-17.
    [15]Zhao W., Zhang Y, Ma B. et al. Oxidation of alcohols with hydrogen peroxide in water catalyzed by recyclable keggin-typc tungstoborate catalyst [J]. Catalysis Communications, 2010, 11: 527-531.
    [16]Kuznetsova N.I., Kirillova N.V., Kuznetsova L.I., et al. Oxidation of hydrocarbons by dioxygen reductively activated on platinum and heteropoly compounds [J]. Journal of molecular catalysis A: Chemical, 2003. 204-205: 591-597.
    [17]Misono M., Okuhara T.. Solid superacid catalysts [J]. Chemtech, 1993, 23(11):23-29.
    [18]Kozhevnikov I.V., Heteropoly acids and related compounds as catalysts for fine chemical synthesis [J]. Catalysis Reviews-Science Engineering, 1995, 37(2):311-352.
    [19]Toshio O.. Catalytic chemistry of heteropoly compounds [J]. Advances in Catalysis, 1996, 41:113-252.
    [20]Hayshi H., Moffat J.B.. The properties of heteropoly acids and the conversion of methanol to hydrocarbons [J]. Journal of Catalysis, 1982, 77(2):473-484.
    [21]Ghosh A.K., Moffat J.B.. Acidity of heteropoly compounds [J]. Journal of Catalysis, 1986, 101(2):238-245.
    [22]Furuta M., Sakata K., Misnon M., et al. Structure and acidity of 12-molybdophoshoric acid and its salts in solid as characterized by infrared spectroscopy [J]. Chemistry Letters, 1979, 8(1):31-34.
    [23]Bosch H., Janssen F.. Formation and control of nitrogen oxides [J]. Catalysis Today, 1988, 2:369-379.
    [24]Garin K. Mechanism of NOx decomposition [J]. Applied Catalysis A: General, 2002, 222:183-219.
    [25]Fritz A., Pitchon V. The current state of research on automotive lean NOx catalysis [J]. Applied Catalysis B: Environental, 1997, 13:1-25.
    [26]Crutzen P. J., Bruh C. Catalysis by NOx as the main cause of the spring to fall stratosphere ozone decline in the northern hemisphere [J]. Journal of Physical Chemistry A, 2001, 105:1579-1582.
    [27]Ravishankara A.R.. Introduction: atmospheric chemistry long-term issues [J]. Chemical Reviews, 2003, 103:4505-4508.
    [28]Snyder S., Bredt D.. Les fonctions biologiques du monoxide d'azote [J]. Pour La Sci, 1992, 177:70-77.
    [29]Chiron M.. Air pollution by automobile exhaust and public health [J]. Studies in Surface Science Catalysis, 1987,30:1-10.
    [30]Mauzerall D.L., Sultan B., Kim N., et al. NOx emission from large point sources: variability in ozone production, resulting health damages and economic costs [J]. Alomsphere Environment, 2005, 39:2851-2866.
    [31]Armor J.N.. Enviromental catalysis [J]. Applied Catalysis B: Environmental, 1992, 1:221-256.
    [32]Ccnti G., Ciambeili P., Perathoner S., Russo P.. Environmental catalysis: trends and outlook [J]. Catalysis Today, 2002, 75:3-15.
    [33]Broden G., Rhodin T.N., Bruker C., et al. Synchrotron radiation study of chemisorptive bonding of CO on transition metals-polarization effect on Ir(100) [J]. Surface Science, 1976, 59:593-611.
    [34]Egawa C., Onawa K., Iwai H., et al. Interaction of CO and NO with Fe thin films grown on Rh(100) [J]. Surface Science. 2004. 557:31-40.
    [35]Aryafar M., Zaera F.. Isothermal kinetic study of the decomposition of nitric oxide over Rh(111) surfaces [J]. Journal of Catalysis, 1998, 175:316-327.
    [36]包信和.NO与Ag(110)表面的相互作用[J].催化学报,1998,19(]):]8-23.
    [37]滕加伟,包信和,蔡天锡.Ag对Pd/Al2O3催化分解NO反应的促进作用[A].首届全国环境催化学术研讨会论文集[Cl.杭州市:浙江大学出版社,1999.
