用户名: 密码: 验证码:
中国东部早白垩世基性岩Pb-Sr-Nd同位素特征:下地壳对其地幔源区的贡献
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Pb-Sr-Nd Isotopic Characteristics of the Early Cretaceous Mafic Rocks from Eastern China: The Contribution of the Lower Crust to the Mantle Source
  • 作者:李全忠
  • 论文级别:博士
  • 学科专业名称:地球化学
  • 学位年度:2007
  • 导师:陈江峰 ; 谢智
  • 学科代码:070902
  • 学位授予单位:中国科学技术大学
  • 论文提交日期:2007-01-01
摘要
本论文通过对中国东部各构造单元,包括华北的鲁西地区、大别造山带和扬子东北缘的长江中下游地区的早白垩世基性岩以及华北东南缘的胶州大西庄晚白垩世玄武岩中的辉石巨晶的年代学和Sr-Nd-Pb同位素研究,反演白垩世中国东部各构造单元的陆下岩石圈地幔的同位素地球化学特征。
     作为讨论壳幔相互作用的基础,本论文根据文献资料对华北克拉通、扬子地块和大别造山带的上、下地壳的同位素特征进行了制约。以迁西群麻粒岩相变质岩作为华北下地壳的代表,以泰山群花岗质片麻岩作为华北中、上地壳的代表,以华北古生代金伯利岩包体代表减薄发生前的古生代华北岩石圈地幔。以崆岭群花岗质片麻岩的Sr-Nd同位素组成代表扬子下地壳的Sr-Nd同位素变化范围,以扬子东段中生代铜陵地区花岗岩的Pb同位素组成近似为扬子下地壳的Pb同位素变化范围;以董岭群斜长角闪片岩和皖南浅变质岩及沉积岩的Sr-Nd同位素组成代表扬子中、上地壳的Sr-Nd同位素范围,以安徽沿江沉积岩和板溪群千枚岩Pb同位素组成代表扬子中、上地壳的Pb同位素变化范围。以北大别片麻岩代表大别下地壳,以南大别片麻岩代表大别上地壳。
     华北鲁西地区的济南和邹平样品包括辉长岩和辉长辉绿岩,其中邹平辉长辉绿岩中的锆石给出128.2±2.0 Ma的SHRIMP U-Pb年龄,代表岩体的形成时代。济南和邹平两岩体的辉长岩均属于拉斑系列,微量元素表现出Rb、Ba等大离子亲石元素(LILE)富集和Pb、Sr正异常而Nb、Ta和Ti等高场强元素(HFSE)亏损的特征,稀土元素均表现出轻稀土(LREE)富集和不同程度的Eu正异常。元素、同位素判别和锆石年代学研究结果表明,其初始岩浆在上升侵位过程中,没有受到地壳物质的显著混染,其同位素组成能够用来示踪地幔源区的性质。济南和邹平辉长岩的初始同位素组成为~(87)Sr/~(86)Sr(t)=0.7041~0.7055,ε_(Nd)(t)=-6~-18.7,~(206)Pb/~(204)Pb(t)=16.55~17.00,~(207)Pb/~(204)Pb(t)=15.22~15.35,~(208)Pb/~(204)Pb(t)=36.29~36.95,表明其地幔源区具有同位素富集特征。虽然类似于EMⅠ的特征,但与典型的由大洋玄武岩定义的EMⅠ地幔端元相比,Nd和Pb同位素比值较低,反映了显著的地壳物质贡献。华北古生代金伯利岩包体的Sr-Nd-Pb同位素组成表明华北古生代岩石圈地幔具有EMⅡ型的富集地幔特征,太古代迁西群变质杂岩是华北克拉通代表性的古老下地壳物质,济南和邹平辉长岩的源区物质可能由古老岩石圈地幔和华北下地壳混合而成的。
     庐枞火山岩出露于扬子地块东北缘的长江中下游地区,是一套包括粗玄岩—玄武粗安岩—粗面岩的富碱钾玄质岩石系列。本论文所研究的双庙旋回玄武岩和浮山旋回粗面岩均表现出富碱富钾、富Al_2O_3,高Fe_2O_3,低MgO、TiO_2的特征,微量元素表现出Th、U、K等大离子亲石元素富集特征,稀土元素表现出LREE富集和没有Eu负异常等特征。双庙组火山岩的锆石给出129.5±2.3 Ma的SHRIMPU-Pb年龄,代表其形成时代。根据元素、同位素判别和锆石年代学的研究结果,其初始岩浆在上升侵位过程中也没有受到地壳物质显著混染。庐枞双庙旋回玄武岩和浮山旋回粗面岩的初始同位素组成为~(87)Sr/~(86)Sr(t)=0.7057~0.7065,ε_(Nd)(t)=-3.9~-6.2,~(206)Pb/~(204)Pb(t)=17.88~18.08,~(207)Pb/~(204)Pb(t)=15.50~15.55,~(208)Pb/~(204)Pb(t)=37.93~38.18,介于DMM和EMⅡ型端元之间。Sr-Nd和Pb同位素特征均显示扬子下地壳对庐枞火山岩的地幔源区有一定的贡献。
     大别造山带中北大别基性岩以椒子岩和沙村岩体为代表,岩性包括辉长岩和辉石岩,大部分属于拉斑系列,少数落在碱性系列范围。具有Nb、Zr、Ti亏损、Rb,Ba,Pb富集和LREE富集、轻微的Eu负异常等特征。北大别基性岩的初始岩浆在上升侵位过程中也没有受到地壳物质的显著混染,其初始同位素组成为~(87)Sr/~(86)Sr(t)=0.7067~0.7085,ε_(Nd)(t)=-6.5~-19.1,~(206)Pb/~(204)Pb(t)=16.37~17.40,~(207)Pb/~(204)Pb(t)=15.31~15.45,~(208)Pb/~(204)Pb(t)=37.11~37.98。与华北克拉通基性岩(以济南和邹平辉长岩为代表)相比,有较高的~(87)Sr/~(86)Sr(t)而较低的ε_(Nd)(t),较高的~(207)Pb/~(204)Pb和~(208)Pb/~(204)Pb而基本一致的~(206)Pb/~(204)Pb,反映其源区较华北基性岩的源区有较高的μ值和Th/U比值。这些北大别基性岩的Pb同位素表现出类似于EMⅠ的特征,而Sr-Nd同位素特征介于EMⅠ和EMⅡ之间。在Sr_Nd和Pb-Pb同位素图解中,北大别基性岩源区与大别造山带花岗岩的区域重合,并且两者都落在北大别片麻岩的范围内,暗示了以北大别片麻岩为代表的大别下地壳对北大别基性岩的源区有显著贡献。
     华北克拉通、大别造山带和扬子东北缘的长江中下游地区的早白垩世地幔的同位素特征均暗示地幔源区中有对应的下地壳物质的贡献。不同下地壳物质的加入,是导致不同地质单元早白垩世岩石圈地幔地球化学差异的重要原因之一。在排除了岩石形成过程中地壳混染的可能性后,壳幔物质的源区混合是最主要的过程。本论文倾向认为岩石圈拆沉是下地壳参与基性岩地幔源区的可能的动力学模式,但由于不能为下地壳参与源区的机制提供直接的制约,所以地幔交代作用也不能排除。
     根据主量元素分析结果,胶州大西庄玄武岩(73 Ma)中的辉石巨晶可能包括两类:单斜辉石巨晶和斜方辉石巨晶。虽然它们的化学组成差别很大,但同位素组成没有差别。辉石巨晶与寄主玄武岩具有几乎完全相同的同位素组成,其~(87)Sr/~(86)Sr(t)和ε_(Nd)(t)分别为0.7033~0.7041、+4.5~+6.5和0.7035~0.7038、+7.1~+7.6,暗示辉石巨晶和寄主岩具有相同的地幔源区,即辉石巨晶是玄武岩浆在高压下结晶的产物。亏损的同位素特征表明,在白垩世末期(~73 Ma),胶东地区的岩石圈地幔已经由富集转变为亏损,表现出类似于中国东部新生代地幔的同位素特征,即表明当时岩石圈减薄(或置换)已经完成。
The geochronology and Sr-Nd-Pb isotopic compositions of the Early Cretaceous mafic rocks from different tectonic units of the eastern China, including western Shandong province in North China, Dabie orogenic belt and northeast margin of the lower Yangtze region, together with the pyroxene megacrysts within Late Cretaceous basalts from Jiaozhou, are studied to deduce the characteristics of the Early Cretaceous subcontinental lithospheric mantle (SCLM) of eastern China.