    [38]滕加伟,包信和,蔡天锡.Ag-ZSM-5催化剂上NO分解反应与原位ESR研究[A].新世纪的催化利·学与技术[C].太原市:山西科学技术出版社,2000.
    [39]李金兵,黄伟新,包信和NO在Ag-Pt双金属表面上的吸附和分解[J].工业催化,2000,8:5.
    [40]Winter E.R.S.. The catalytic decomposition of nitric oxide by metallic oxides [J]. Journal of Catalysis, 1971,22:158-170.
    [41]Oh S.H., Eichcl C.C., Effects of cerium addition on CO oxidation kinetics over alumina-supported rhodium catalysts [J]. Journal of Catalysis. 1988, 112:543-555.
    [42]Boreskov GK.. Forms of oxygen bonds on the surface of oxidation catalysts[J]. Discussions of the Faraday Society. 1968, 41:263-269.
    [43]Hamada H., Kintaichi Y., Sasaki M, el al. Silver-promoted cobalt oxide catalysts for direct decomposition of nitrogen monoxide [J]. Chemistry Letters, 1990, 19:1069.
    [44]Park P.W., Kil J.K., Kung H.H., et al. NO decomposition over sodium promoted cobalt[J]. Catalysis Today, 1998,42:51-60.
    [45]Fang S.M., White J.M.. Chemisorption of nitric oxide on platinized titania [J]. Journal of Catalysis. 1983.83:1-8.
    [46]Pande N.K., Bell AT. A study of the interactions of NO with Rh/TiO2 and TiO2-promolcd RhATiO2[J]. Journal of Catalysis, 1986,97:137-149.
    [47]Chin A.A., Bell A.T.. Kinetics of nitric oxide decomposition on silica-supported rhodium[J].Thc Journal of Physical Chemistry, 1983, 87:3700-3706.
    [48]Yang R.T., Li W.B., Chen N.. Reversible cliemisorplioii of nitric oxide in the presence of oxygen on titania and titania modified with surface sulfale[J], Applied Catalysis A: General, 1998, 169:215-225.
    [49]汪洋,孟亮.TiO2表面氧空位对NO分子吸附的作用[J].物理学报,2005,54(5):2207-2211.
    [50]Amirnazmi A.. Benson J.E., Boudarl M.. Oxygen inhibition in the decomposition of NO on metal oxides and platinum [J]. Journal of Catalysis,1973,30(1):55-65.
    [51]Iwamoto M., Furukawa H., Mine Y, et al. Copper (Ⅱ) ion-exchanged ZSM-5 zeolites as highly active catalysts for direct and continuous decomposition of nitrogen monoxide [J]. Chemical Communication, 1986,1272-1273.
    [52]Iwamoto M, Yaliiro H.. Novel catalytic decomposition and reduction of NO [J]. Catalysis Today,1994, 22:5-18.
    [53]Iwamoto M., Yahiro H., Mine Y, et al. Excessively copper ion-exchanged ZSM-5 zeolites as highly active catalysts for direct decomposition of nitrogen monoxide [J]. Chemistry Letters,1989,213-216.
    [54]Iwamoto M., Yahiro H., Tanda K., et al. Removal of nitrogen monoxide through a noael catalytic process.1. Decomposition on excessively copper-ion-exchanged ZSM-5 zeolite [J]. The Journal of Physical Chemistry,1991,95:3727-3730.
    [55]Despre J., Koebel M., Elsener M., et al. Adsorption and desorption of NO and NO2 on Cu-ZSM-5 [J]. Microporous and Mesoporous Materials,2003,58:175-183.
    [56]Kustova M.Y., Kustov A., Christiansen S.E., et al. Cu-ZSM-5, Cu-ZSM-11, and Cu-ZSM-12 catalysts for direct NO decomposition [J]. Catalysis Communications,2006,7:705-708.
    [57]焦金宝.陈伟,林培琰等.CuY和Cu-ZSM-5催化剂上NO直接分解活性及活性中心的研究[J].催化学报,1994,15(6):451-456.
    [58]韩一帆,汪仁.NO在铜离子交换型沸石上的催化分解[J].催化学报,1996,17(4):336-339.
    [59]韩一帆,汪仁.不同制备方法对Cu-ZSM-5沸石分子筛上NO分解反应活性的影响[J].催化学报,1996,18(2):168-170.