     The isotopic characteristics of the upper and lower crusts of these tectonic units are constrained based on the data from the literatures. The isotopic compositions of the granulites from the Qianxi Group and the granitic gneisses from the Taishan Group are used to represent those of the lower and mid-upper crusts of North China, respectively. The isotopic characteristics of the Paleozoic mantle of North China before thinning are represented by those of Paleozoic kimberlite inclusions. For the Yangtze block, Sr-Nd isotopic compositions of its lower crust are represented by those of the granitic gneisses of the Kongling Group, and Pb isotopic compositions are approximated by those of Mesozoic granites from the Tongling district. While Sr-Nd isotopic compositions of the Yangtze mid-upper crust are represented by those of the gneisses of the Dongling Group and Proterozoic metamorphic rocks from southern Anhui, Pb isotopic compositions are represented by those of Phanerozoic sedimentary rocks along the Yangtze River in Anhui province and those of the Banxi Group. The isotopic characteristics of Dabie lower crust are represented by those of the gneisses from the North Dabie, and those of the upper crust are represented by those of the gneiss from the South Dabie.
     The samples from Jinan and Zouping intrusions contain gabbro and gabbroic-diorite. Zircons separated from the gabbroic-diorite at Zouping yield a SHRIMP U-Pb age of 128.2±2.0 Ma, which is interpreted as its formation time. Gabbros of both localities belong to tholeiitic series, most of gabbroic samples show significant positive Rb, Ba, Pb and Sr anomalies and negative Nb, Ta and Ti anomalies and are highly enriched in LREEs with positive Eu anomalies. The initial magma of the gabbros from Jinan and Zouping has been little contaminated by curstal materials during the magmas ascending based on geochemical, isotopic and geochronological evidences. Therefore, the isotopic characteristics of the gabbros from the two locations can be used to approximate those of their mantle source. Gabbros from Jinan and Zouping show the range of the initial isotopic ratios as follows: ~(87)Sr/~(86)Sr (t) = 0.7041~0.7055,ε_(Nd)(t) = -6~-18.7, ~(206)Pb/~(204)Pb(t) = 16.55~17.00, ~(207)Pb/~(204)Pb(t) = 15.22~15.35 and ~(208)Pb/~(204)Pb(t) = 36.29~36.95, suggesting that the mantle source of the gabbros possesses an enriched isotopic characteristics. Although it is general considered that the Mesozoic subcontinental mantle of the North China shows an isotopic characteristic which is similar to the EMI end member, isotopic character of the Mesozoic mantle of North China is different from the typical EMI end member defined by oceanic basalts. The lower Nd and Pb isotopic ratios suggest a contribution of the lower crust. It is inferred that the mantle source of the gabbros from Jinan and Zouping may be a mixture of the Paleozoic lithospheric mantle with an isotopic character similar to that of the EMII end member and the lower crust of North China.
     The Luzong volcanoic rocks, located at lower Yangtze regions, the northeastern margin of the Yangtze block, are a suite of shoshonitic rocks, which include trachybasalt-basaltic trachyandesite and trachyte. Both basalts of the Shuangmiao Formation and trachytes of the Fushan Formation show high K_2O, Al_2O_3 and Fe_2O_3, but low MgO and TiO_2, are enriched in LILEs, such as Th, U, K and LREEs, but with no negative Eu anomalies. The zircons separated from the basalt yield an U-Pb age of 129.5±2.3 Ma, which is interpreted as the formation age of the Luzong volcanic rocks. The initial magma of the Luzong volcanic rocks has been little contaminated by curstal materials during ascending based on the results of geochemistry, isotope and chronology, thus, the isotopic characteristics of the volcanic rocks can be reasonably used to indicate their mantle source. Luzong volcanic rocks show the range of the initial isotopic ratios as follows: ~(87)Sr/~(86)Sr(t) = 0.7057~0.7065,ε_(Nd)(t) = -3.9~-6.2, ~(206)Pb/~(204)Pb(t) = 17.88~18.08, ~(207)Pb/~(204)Pb(t) = 15.50~15.55 and ~(208)Pb/~(204)Pb(t) = 37.93~38.18. These values are located between the DMM and EMII end members. Furthermore, the isotopic compositions also suggest the contribution of the Yangtze lower crust to the mantle source.
     The mafic rocks from Jiaoziyan and Shacun. including gabbro and pyroxenite. mostly belong to the tholeiitic series, while a few are plotted in the field of the alkali series. The samples are highly enriched in LREEs. with small negative Eu anomalies and show distinct negative anomalies in Nb, Ti and Zr. and positive anomalies in Rb. Ba and Pb. Similar to the gabbros from Jinan and Zouping and the Luzong volcanic rocks, the initial mafic magma has also been little contaminated by the curstal materials during intrusion. The initial Sr-Nd-Pb isotope compositions of the North Dabie mafic rocks are in the ranges as follows: ~(87)Sr/~(86)Sr(t) = 0.7067~0.7085,ε_(Nd)(t) = -6.5~-19.1, ~(206)Pb/~(204)Pb(t)=16.37~17.40, ~(207)Pb/~(204)Pb(t)=15.31~15.45 and ~(208)Pb/~(204)Pb(t) = 37.11~37.98. Comparing with the mafic rocks from the North China, those from the North Dabie show higher ~(87)Sr/~(86)Sr (t). but lowerε_(Nd) (t); higher ~(207)Pb/~(204)Pb (t) and ~(208)Pb/~(204)Pb (t) at the same ~(206)Pb/~(204)Pb, which suggest that the mantle source of North Dabie has higherμvalue and Th/U ratio than that of the North China Block. In the Pb isotopic evolution diagram, data of the mafic intrusions from the North Dabie located close to EMI, while in ~(87)Sr/~(86)Sr(t) vs.ε_(Nd)(t) plot, these samples lie between EMI and EMII end members. On the other hand, in both isotopic diagrams, the mafic intrusions and the gneisses from the North Dabie share the same range, suggesting that the lower crust defined by the gneisses of the North Dabie has the significant contribution to the mantle source.
     In summary, the isotopic characteristics of Early Cretaceous subcontinental lithospheric mantle of eastern China, including North China Block, Dabie orogenic belt and the lower Yangtze region, suggest the contribution of the corresponding lower crustal material to the mantle source. The involvement of different lower crustal material is one of the main processes which resulted in different isotopic characteristics in the mantle sources of different tectonic units in Eastern China at the Late Mesozoic. When the contamination of the mantle-derived magma by the curstal material during intrusion is eliminated, the source mixing between the crustal and mantle materials is the primary process. The lithosphere delamination may be a possible dynamic model for explaining the incooperation of the lower crustal materials into the mantle source, but metasomatism model cannot be ruled out.
     The pyroxene megacrysts hosted by basalt (73 Ma) at Daxizhuang, Jiaozhou. contain two types: clinopyroxene megacrysts and orthopyroxene megacrysts based on major element analyses. Although their major element compositions are different, their isotopic compositions are highly homogeneous. Megacrysts and host basalts show uniform isotopic compositions, ~(87)Sr/~(86)Sr(t)=0.7033~0.7041 andε_(Nd)(t)= +4.5~+7.6, respectively, which suggest that they were derived from the same mantle source, and the megacrysts were crystallized from the host basaltic magma under high pressure. Moreover, the 73 Ma Daxizhuang basalts and hosted megacrysts show the similar depleted isotopic characteristics with Cenozoic basalts from Eastern China, implying that the transformation of the isotopic characters of the lithospheric mantle from enrichment to depletion in Jiaozhou, and also the lithosphere thinning was completed in Late Cretaceous period (73 Ma).