    [6()]单学蕾,关乃佳,曾翔等.不同硅铝比的Cu-ZSM-5堇青石整体式催化剂的NO分解反应性能[J].催化学报,2001,22(3):242-244.
    [61]Spoto G, Zecchina A., Bordiga S., et al. Cu(I)-ZSM-5 zeolites prepared by reaction of H-ZSM-5 with gaseous CuCl:Spectroscopic characterization and reactivity towards carbon monoxide and nitric oxide[J]. Applied Catalysis B:Enviromental,1994,3 (2-3):151-172.
    [62]Aylor A.W., Larsen S.C., Reimer J.A., et al. An infrared study of NO decomposition over Cu-ZSM-5 [J]. Journal of Catalysis,1995,157:592-602.
    [63]Kucherov A.V., Shigapov A.N., Ivanov A.A., et al. Stability of the square-planar Cu2+ sites in ZSM-5: effect of preparation, heat treatment, and modification [J]. Journal of Catalysis, 1999, 186:334-344.
    [64]方书农.伏义路,林培琰Cu-ZSM-5分子筛中铜的精细结构和NO催化分解[J].催化学报,1995,16(3):213-216.
    [65]关乃佳,单学蕾,曾翔等Cu-ZSM-5/堇青石整体式催化剂上NO的吸附态及分解反应机理[J].催化学报,2001,22(3):245-249.
    [66]Konduru MY, Chuang S.C.J., Dynamics of NO and N2O decomposition over Cu-ZSM-5 under transient reducing and oxidizing conditions [J]. Journal of Catalysis. 2000. 196:271-286.
    [67]Broclawik E., Datka J., Gil B., et al. Why Cu+ in ZSM-5 framework is active in DcNOx reaction-quantum chemical calculations and IR studied [J]. Catalysis Today, 2002. 75:353-357.
    [68]Zhan Y.P., Flytzani-Stephanopoulos M., Hydrothermal stability of cerium modified Cu-ZSM-5 catalyst for nitric oxide decomposition[J]. Journal of Catalysis, 1996. 164:131-145.
    [69]Pcrdana I., Creaser D., Hedlund J., ct al. NOx adsorption over a wide temperature range on Na-ZSM-5 films [J]. Applied Catalysis B: Enviromental. 2007. 72:82-91.
    [70]王艳玲,孙琪.CaH2修饰的Cu-ZSM-5复合催化剂分解NO活性研究[J].辽宁师范大学学报(自然科学版),2004.27(4):449-451.
    [71]Yang R.T., Chen N., A new approach to decomposition of nitric oxide using sorbcnt/calalyst without reducing gas: use of heteropoly compouds [J]. Industrial and Engineering Chemistry Research. 1994, 33:825-831.
    [72]Chcn N., Yang R.T., Activation of nitric oxide by hclcropoly compounds structure of nitric-oxide linkage in lungstophosphoric acid with Kcggin units [J]. Journal of Catalysis. 1995, 157:76-86.
    [73]Hodjati S., Petit C. Removal of NOx from a lean exhaust gas by absorption on hctcropoly acids reversible sorption of nitrogen oxides in H3PW12O40·6H2O[J]. Journal of Catalysis, 2001, 197:324-334.
    [74]Hcrring A.M., McCormick R.L., In situ infared study of the adsorption of nitric oxide by 12-tungstophosphoric acid [J]. The Journal of Physical Chemistry. B. 1998, 102:3175-3184.
    [75]Herring A.M., McConnick R.L., Boonrucng S. R.. A comparison of the interaction of nitric oxide with the heteropolytungstic acids H3PW12O40,H0.5Cs2.5PW12O40, HMgPW12O40,H8SiW11O38,H4SiW12O40. and H10CoW12O40[J]. The Journal of Pgyical Chemisln. B, 2000, 104:4653-4660.
    [76]Hodiati S., Vaezzadeh K., Kiennemann A., et al. The mechanism of the selective NOx sorption on H3PW12O40-6H2O (HPW) [J]. Topics in Catalysis, 2001, 16/17(1-4): 151-155.
    [77]Bonardet L., Fraissard J., Moffat J.B., et al. A comparative-study of the microporosity of the ammonium and cesium salts of 12-tungstophoric,12-molybdophosphoric, and 12-tungstosilicic acids by Xe129 NMR [J]. Journal of Catalysis,1995,151:147-154.
    [78]Belanger R., Moffat J.B.. The interaction of nitrogen oxides with metal-oxygen cluster compounds (heteropoly oxometalates) [J]. Journal of Molecular Catalysis A:Chemical,1996,114:319-329.
    [79]Belanger R., Moffat J.B.. Removal of NO2 from gasous streams by sorption and conversion on 12-tungstophosphoric acid [J]. Environmental Science & Technology,1995,29:1681-1685.
    [80]McCormick R.L., Boonrueng S.K., Herring A. M.. In situ IR and temperature-programmed desorption-mass spectrometry study of NO absorption and decomposition by silica supported 12-tungstophosphoric acid [J].Catalysis Today,1998,42:145-157.
    [81]Thomas S., Vaezzadeh K., Pitchon V. Supported heteropoly acids for NOx storage and reduction [J]. Topics in Catalysis,2004,30/31:207-213.
    [82]Zhang Z., Zhu L., Ma J., et al. Temperature programmed desorption-mass spectrometry study of NO desorption and decomposition by titania supported 12-tungstophosphoric acid [J]. Reaction Kinetics and Catalysis Letters,2002,76(1):93-101.
    [83]Miguel A.G., Pitchon V., Kiennemann A.. Storage and reduction of lean NOx by using H3PW12O40·6H2O supported on TixZr1-xO4 [J]. Catalysis Today,2005,107/108:60-67.
    [84]Miguel A.G., Pitchon V., Kiennemann A.. Removal of NOx from lean exhaust gas by storage-reduction on H3PW12O40·6H2O supported on CexZr4-xO8 [J]. Environmental Science & Technology,2005, 39:638-644.
    [85]Kannan S., Swamy C.S.. Catalytic decomposition of nitrous oxide on "in situ" generated thermally calcined hydrotalcites [J]. Applied Catalysis B:Enviromental,1994,3(2-3):109-116.
    [86]Kannan S.. Decomposition of nitrous oxide over the catalysts derived from hydrotalcite-like compounds [J]. Applied Clay Science,1998,13:347-362.
    [87]Kannan S., Swamy C.S.. Catalytic decomposition of nitrous oxide over calcined cobalt aluminum hydrolalciles [J]. Catalysis Today,1999,53:725-737.
    [88]Armor J.N., Braymer T.A., Farris T.S., et al. Calcined hydrotalcites for the catalytic decomposition of N2O in simulated process streams [J]. Applied Catalysis B:Enviromental,1996,7:397-406.
    [89]Dandl H., Emig G. Mechanistic approach for the kinetics of the decomposition of nitrous oxide over calcined hydrotalcites [J]. Applied Catalysis B:Enviromental,1994,3(2-3):109-116.
    [90]Perez-Ramirez J., Garcia-Cortes J.M., Kapteijn F., et al. Dual-bed catalytic system for NOx-N2O removal:a practical application for lean-burn deNOx HC-SCR [J]. Applied Catalysis B:Enviromental, 2000.25:191-203.
    [91]郭志强,倪哲明,俞卫华等.二元金属类水滑石的合成及其作为前驱体对NOx的吸附性能研究[J].材料科学与工程学报,2004,22(6):878-880.
    [92]郭志强,倪哲明,方彩萍等.铜钻作为二价金属的类水滑石对NOx吸附性能研究[J].浙江工业大学学报,2005,33(1):100-102.
    [93]倪哲明,俞卫华,王力耕等Cu-Co-Al类水滑石的合成、表征及吸附NOx性能的研究[J].高校化学工程学报,2005,19(2):223-227.
    [94]赵震,杨向光,吴越.稀土碱土过渡金属类钙钛矿石A2BO4复合氧化物催化剂的固态物化性质及对NOx消除反应的催化性能[J].中国稀土学报,2003,21(专辑):35-39.
    [95]朱君江,肖德海,吴越等.(类)钙钛矿型催化剂上NO分解反应机理[J].科学通报,2004,49(23):2501-2503.