引文
Ames L, Zhou G Z, Xiong B C. 1996. Geochronology and isotopic character oF ultrahigh pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, central China. Tectonics, 15: 472—489.
    Basu A R, Wang J W, Huang W H, et al. 1991. Major element, REE and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: implication for their origin from suboceanic-type mantle reservoirs. Earth Planet. Sci. Lett., 105: 149—169.
    Boynton W V. 1984. Geochemistry of the rare earth elements: meteorite studies. In: Henderson P. (ed.), Rare earth element geochemistry,. Elservier, 63—114.
    Carlson R W. 1995. Isotopic inferences on the chemical structure of the mantle. Geodyn., 20: 365—386.
    Chauvel C, Hofmann A W, Vidal P. 1992. HIMU—EM: The French Polynesian connetion. Earth Planet. Sci. Lett., 10: 99—119.
    Chen B, Jahn B M, Wei C J. 2002. Petrogenesis of Mesozoic granitoids in the Dabie UHP complex, Central China: trace element and Nd-Sr isotope evidence. Lithos, 60: 67—88.
    Chen B, Jahn B M, Zhai M G. 2003. Sr-Nd isotopic characters of Mesozoic magmatism in the Taihang—Yanshan orogen, North China craton, and implication for Archaean lithosphere thinning. J. Geol. Sci., 160: 963—970.
    Chen D G, Wu Y B, Cheng H, et al. 1998a. Geochemistry of rnafic-ultramafic rocks from northern Dabie complex and its implication. Scientia Geolog. Sinica, 7 (4): 513—519.
    Chen D G, Wu Y B, Wang Y X, et al. 1998b. Ages, Nd and Sr isotopic compositions of the Jiaoziyan gabbroic intrusion from the Northern Dabie terrain. Scientia Geolog. Sinica, 7 (1): 29—35.
    Chen J F, Jahn B M. 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics, 294: 101—133.
    Chen J F, Foland K A, Zhou T X. 1985a. Mesozoic granitoids of the Yangtze foldbelt, China: Isotopic constraints on the magma source. Wu L R et al. (eds.), The Crust-the Significance of Granites Gneisses in the Lithosphere. Athens: Thephrastus Publications S. A., 217—237.
    Chen J F, Zhou T X, Foland K A. 1985b. ~(40)Ar-~(39)Ar and Rb-Sr geochronology of the Qingyang batholith, Anhuiprovince, China. Geochemistry, 4 (3): 220—235.
    Chen J F, Yah J, Xie Z, et al. 2001. Nd and Sr isotopic compositions of igneous rocks from the Lower Yangtze region, eastern China: Constraints on sources. Phys. Chem. Earth (A), 26 (9-10): 719—731.
    Chen J F, Xie Z, Li H M, et al. 2003. U-Pb zircon ages for a collision-related K-rich complex at Shidao in the Sulu ultrahigh pressure terrane, China. Geochemical Journal, 37 (1): 35—46.
    Chung S L, Jahn B M, Chen S J, et al. 1995. Miocene basalts in northwestern Taiwan: evidence for EM--type mantle sources in the continental lithosphere. Geochim. Cosmochim. Acta 59: 549-555.
    Deng J F, Mo X X, Zhao H L, et al. 2004a. A new model for the dynamic evolution of Chinese lithosphere: Continental root-plume tectonics. Earth Sci. Rev., 65: 223—275.
    Deng J F, Su S G, Mo X X. 2004b. The sequence of magmatic-tectonic events and orogenic processes of Yanshan belt, North China. Acta Geol Sinica, 78 (1): 260—266.
    Eisele J, Shar M M, Galer S J G, et al. 2002. The role of sediment recycling in EM-I inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth Planet. Sci. Lett., 196; 197—212.
    Farley K A, Craig H. 1992. Mantle plumes and mantle sources. Science, 258: 821-822.
    Faure M, Liu W, Le Breton N. 2001. Where is the North China-South China block boundary in eastern China? Geology, 29 (2): 119—122.
    Foland K A, Allen J C. 1991. Magma sources for Mesozoic anonrogenic granites of the White Mountain magma series, New England USA. Contrib. Mineral. Petrol., 109: 195—211.
    Frey F A, Green D H, Roy S D. 1978. Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilities from South Eastern Australia utilizing geochemical and experimental petrological data. J. Petrol., 19: 463—513.
    Gao S, Ling W L, Qiu Y M, et al. 1999. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: Evidence for cratonic evolution and redistribution of REE during crustal anatexis. Geochim. Cosmochim. Acta, 63: 2071—2088.
    Gao S, Rudnick R, Carlson R W, et al. 2002. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth Planet. Sci. Lett., 198: 307—322.
    Gao S, Rudnick R L, Yuan H L, et al. 2004. Recycling lower continental crust in the North China craton. Nature, 432: 892—897.
    Gasperina D, Blichert T J, Bosch D, et al. 2000. Evidence from Sardinian basalt geochemistry for recycling of plume heads into the Earth's mantle. Nature, 408: 701—704.
    Griffin W L, Zhang A D, O'Reilly S Y, et al. 1998. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. In: Flower M F J. et al. (eds.) Mantle Dynamics and Plate Interactions in East Asia. American Geophysical Union. Geodynamics, 27: 107—126.
    Guo F, Fan W M, Wang Y J, et al. 2001. Later Mesozoic intrusive complexes in North China Block: Constraints on the nature of subcontinental lithospheric mantle. Phys. Chem. Earth (A), 26 (9-10): 759—771.
    Guo F, Fan W M, Wang Y J, et al. 2003. Geochemistry of late Mesozoic mafic magmatism in west Shandong Province, eastern China: characterizing the lost lithospheric mantle beneath the North China Block. Geochemical Journal, 37: 63—77.
    Guo F, Fan W M, Wang Y J, et al. 2004. Origin of early Cretaceous calc-alkaline lamprophyres from the Sulu orogen in eastern China: implications for enrichment processes beneath continental collisional belt. Lithos, 78: 291—305.
    Hacker B R, Wang Q C. 1995. Ar/Ar geochronology of ultrahigh-pressure metamorphism in central China. Tectonics, 14: 994—1006.
    Hacker B R, Ratschbacher L, Webb L, et al. 1998. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinting-Dabie Orogen, China. Earth Planet. Sci. Lett., 161: 215—230.
    Hanan B B, Graham D W. 1996. Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Science, 272: 991-995.
    Hart S R, Gerlach D C, White W M. 1986. A possible new Sr-Nd-Pb Mantle array and consequences for mantle mixing. Geochim. Cosmochim. Acta, 50: 1551—1557.
    Hart S R, Hauri E H, Oschmann L A, et al. 1992. Mantle plumes and entrainment: isotopic evidence. Science, 256: 517-520.
    Heaman L M. 1989. The nature of the subcontinental mantle from Sr-Nd-Pb isotopic studies on kimberlitic perovskite. Earth Planet. Sci. Lett., 92: 323-334.
    Hofmann A W, White W M. 1982. Mantle plumes from ancent oceanic crust. Earth Planet. Sci. Lett. 57: 421—436.
    Hofmann A W. 1997. Mantle geochemistry: the message from oceanic volcanism. Nature, 385: 219—229.
    Hu S B, He L J, Wang J Y 2000. Heat flow in the continental area of China: a new data set. Earth Planet Sci. Lett., 179: 407—419.
    Irvine T N, Baragar W R. 1971. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci., 8: 523—548.
    Irving A J, Frey F A. 1984. Trace element abundances in megacrysts and their host basalts: constrain on partition coefficients and megacryst genesis. Geochim. Cosmochim. Acta, 48: 1201—1221.
    Jahn B M, Zhang Z Q. 1984. Radiometric ages (Rb-Sr, Sm-Nd, U-Pb) and REE Geochemistry of Archean granulite gneisses from eastern Hebei Province, China. In. Archean Geochemistry (ed. Kroner A, et al.) Berlin, Springer-Verlag, 204—234.
    Jahn B M, Wu F Y, Lo C H,et al. 1999. Crust-mantl interaction induced by deep subduction of the continental crust: geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chem. Geol., 157: 119—146.
    Kay R W, Kay S M. 1993. Delamination and delamination magmatism. Tectonophysics, 219: 177—189.
    Kuno H. 1966. Lateral variation of basalt magma types across continental margins and island arcs. Bull. Volcanol., 29, 195—222.
    Langmuir C H, Bender J F, Bence A E, et al. 1977. Petrogenesis of basalts from the famous area; mid-Atlantic ridge. Earth Planet. Sci. Lett., 36: 133—156.
    Li S G, Xiao Y L, Liu D L, et al. 1993. Collision of the North China and Yangtse Blocks and formation of coesite-bearing eclogites: Timing and processes. Chem. Geol., 109: 89—111.
    Li S G, Jagoutz E, Zhang Z Q, et al. 1995. Structure of high-pressure metamorphic belt in the Dabie Mountains and its tectonic implications. Chinese Sci. Bull., 40 (Suppl.): 138—140.
    Li Z X. 1994. Collision between the North and South China blocks, a crustal detachment model for suturing in the region east of the Tanlu fault. Geology, 22: 739—742.
    Liou J G, Zhang R Y. 1995. Significance of ultrahigh-P talc bearing eclogitic assemblages. Mineral.Mag., 59: 93—102.
    Liu D Y, Nutman A P, Compston W, et al. 1992. Remnant of 3800 Ma crust in Chinese parts of Sino-Korean craton. Geology, 20: 326-329.
    Liu X, Hao J. 1989. Structure, tectonic evolution of the Tongbai-Dabie range in the east Qinling collisional belt. Tectonics, 8: 637—645.
    Ludwig K R. 2000. Users Manual for Isoplot/Ex: A Geochrono/igicat Toolkit for Microsoft excel. Berkeley Geochronology Center Special Publication, Berkeley, CA, USA, 53p.
    Lustrino M. 2005. How the delamination and detachment of lower crust can influence basaltic Magmatism. Earth-Sci. Rev., 72: 21—38.
    Lustrino M, Rome L D. 2003. On the origin of EM-Ⅰ end-member. N J B. Miner. Abh. 179 (1): 85—100.
    Lustrino M, Melluso L, Morra V. 2000. The role of lower continental crust and lithospheric mantle in the genesis of Plio—Pleistocene volcanic rocks from Sardinia (Italy). Earth Planet. Sci. Lett., 180: 259—270.
    Ma C Q, Li Z, Ehlers C, et al. 1998. A post-collisional maginatic plumbing system: Mesozoic granitoid plutons from the Dabieshan high-pressure and ultrahigh pressure metamorphic zone, east-central China. Lithos, 45: 431—456.
    Ma C Q, Ehlers C, Xu C H. et al. 2000. The roots of the Dabieshan kiltrahigh-pressure metamorphic terrane: constraints from geochemistry and Nd-Sr isotope systematics. Precambrian Res., 102: 279—301.
    McKenzie D P, Bickle M J. 1988. The volume and composition of melt generated by extention of the lithosphere. J. Petrol., 29: 625—679.
    Menzies M A, Wass S Y. 1983. CO_2 and LREE-rich mantle below eastern Australia: a REE and isotopic study of alkaline magmas and apatite-rich mantle xenoliths from the southern highlands province, Australia. Earth Planet. Sci. Lett., 65: 287—302.
    Menzies M A, Fan W M, Zhang M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of>120 km of Archean lithosphere, Sino-Korean craton, China. In: Flower M., Chung S L., Lo C H., Lee T Y (eds.), .Magmatic Processes in East Aisa, Am. Geophys. Union Geodynamic Series, 27: 155—165.
    Middlemost E A K. 1994. Naming materials in the magma/ igeous rock system. Earth-Science Rev., 37: 215—224.
    Milner S C, Le Roex A P. 1996. Isotope characteristics of the Okenyenya igneous complex, northwestern Namibia: constraints on the composition of the early Tristan plume and the origin of the EM Ⅰ mantle component. Earth Planet. Sci. Lett., 141: 277—291.
    Morrison G W. 1980. Characteristics and Tectonic Setting of Shoshonite Rock Association. Lithos, 13 (1): 97—108.
    Muller D, Groves D I. 1995. Potassic igneous rocks and associated gold-copper mineralization. Berlin: Spring-Verlag, 210pp.
    Nelson K D. 1992. Crustal thickness variations in old mountain belts like the Appalachians a consequence of lithospheric delamination? Geology, 20: 498—502.
    Niu Y L. 2005. Generation and evolution of basaltic magmas: some basic concepts and a new view on the origin of Mesozoic—Cenozoic basaltic volcanism in eastern China. Geol. J. China Univer., (11): 9—46.
    Okey A L, Sengor A M C, Stair M. 1993. Tectonics of an ultrahigh-pressure metamorphic terrane: the Dabieshan/Tongbaishan Orogen, China. Tectonics, 12 (6): 1320—1334.
    Peate D W, Hawkesworth C J, Mantovani M M S, et al. 1999. Petrogenesis and stratigraphy of the high Ti/U Urubici magma type in the Parana flood basalt province and implications for the nature of 'Dupal'—type mantle in the South Atlantic region. J. Petrol., 40: 451—473.
    Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol., 58: 68—81.
    Peng Z C, Zartman R E, Futa K, et al. 1986. Pb, Sr and Nd isotopic systematics and chemical characteristics of Cenozoic basalts, Eastern China. Chem. Geol., 59: 3—33.
    Richardson S H, Erlank A J, Duncan A R, et al. 1982. Correlated Nd, Sr and Pb isotope variation in Walvis Ridge basalts and implication for the evolution of their mantle source. Earth Planet. Sci. Lett., 52: 327—341.
    Rudnick R L, McDonough W F, Chappell B W. 1993. Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth Planet. Sci. Lett., 114: 463—475.
    Sacks P E, Secor Jr D T. 1990. Delamination in collisional orogens. Geology, 18: 999—1002.
    Schulze D J. 1987. Megacrysts from alkalic volcanic rocks. In: P. H. Nixon(ed), Mantle Xenoliths. London: Wiley, 433—451.
    Song Y, Frey F A. 1989. Geochemistry of peridotite xenoliths in basalt from Hannuoba, eastern China: Implication for subcontinental mantle heterogeneity. Geochim. Cosmochim. Acta, 53: 97—113.
    Song Y, Frey F A. 1990. Isotopic charactericstics of Hannuoba basalt, eastern China: Impication for petrogenesis and the composition of subcontinental mantle. Chem. Geol., 85: 35—52.
    Stein M, Hofmann A W. 1994. Mantle plumes and episodic crustal growth. Nature, 372:63—68.
    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A D, Norry M J (eds), magmatism in ocean basins. Geol. Soc. London. Spec. Publ., 42: 313—345.
    Tatsunoto M, Basu A R, Huang W K, et al. 1992. Sr, Nd and Pb isotopes of ultramafic xenoliths in volcanic rocks of eastern China: enriched components EM Ⅰ and EM Ⅱ in subcontinental lithosphere. Earth Planet. Sci. Lett., 113: 107—128.
    Thompson R N. 1974. Some high-pressure pyroxenes. Mineral. Mag., 39: 768—787.