    [96]Teraoka Y., Fukuda H., Kagawa S.. Catalytic activity of perovskitc-type oxides for the direct decomposition of nitrogen monoxidc[J]. Chemistry Letters,1990,19(1):1-4.
    [97]赵震,杨向光,吴越La2-xSrxCuO4+λ系列催化剂的合成、表征及NO分解催化性能的研究[J].环境化学,1995,5(14):402-409.
    [98]宋崇林,沈美庆,王军等.稀土钙钛型催化剂LaBO对NOx催化性能及反应机理的研究(1)[J].燃料科学与技术,1999,5(1):91-95.
    [99]宋崇林,沈美庆,王军等.稀土钙钛矿型催化剂LaBO3对NOx催化性能及反应机理的研究(2)[J].燃料科学与技术,1999,5(2):186-191.
    [100]刘珏.杨向光,王学中等.在Ni系ABO3和A2BO4型复合氧化物催化剂上NO分解反应的研究[J].科学通报,1995,40(21):1961-1964.
    [101]赵震,杨向光.吴越等LnSrNiO4-λ系列复合氧化物的物化性质与对NO分解的催化性能[J].中国稀土学报,1998,16(4):325-331.
    [102]朱君汀,肖德海,吴越等La1-xCcxSrNiO4(0≤x≤0.7)的合成、表征及NOx分解催化性能的研究[J].高等学校化学学报,2005.26(3):503-506.
    [103]赵震,杨向光,吴越.含Cu复合氧化物对NO和CO吸附和活化的TPSR研究[J].物理化学学报,1997,4(13):344-350.
    [104]刘珏,杨向光,吴越等La-Ba-Cu复合氧化物在氧化消除NO反应中催化性能的研究[J].高等学 校化学学报,1998,19(3):414-418.
    [105]刘珏,杨向光,吴越等.层状复合氧化物La4BaCu5-xMnxO12的表征及在催化消除NO中活性的研究[J].化学学报,1998,56:785-791.
    [106]Corma A., Garcia H.. Supramolecular host-guest systems in zeolites prepared by ship-in-a-bottle synthesis [J]. European Journal of Inorganic Chemistry,2004,6:1143-1164.
    [107]Yang G, Sun A., Zhou W., et al. Comparative study of ship-in-a-bottle and anchored heterogenized Mn complexes [J]. Catalysis Letter,2007,118:275-279.
    [108]Chen L., Wang X., Guo X., et al. In situ nanocrystalline HZSM-5 zeolites encaged heteropoly acid H3PMo12O40 and Ni catalyst for hydroconversion of n-octane [J]. Chemical Engineering Science,2007, 62:4469-4478.
    [109]Castanheiro J.E., Ramos A.M., Fonseca I., et al. The acid-catalysed reaction of-pinene over molybdophosphoric acid immobilised in dense polymeric membranes [J]. Catalysis Today,2003,82: 187-193.
    [110]Wei R., Guo M., Wang J.. Preparation, characterization and catalytic behavior of 12-molybdophosphoric acid encapsulated in the supercage of Cs+-exchanged Y Zeolite [J]. Chinese Journal of Chemical Engineering,2009,17(1):58-63.
    [111]Sambandam A., Su Y.R., WonJe C., et al. Heteropolytungstic acid (H3PW12O40) encapsulated into the titanium-exchanged HY (TiHY) zeolite:a novel photocatalyst for photoreduction of methyl orange [J]. Journal of Molecular Catalysis A:Chemical,2003,195:201-208.
    [112]Bogdan S.. The fractal dimension in molecular sieves:synthetic faujasite and related solids [J] The Journal of Physical Chemistry,1993,97:1420-1425.
    [113]Pamin K., Kubacka A., Olejniczak Z., et al. Immobilization of dodecatungstophosphoric acid dealuminated zeolite Y:a physicochemical study [J]. Applied Catalysis A:General,2000,194-195: 137-146.
    [114]Mai H.T., Hironobu O., Takanori M., et al. Hydrothermal synthesis of molybdenum oxide catalyst: Heteropoly acids encaged in US-Y [J]. Applied Catalysis A:General,2005,287:129-134.
    [115]Dai S., Zhang Z.T., Hunt R.D., et al. Ion-imprinted zeolite:A surface functionalization methodology based on the "ship-in-bottle" technique[J]. Advanced Materials,2001,13 (7):493.