    Thompson R N, Morrison M A. 1988. Asthenospheric and lower-tithospheric mantle constributions to continental extensional magmatism: an example from the British Tertiary province. Chem. Geol., 68: 1—15.
    Wang Q, Xu J F, Zhao Z H, et al. 2004. Cretaceous high-potassium intrusive rocks in the Yueshan-Hongzhen area of east China: Adakites in an extensional tectonic regime within a continent. Geochem. J., 38: 417—434.
    Wang Q, Wyman D A, Xu J F, et al., 2006. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): implications for geodynamics and Cu—Au mineralization. Lithos, 89: 424—426.
    Wang S S, McDougall I. 1980. K-Ar and ~(40)Ar/~(39)Ar ages on Mesozoic volcanic rocks from the Lower Yangtze Volcanic Zone, southeastern China. J. Geol. Soc. Aus., 27: 121—128.
    Wang T F, Zeng H L. 2002. The distinctive characteristics of the Sino-Korean and the Yangtze plates. Journal of Asian Earth Sciences, 20: 881—888.
    Wang Y J, Wu F Y, Chung S L, et al. 2005. Petrogenesis of post—orogenic syenites in the Sulu orogenic belt, east China: Geochronological, geochemical and Nd—Sr isotopic evidence. Chem. Geol., 222: 200—231.
    Weaver B L. 1991. The origin of ocean island basalt end-member composition: trace element and isotopic constrains. Earth Planet. Sci. Lett., 104: 381—397.
    Woodhead J D, Devey C W. 1993. Geochemistry of the Pitcairn searnounts, 1: Source character and temporal trends. Earth Planet. Sci. Lett., 116: 81—99.
    Woodhead J D, Greenwood P, Harmon R S, et al. 1993. Oxygen isotope evidence for recycled crust in the source of EM-type ocean island basalts. Nature, 362: 809—813.
    Xie Z, Li Q Z, Gao T S. 2006. Comment on "Petrogenesis of post—orogenic syenites in the Sulu orogenic belt, east China: Geochronological, geochemical and Nd—Sr isotopic evidence" by Yang et al. Chem. Geol., 235: 191—194.
    Xing F M, Xu X, Li Z C. 1994. Discovery of the early Proterozoic basement in the Middle-Lower reaches of Yangtze river and its significance. Chinese Sci. Bull., 39 (12): 135—139.
    Xu S, Jiang L L, Liu Y C, et al., 1992. Tectonic framework and evolution of the Dabie Mountains in Anhui, eastern China. Acta Geol. Sinica, 5: 221—238.
    Xu X S, O'Reilly S Y, Griffin W L, et al. 1998. The nature of the Cenozoic lithosphere at Nushan, eastern China. Geodynam., 27: 137—196.
    Xu X S, O'Reilly S Y, Griffin W L, et al. 2000. Genesis of young lithospheric mantle in Southeastern China: an LAM-ICPMS trace element study. J. Petrol., 41: 111—148.
    Xu Y G, Menzies M A, Vroom P, et al. 1998. Texture—temperature—geochemistry relationships in the upper mantle as revealed from spinel peridotite xenoliths from Wangqing, NE China. J. Petrol., 39: 469—493.
    Xu Y G. 2001. Thermo—tectonic destruction of the Archean lithospheric keel beneath the Sino—Korean craton in China: evidence, timing and mechanism. Phys. Chem. Earth(A), 26(9-10): 747—757.
    Xu Y G. 2002. Evidence fro crustal components in the mantle and constraints on crustal recycling mechanisms: pyroxenite xenoliths from Hannouba, North China. Chem. Geol., 182:301—322
    Xu Y G, Ma J L, Huang X L, et al. 2004. Early Cretaceous gabbroic complex from Yinan, Shandong Province: petrogenesis and mantle domains beneath the North China Craton. International Journal of Earth Sciences, 93: 1025—1041.
    Yang J H, Chung S L, Wilde S A, et al. 2005. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: geochronological, geochemical and Nd-Sr isotopic evidence. Chem. Geol., 214: 99—125.
    Ye K, Yao Y P, Katayama I K, et al. 2000. Large area extent of ultrahigh-pressure metamorphism in the Sulu ultrahigh-pressure terrane of East China: new implication from coesite and omphacite inclusions in zircon of granitic gneiss. Lithos, 52: 157—162.
    Zartman R E, Doe B R. 1981. Plumbotectonic—the model. Tectonophys., 75: 135—162.
    Zhang H F, Sun M, Zhou X H, et al. 2002a. Mesozoic lithosphere destruction beneath the North China Craton: evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contrib. Mineral. Petrol., 144: 241—253.
    Zhang H F, Gao S, Zhong Z Q, et al. 2002b. Geochemical and Sr-Nd-Pb isotopic compositions of Cretaceous granitoids: constrains on tectonic framework and crustal structure of the Dabieshan urtrahigh-pressure metamorphic belt, China. Chem. Geol. 186: 281—299.
    Zhang H F, Sun M, Zhou X H, et al. 2003. Secular evolution of the lithosphere beneath the eastern north China craton: evidence from Mesozoic basalts and high Mg andesites. Geochemi. Cosmochimi. Acta, 22: 4373—4387.
    Zhang H F, Sun M, Zhou M F, et al. 2004. Highly heterogeneous late Mesozoic lithospheric mantle beneath the North China Craton: evidence from Pb-Sr-Nd isotopic systematics of mafic igneous rocks. Geol. Mag., 141 (1): 55—62.
    Zhao Z F, Zheng Y F, Wei C S, et al. 2005. Zircon U—Pb age, element and C—O isotope geochemistry of post-cottisional mafic-ultramafic rocks from the Dabie orogen in east-central China. Lithos, 83: 1—28.
    Zheng J P, Sun M, Lu F X. 2003. Mesozoic lower crust xenoliths and their significance in lithosphere evolution beneath the Sino-Korean Craton. Tectonophys, 361: 37—60.
    Zheng Y F, Fu B, Gong B, et al. 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: implications for geodynamics and fluid regime. Earth-Science Rev., 62: 105—161.
    Zhi X C, Song Y, Frey F A, et al. 1990. Geochemistry ofHannuoba basalts, Eastern China: constraints on the origin of continental alkalic and tholeiitic basalt. Chem. Geol. 88:1—33.
    Zindler A, Hart S R. 1986. Chemical Geodynamics. Annu. Rev. Earth Planet. Sci., 14: 753—75.
    Zou H B, Zindler A, Xu X S, et al. 2000. Major. trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: Mantle sources, regional variations and tectonic significance. Chem. Geol., 171 (1-2): 33—47.
    安徽省地矿局,1997.安徽省岩石地层,全国地层多重划分对比研究34.武汉,中国地质大学出版社,220—223.
    陈道公,李彬贤,支霞臣.1994.江苏盘石山幔源橄榄岩包体成因的地球化学.地球化学,23(1):13—24.
    陈道公,夏群科,支霞臣.1997a.安徽女山单斜辉石巨晶的地球化学.矿物学报,17(3):260—269.
    陈道公,夏群科,支霞臣.1997b.中国东部新生代玄武岩中巨晶矿物的地球化学.地球学报,18(3):299—305.
    陈道公,吴元宝,夏群科,等.1997c.椒子岩辉长岩的Sm-Nd年龄及其Nd同位素特征.地球学报,18(增刊):9—11.
    陈道公,汪相,Deloule E,等.2001.北大别辉石岩成因:锆石微区年龄和化学组成.科学通报,46:586—590.
    陈江峰,喻钢.2003.安徽沿江地区铜矿床的物质来源:Pb同位素组成的制约.安徽地质,13(1):27—33.
    陈江峰,喻钢.2005.安徽沿江江南晚中生代岩浆—成矿年代学格袈.安徽地质,15(3):161—169.
    陈江峰,周泰禧,邢凤鸣,等.1989.皖南浅变质岩和沉积岩的钕同位素组成及沉积物的源区.科学通报,20:1572—1574.
    陈江峰,李学明,周泰禧,等.1991.安徽月山岩体的~(40)Ar/~(39)Ar年龄及其有关的成矿时代估计.现代地质,5(1):91—99.
    陈江峰,周泰禧,李学明,等.1993.安徽南部燕山期中酸性侵入岩的源区锶、钕同位素制约.地球化学,(3):261—268.
    陈江峰,周泰禧,邢凤鸣,等.1994a.长江中下游含铜岩体的Pb、Sr、Nd同位素特征.地球学报(中国地质科学院院报),1—2:111—116.
    陈江峰,周泰禧,张巽,等.1994b.长江中下游含铜岩体的同位素地球化学研究.见:同位素地球化学研究.杭州:浙江大学出版社,214—229.
    池际尚,路凤香.1996.华北地台金伯利岩及古生代岩石圈地幔特征.北京:科学出版社:260—264.
    迟效国,许文良,谭东娟,等.1994.鲁西二辉闪长岩系列中镁铁质、超镁铁质岩石包体的成因研究.华北地台中生代钾质岩浆区.北京:地震出版社,124—131.
    邓晋福,赵海玲,莫宣学,等.1996.中国大陆根-柱构造——大陆动力学钥匙.北京:地震出版社,110—119.
    邓晋福,赵国春,赵海玲,等.2000.中国东部燕山期火成岩构造组合与造山—深部过程.地质论评,46(1):41—48.
    邓晋福,苏尚国,赵海玲,等.2003.华北地区燕山期岩石圈减薄的深部过程.地学前缘,10(3):41—50.
    邓晋福,苏尚国,刘翠,等.2006关于华北克拉通燕山期岩石圈减薄的机制与过程的讨论:是拆沉,还是热侵蚀和化学交代?地学前缘,13(2):105—119.
    鄂莫岚,赵大升.1987.中国东部新生代玄武岩及深源包体.北京:科学出版社.
    范蔚茗,郭锋.2005.华北地区早白垩世镁铁质岩浆作用及其地球动力学背景.大地构造与成矿学,29(i):44—55.
    高山,金振民.1997.拆沉作用(delamination)及其壳—幔演化动力学意义.地质科技情报,16(1):1—9.
    高山,骆庭川,张本仁,等.1999a.中国东部地壳结构和组成.中国科学(D辑),29(3):204—213.
    高山,张本仁,金振民.1999b.秦岭—大别造山带下地壳拆沉作用.中国科学(D辑),29(6):532—541.
    葛宁洁,侯振辉,李惠民,等.1999.大别造山带岳西沙村镁铁超镁铁岩体的锆石U-Pb年龄.科学通报,44(19):2110—2114.
    黄小龙,徐夕生,蔡元峰,等.1998.安徽女山碱性玄武岩中的深源包体.南京大学学报(自然科学),34(3):292—302.
    江博明,B.欧弗瑞,J.柯尼协,等.1988.中国太古代地壳演化—泰山杂岩及长期亏损地幔新生地壳增生的证据.中国地质科学院地质研究所所刊,第18号,33—57.
    靳宗飞.1991.大别山地区玄武岩地质时代的探讨.河南地质,9(3):41—44.
    匡少平,张本任,凌文黎,等.2001.大别造山带南坡晚白垩世玄武岩源区地幔特征.地质科学,36(2):203—211.
    李超,陈衍景.2002.东秦岭—大别地区中生代岩石圈拆沉的岩石学证据评述.北京大学学报(自然科学版),38(3):431—441.
    李曙光,杨蔚.2002.大别造山带深部地缝合线与地表缝合线的解耦及大陆碰撞岩石圈楔入模型:中生代幔源岩浆岩Sr-Nd-Pb同位素证据.科学通报,47(24):1898—1905
    李曙光,Hart S R,郑双根,等.1989.中国华北、华南陆块碰撞时代的钐—钕同位素年龄证据.中国科学(B辑),32:1391—1400.
    李曙光,聂永红,Emil J,等,1997a.大别山俯冲陆壳的再循环——地球化学证据.中国科学(D辑),27(5):412—418.
    李曙光,聂永红,郑双根,等.1997b.俯冲陆壳与上地幔的相互作用—Ⅰ.大别山同碰撞镁铁—超镁铁岩的主要元素及痕量元素地球化学.中国科学(D辑),27 (6):488—493.
    李曙光,聂永红,Hart S,等.1998.俯冲陆壳与上地幔的相互作用—Ⅱ.大别山同碰撞镁铁—超镁铁岩的Sr-Nd同位素地球化学.中国科学(D辑),28(1):18—22.
    李曙光,洪吉安,李惠民,等.1999.大别山辉石岩—辉长岩体的锆石U-Pb年龄及其地质意义.高校地质学报,5:351—355.
    李曙光,黄方,李晖.2001a.大别—苏鲁造山带碰撞后的岩石圈拆离.科学通报,46(17):1487—1491.
    李曙光,黄方,周红英,等.2001b.大别山双河超高压变质岩及北部片麻岩U-Pb同位素组成——对超高压岩石折返机制的制约.中国科学,31(12):977—984.
    李曙光,黄方,杨蔚.2005.下地壳对华北克拉通及大别造山带中生代铁镁质岩浆岩地幔源区的贡献.第八届全国同位素地质年代学和同位素地球化学学术讨论会.1—2.
    李廷河,李金城,宋鹤彬,等.2001.中国东部新生代玄武岩中幔源包体和高压巨晶的氦同位素研究.中国科学(D辑),31(8):641—647.
    林景仟,谭东娟,迟效国,等.1992.胶辽半岛中生代花岗岩.北京:科学出版社,1—128.
    林景仟,谭东娟,金烨.1996.鲁西地区中生代火成活动的~(40)Ar/~(39)Ar年龄.岩石矿物学杂志,15(3):213—220.
    刘丛强,解广轰,增田彰正.1995.中国东部新生代玄武岩的地球化学(Ⅱ)Sr,Nd,Ce同位素组成.地球化学,24(3):203—213.
    刘洪,邱检生,罗清华,等.2002.安徽庐枞中生代富钾火山岩成因的地球化学制约.地球化学,31(2):129—140.
    刘庆,候泉林,周新华,等.2005.大别造山带祝家铺辉长岩的铂族元素特征.岩石学报,21(1):227—239.
    刘庆生,高山,徐启动,等.1996.扬子克拉通太古代崆岭群角闪岩与麻粒岩相岩石的岩石磁学研究.地球物理学报,39(增刊.):150—157.
    路凤香,韩拄国,郑建平,等.1991.辽宁复县地区古生代岩石圈地幔特征.地质科技情报,10(增刊):1—20.
    路凤香,赵磊,邓晋福,等.1995.华北地台金伯利岩岩浆活动时代讨论.岩石学报,11(4):365—374.
    路凤香,郑建平,李伍平,等.2000.中国东部显生宙地幔演化的主要样式:“蘑菇云”模型.地学前缘,7(1):1—5.
    路凤香,郑建平,邵济安,等.2006.华北东部中生代晚期—新生代软流圈上涌与岩石圈减 薄.地学前缘,13(2):86—92.
    马昌前,杨坤光,许长海,等.1999大别山中生代钾质岩浆作用与超高压变质地体的剥露机理.岩石学报,15:351—355.
    倪若水,吴其切,汪祥云,等.1994.安徽庐江龙桥铁矿层新资料及成矿作用多阶段演化模式.地质论评,40(6):565—576.
    聂永红,李曙光.1997.大别山同碰撞镁铁—超镁铁岩侵入体的Sm-Nd年龄及其地质意义.科学通报,42:1086—1088.
    聂永红,李曙光.1998.北大别地体任家湾辉石岩的Rb-Sr年代学及冷却史.科学通报43,(11):1195—1198.
    裴福萍,许文良,王清海,等.2004.鲁西费县中生代玄武岩及幔源捕虏晶的矿物化学:对岩石圈地幔性质的制约.高校地质学报,10(1):88—97.