    [116]Mukai S.R, Lin L., Masuda T., et al. Key factors for the encapsulation of Keggin-type heteropoly acids in the supercages of Y-type zeolite[J]. Chemical Engineering Science.2001,56 (3):799-804.
    [117]Mukai S.R., Masuda T, Ogino I., et al. Preparation of encaged heteropoly acid catalyst by synthesizing 12-molybdophosphoric acid in the supcrcages of Y-typc zeolite[J]. Applied Catalysis A:Gcneral. 1997. 165:219-226.
    [118]Mukai S.R., Shimoda M., Lin L., et al. Improvement of the preparation method of "ship-in-the-bottle" type 12-molybdophosphoric acid encaged Y-type zeolite catalysis [J]. Applied Catalysis A:Gcncral. 2003,256(l-2):107-113.
    [119]谭晶品,黄云田.NaY分子筛的改性及其工业应用[J].工业催化,1995,4:40-46.
    [120]张进,唐英等.钼钒磷杂多酸的合成及其催化特性研究[J].无机化学学报,2004,20(8):935-940.
    [121]Nobuyuki H., Yoshihiro O., Toshiyuki I.,et al. Stabilization of tetravalcnl cerium upon coordination of unsaturatcd hctcropolytungslale anions [J]. Inorganic Chemistry, 1994. 33: 1015-1020.
    [122]Luis R.P, Mirta N.B.. Preparation and characterization of transition metal-modified lacunary Keggin 11-tungstophosphatcs supported on carbon [J]. Materials Letters, 2007. 61: 719-724.
    [123]郭麦平,王军,周华兰.NaY沸石超笼中合成12-钼磷杂多酸[J].化学学报,2008,10:1159-1162.
    [124]马涛,王睿.具有吸附-分解NOx功能的多酸催化体系构建及过程特性研究[D].济南:山东大学环境科学与工程学院,2008.
    [125]Hiskia A. Papaconstantinou E.. Photocatalytic oxidation of organic compounds by polyoxometalatcs of molybdenum and tungsten catalyst regeneration by dioxygen [J]. Inorganic Chemistry. 1992,31:163-167.
    [126]张学杨,程琳,杨烽等H3PW12O40/CNTs吸附-分解NOx及微波作用效果[J].无机化学学报.2012,33(8):1826-1834.
    [127]欧国勇,杨辉荣,方言雄.负载型杂多酸催化剂研究进展[J].技术进展,2001.8:18-21.
    [128]Fcdcrica V., Aziz A., Silvia O, ct al. Carbon nanotube purification: preparation and characterization of carbon nanotubc paste electrodes [J]. Analytical Chcmistn, 2003, 75: 5413-5421.
    [129]Wang Y, Zafar I.. Somcnath M., Microwave-induced rapid chemical functionalization of single-uailed carbon nanolubcs [J]. Carbon, 2005. 43: 1015-1020.
    [130]Tan X., Lia M., Cai P., ct al. An amperomctric cholesterol biosensor based on multiwalled carbon nanotubes and organically modified sol-gcl/chilosan hybrid composite film [J]. Analytical Biochemistry. 2005, 337: 111-120.
    [131]Kang X., Mai Z., Zou X., et al. A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotubc-modified glassy carbon electrode [J]. AnaKtical Biochemistry,2007.363:143-150.
    [132]Federica V. Aziz A., Silvia O., et al. Carbon nanotube purification:preparation and characterization of carbon nanotube paste electrodes [J]. Analytical Chemistry,2003,75:5413-5421.
    [133]李国希,黄启忠,侯娟.负载Pt活性炭纤维对NO的吸附活性[J].催化学报,2003,24(2):107-110.
    [134]李伟,成荣明,徐学成等.CVD法不同条件下制备的多壁碳纳米管的Fenton氧化改性[JJ.化学通报,2005,8:618-623.
    [135]宋淑美,马涛,姚远,王睿,赵海霞.具有吸附-分解NOx功能的多酸催化新体系的研究[J].燃料化学学报,2009,37(1):87-92.
    [136]Xia W., Jin C., Kundu S., et al. A highly efficient gas-phase route for the oxygen functionalization of carbon nanotubes based on nitric acid vapor [J]. Carbon,2009,47(3):919-922.