    彭子成,Kwak L.1986.玄武岩中铅同位素和微量铀钍铅的测定.岩矿测试,5(2):121—125.
    钱青,钟孙霖,李通艺,等.2002.八达岭基性岩和高Ba-Sr花岗岩地球化学特征及成因探讨:华北和大别—苏鲁造山带中生代岩浆岩的对比.岩石学报,18(3):275—292.
    邱检生,王德滋,曾加湖,等.1997.鲁西富钾火山岩及煌斑岩微量元素和Nd—Sr同位素地球化学.高校地质学报,3:384—395.
    邱检生,徐夕生,罗清华.2001.鲁西富钾火山岩和煌斑岩的40Ar-39Ar定年及源区示踪.科学通报,46(18):1500—1508.
    劭济安,李献华,张履桥,等.2001.南口—古崖居中生代双峰式岩墙群形成机制的地球化学制约.地球化学,30(6):517—524.
    沈渭洲,赵连泽,赵明,等.2002.济阳拗陷第三纪玄武岩的Nd-Sr同位素研究.岩石学报,18(1):47—58.
    宋彪,张玉海,万渝生,等.2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评,48(增刊):26—30.
    孙冶东,杨荣勇,任启江,等.1994.安徽庐枞地区中生代火山岩系的特征及其形成的构造背景.岩石学报,10(1):94—103.
    谭东娟,林景仟.1994.华北地台中生代钾质岩浆区的组成及岩石成因.华北地台中生代钾质岩浆区.谭东娟,林景仟主编.北京:地震出版社,1—6.
    谭东娟,林景仟,迟效国,等.1994.济南辉长岩—二辉闪长岩杂岩体的岩石学特征及部分熔融作用.华北地台中生代钾质岩浆区.谭东娟,林景仟主编.北京:地震出版社,44—58.
    王德滋,周金诚,邱检生.1991.橄榄安粗岩系的研究现状.南京大学学报(地球科学),4: 321—328.
    王岳军,范蔚茗,郭锋,等.2003.北大别早白垩世火山岩的地球化学特征及对北大别构造属性的启示.地学前缘,10(4):529—538.
    吴利仁.1984.华东及邻区中、新生代火山岩.北京,科学出版社,287p.
    吴利仁,齐进英,王听渡,等.1982.中国东部中生代火山岩.地质学报,56(3):223—234.
    夏群科,潘尤杰,陈道公,等.2001.汉诺坝幔源单斜辉石巨晶氢同位素组成的离子探针分析:微尺度不均一性.岩石学报,17(1):7—10.
    夏群科,E.Deloule,吴元保,等.2002.大别山道士冲地区辉石岩锆石的氧同位素组成:壳幔相互作用的新信息.科学通报,47(16):1256—1260.
    夏群科,Deloule E,Dallai L,等.2004.女山单斜辉石巨晶硼同位素组成:不均一性的发现及其意义.自然科学进展,14(4):417—423.
    谢智,陈江峰,周泰禧,等.1996.大别造山带变质岩和花岗岩的钕同位素组成及其地质意义.岩石学报,12(3):401—408.
    谢智,陈江峰,张巽,周泰禧.2003.北淮阳晓天盆地早白垩世玄武岩地球化学:富集地幔的证据.矿物岩石地球化学通报,22(1):26—31.
    谢智,郑永飞,闫峻,等.2004.大别山沙村中生代A型花岗岩和基性岩的源区演化关系.岩石学报,20(5):1175—7784.
    邢凤鸣,徐祥.1999.安徽扬子岩浆岩带与成矿.合肥:安徽人民出版社,58p.
    徐贵忠,周瑞,闫臻,等.2001.论胶东地区中生代岩石圈减薄的证据及其动力学机制.大地构造与成矿学,25(4):368—380.
    徐祥,邢凤鸣.1994.宁芜地区三个辉长岩的全岩和矿物Rb—Sr等时线年龄.地质科学,3:309—312.
    许文良,杨承海,杨德彬,等.2006.华北克拉通东部中生代高Mg闪长岩——对岩石圈减薄机制的制约.地学前缘,13(2):120—129.
    徐义刚.1998.上地幔熔体—岩石相互作用与大陆地幔演化.地学前缘,5(增刊):76—85.
    徐义刚.1999.岩石圈的热—机械侵蚀和化学侵蚀与岩石圈减薄.矿物岩石地球化学通报,18(1):1—5.
    徐义刚.2004.华北岩石圈减薄的时空不均一特征.高校地质学报,10(3):324—331.
    徐义刚.2006.用玄武岩组成反演中—新生代华北岩石圈的演化.地学前缘,13(2):93—104.
    闫峻,陈江峰.2005.胶州大西庄早白垩世玄武岩中单斜辉石巨晶.安徽理工大学学报(自然科学版),25(3):9—20.
    闫峻,张巽,陈江峰,等.2001 济南辉长岩体的锶、钕同位素特征.矿物岩石地球化学通报,20(4):302—305.
    闫峻,陈江峰,谢智,等.2003a.鲁东晚白垩世玄武岩中的幔源捕虏体:对中国东部岩石圈 减薄时间制约的新证据.科学通报,48(14):1570—1574.
    闫峻,陈江峰,喻钢,等.2003b.长江中下游早白垩世中基性岩的铅同位素特征:富集地幔的证据.高校地质学报,9 (2):195~206.
    闫峻,陈江峰,谢智,等.2005a鲁东晚白垩世玄武岩及其中幔源包体的岩石学和地球化学研究.岩石学报,21(1):99—112.
    闫峻,陈江峰,谢智,等.2005b.长江中下游地区早白垩世蝌蚪山玄武岩的地球化学研究:岩石圈地幔性质与演化的制约.地球化学,34(5):455—469.
    杨承海,许文良,杨德彬,等.2005.鲁西济南辉长岩的形成时代:锆石LA-ICP-MS U-Pb定年证据.地球学报,26(4):321—325,
    杨晓志,夏群科,Deloule E.2003.女山单斜辉石巨晶锂同位素组成的离子探针分析.矿物学报,23(4):359—363.
    于津海,罗树文.2000.雷州半岛英峰岭新生代玄武岩中的捕虏巨晶.矿物学报,20(2):191—199.
    于学元,白正华.1981.庐枞地区安粗岩系.地球化学,10(1):57—65.
    袁学诚.1996.秦岭岩石圈速度结构与蘑菇云构造模型.中国科学(D辑),26(3):209—215.
    岳文浙,丁保良.1999.江苏白垩纪陆相层序地层研究.火山地质与矿产,20:287—344.
    翟明国,樊祺诚,张宏福,等.2005.华北东部岩石圈减薄中的下地壳过程:岩浆底侵、置换与拆沉作用.岩石学报,21(6):1509—1526.
    张本仁,张宏飞,高山.2004.大别造山带现今地壳结构——岩石组成研究.矿物岩石地球化学通报,23(3):185—193.
    张宏飞,高山,张本仁,等.2001.大别山地壳结构的Pb同位素地球化学示踪.地球化学,30(4):395—401.
    张理刚.1995.东亚岩石圈块体地质——上地幔、基底和花岗岩同位素地球化学及其动力学.北京:科学出版社,252p.
    赵海玲,邓晋福,贺怀宇,等.1998.造山带陆壳增厚的一个岩石学记录——以济南辉长岩及其包体研究为例.地学前缘,5(4):251—255.
    赵子福,郑永飞,魏春生,等.2003.大别山沙村和椒子岩基性—超基性岩锆石U-Pb定年、元素和碳氧同位素地球化学研究.高校地质学报,9:139—162.
    郑建平.1999.中国东部地幔置换作用与中新生代岩石圈减薄.武汉:中国地质大学出版社,50—68.