    [137]Wang Z., Jiang Z., Shangguan W.. Simultaneous catalytic removal of NOx and soot particulate over Co-Al mixed oxide catalysts derived from hydrotalcites [J]. Catalysis Communication,2007,8: 1659-1664.
    [138]Jinesh C.M., Antonyraj C.A., Kannan S.. Allylbenzene isomerisation over as-synthesized MgAl and NiAl containing LDHs:Basicity-activity relationships [J]. Applied Clay Science,2010,48:243-249.
    [139]Laar F.M.P.R.V., De V.D.E., Pierard F., et al. Generation of Singlet Molecular Oxygen from H2O2 with Molybdate-Exchanged Layered Double Hydroxides:Effects of Catalyst Composition and Reaction Conditions [J]. Journal of Catalysis,2001,197:139-150.
    [140]Mulukutla R.S., Detellier C. Use of a calcined Ni(Ⅱ), Al(Ⅲ) layered double hydroxide for the reduction of nitric oxide in the presence of methane and oxygen [J]. Journal of Materials Science Letters,1997,16:752-754.
    [141]Wang Y., Qu J., Liu H., et al. Adsorption and reduction of nitrate in water on hydrotalcite-supported Pd-Cu catalyst [J]. Catalysis Today,2007,126:476-482.
    [142]Obalova'L., Pacultova'K., Balaba'nova J., et al. Effect of Mn/Al ratio in Co-Mn-Al mixed oxide catalysts prepared from hydrotalcite-like precursors on catalytic decomposition of N;O [J]. Catalysis Today,2007,119:233-238.
    [143]Centi V, Galli A., Montanari B., et al. Catalytic decomposition of N2O over noble and transition metal containing oxides and zeolites. Role of some variables on reactivity [J]. Catalysis Today,1997,35: 113-120.
    [144]Melo V, Morlane's N.. Synthesis, characterization and catalytic behaviour of NiMgAl mixed oxides as catalysts for hydrogen production by naphtha steam reforming [J]. Catalysis Today. 2008. 133-135: 383-393.
    [145]Churchil A, Antonyraj. Kannan S. Hantzsch pyridine synthesis using hydrotalcites or hydrotalcite-like materials as solid base catalysts[J]. Applied Catalysis A:General, 2008. 338:121-129.
    [146]Polato C.M.S., Henriques C.A., Rodrigucs A.C.C., el al. De-SOx additives based on mixed oxides derived from Mg.Al-hydrotalcite-like compounds containing Fc, Cu, Co or Cr[J]. Catalysis Today, 2008. 133-135:534-540.
    [147]Itoh M., Iwamoto J., Tajima N., et al. DeNOx catalytic activity over Pt/Al(2)O(3) prepared by solvothemial method [J]. Materials Chemistry and Physics. 2008. 124:587-591.
    [148]Damyanova S., Fierro J.L.G, Sobrados I., ct al. Surface behavior of supported 12-hetcropoly acid as revealed by nuclear magnetic resonance. X-ray photoelectron spectroscopy. and fouricr transform infrared techniques [J]. Langmuir, 1999. 15: 469-476.
    [149]Hcrring A.M., McCoemick R.L., Boonrueng S.R.. A comparison of the interaction HMgPW12O40, H8SiW11O38. H4SiW12O40. and H10CoW12O40[J]. Journal of Physical Chcmistn B, 2000, 104: 4653-4660.
    [150]Bcnjaram MR., Ataullah K., Pandian L., Structural characterization of nanosized CcO2-SiO2, CeCK-TiO2 and CcO2-ZrO2 catalysts by XRD. Raman and HREM techniques [J]. Journal of Physical Chcmistn B, 2005. 109: 3355-3363.
    [15]Zhang L., Weng D., Wang B., et al. Effects of sulfation on the activity of Ce0.67Zr0.33O2 supported Pt catalyst for propane oxidation [J]. Catalysis Communications, 2010, 11: 1229-1232.
    [152]Damyanova S., Gomez L.M., Banares M.A., et al. Thermal behavior of 12-molybdophosphoric acid supported on zirconium-loaded silica [J]. Chcmistn' Material. 2000. 12: 501-510.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700