    郑祥身,金成伟,翟明国,等.2000.北大别灰色片麻岩原岩性质的探讨:Sm-Nd同位素年龄及同位素成分特点.岩石学报,16(2):194—198.
    支霞臣,李彬贤,杨晶,等.1996.扬子地块东段若干橄榄岩包体的温度—压力计算。岩石学报,12(3):446—455
    周建波,郑永飞,李龙,等.2001,扬子大陆板块俯冲的构造加积楔.地质学报,75(3):338—352.
    周泰禧,李学明,赵俊深,等.1987.安徽铜陵铜官山矿田火成岩的同位素地质年龄.中国科学技术大学学报,17(3):403—407.
    周泰禧,陈江峰,李学明.1988.安徽印支期岩浆活动质疑.岩石学报,3:63—73.
    周泰禧,陈江峰,程忠其,等.1992.浙东中生代玄武岩的Sr,Nd同位素研究,壳幔演化和成岩成矿同位素地球化学.北京:地震出版社,45—46.
    周新华.2006.中国东部中、新生代岩石圈转型与减薄研究若干问题.地学前缘,13(2):50—64.
    周新华,张宏福.2006.中生代华北岩石圈地幔高度化学不均一与大陆岩石圈转型.地球科学—中国地质大学学报,31(1):8—13.
    朱炳泉.1998.地球科学中的同位素体系理论与应用.北京:科学出版社,1—330.
    Ames L, Tilton G R, Zhou G Z, et al. 1993, Tirning of collision of the Sino-Korean and Yangtze Cratons: U-Pb Zircon dating of coesite-bearing eclogites. Geology, 21: 339~342.
    Burton K W, Kohn M J, CohenA S, et al. 1995, The relative diffusion of Pb, Nd, Sr and O in garnet. Earth and Planetary Science Letters, 133:199—211.
    Coghlan R A N. 1990, Studies in diffusional transport: grain boundary transport of oxygen in feldspars, diffusion of oxygen, strontium and REEs in garnet, and thermal histories of granitic intrusions in South-Central Maine using oxygen isotopes, Ph.D Thesis, Brown Univ., Providence, R.I., 1990.
    Dahl P S and Frei R. 1998, Stepwise-leaching Pb-Pb dating of inclusion-bearing garnet and staurolite, with implication for Earth Proterozoic tectonism in the Black Hills collisional orogen, South Dakota, United States. Geology, 26: 111-114.
    Dewolf C P, Zeissler C J, Halliday A N, et al. 1996, The role of inclusions in U-Pb and Sm-Nd garnet geochronology: Stepwise dissolution experiments and trace uranium mapping by fission track analysis. Geochimica et CosmochimicaActa, 60: 121-134. Frei R and Kamber B S. 1995, Single mineral Pb-Pb dating: Earth and Planetary Science Letter, 129: 261-268.
    Frei R., Villa I M, Nagler Th F, et al. 1997, Single mineral dating by the Pb-Pb stepwise-leaching method: assessing the mechanisms: Geochimica et CosmochimicaActa, 61: 393-414.
    Frei R, Bridgwater D, Rosing M, et al. 1999, Controversial Pb-Pb and Sm-Nd isotope results in the early Archean Isua (West Greenlad) oxide iron frumation: Preservation of primary signature versus secondary disturbance. Geochimica et Cosmochimica Acta, 63 (3): 473-488
    Frei R and Rosing M T. 2001, The least radiogenic terrestrial leads: implications for the early Archean crustal evolution and hydrothermal—metasomatic processes in the lsua Supracrustal Belt (West Greenland). Chemical Geology, 181: 47-66.
    Gu L X, Du J G, Zhai J P, et al. 2002, Ectogites of the Dabie Region: retrograde metamorphism and fluid evolution. Acta Geologica Sinica, 76 (2): 166-182.
    Holzer L, Frei R, Barton J M, et al. 1998, Unraveling the record of successive high grade events in the Central Zone of the Limpopo Belt using Pb single phase dating of metamorphic minerals. Precambrian Research 87:87-115.
    Li S G, Xiao Y L, Liu D L, et al. 1993, Collision of the North China and Yangtse Blocks and formation ofcoesite-bearing eclogites: Timing and processes. Chem. Geol., 109:89-111.
    Li S G, Wang S, Chen Y Z, et al. 1994, Excess argon in phengite from eclogite: Evidence from dating of eclogite minerals by Sm-Nd, Rb-Sr and ~(40)Ar/~(39)Ar methods. Chem. Geol., 112: 343-350.
    Mezger K, Hanson G N, Bohten S R. 1989, U-Pb systematics of garnet: dating the growth of garnet in the Late Archean Pikwitonei granulite domain at Cauchon and Natawahunan Lake, Mantitoba, Canada. Contrib. Mineral. Petrol., 101: 136—148.
    邱华宁,J.R.Wijbrans,施和生,等.2004,大别山碧溪岭榴辉岩450Ma年龄信息:石榴子石流体包裹体~(40)Ar_~(39)Ar定年初步结果.地球化学,33(4):325-333.
    Roberts H, Dahl P, Kelley S, et al. 2002, New ~(207)Pb-~(206)Pb and ~(40)Ar-~(39)Ar ages from SW Montana, USA: constrains on the Proterozoic and Archean tectonic and depositional history of Wyoming Province. Precambrian Research, 117: 119-143.
    Sagong H, Cheong C S, Kwon S T. 2003, Paleoproterozoic orogeny in South Korea: evidence from Sm-Nd and Pb stepwise-leaching garnet ages of Precambrian basement rocks. Precambrian Research, 122: 275-295.
    Su W, You Z D, Cong B L, et al. 2002, Cluster of water molecules in garnet from ultrahigh-pressure eclogite. Geology, 30: 611-614.
    Toft J B and Frei R. 2001, Complex Sm-Nd and Lu-Hf isotope systematics in metamorphic garnets from the Isua supracrustal belt, West Greenland. Geochimica et Cosmochimca Acta, 65 (18): 3177-3187.
    Touret J L R. 1981, Fluid inclusions in high grade metamorphic rocks. In; Hollister L S, Crawford M L, eds. MAC Shout Course in fluid inclusions: Applications to Petrology. Calgary, 6: 82-208.
    Vance D, Meier M and Oberli F. 1998, The role of high U-Th inclusions on the U-Th-Pb systematics of ahnandine-pyrope garnet: Results of a combined bulk dissolution, stepwise-leaching and SEM study. Geochimica et Cosmochimica Acta, 62: 3527-3540.
    Wang X M, Liu J G, Mao H K. 1989, Coesite-bearing eclogite from Dabie Mt in central China. Geology, 17: 1085-1088.
    Xiao Y L, Hoefs J, Kerkhof A M, et al. 2000, Fluid history of UHP metamorphism in Dabie Shan, China: a fluid inclusion and oxygen isotope study on the coesite-bearing eclogite from Bixiling. Contrib Mineral Petrol, 139: 1—16.
    Xu S, Okay Al, Ji S S, et al. 1992, Diamonds from Dabie Shan metamorphic rocks and its implication for tectonic setting. Science, 1992, 256: 80-92.
    Zheng Y F, Fu B, Gong B, et al. 2003, Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: implications for geodynamics and fluid gegime. Earth-Science Reviews, 62: 105-161.
    Zhou H W, Liu Y, Li X H, et al. 1999, Age of granulite from Huangtuling, Dabie Mountain: Pb-Pb dating of garnet by a stepwisewise dissolution technique. Chinese Science Bulletin, 44 (10): 941-944.
    曹荣龙和朱寿华.1995,安徽碧溪岭含柯石英榴辉岩的U-Pb与~(40)Ar-~(39)Ar年代学研究.地球化学,24(2):152-160.
    程裕淇,刘敦一,I.S.Willianms,等.2000,大别山碧溪岭深色榴辉岩和片麻状化岗质岩石SHRIMP分析——晋宁期高压—超高压变质作用的同位素年代学依据.地质学报,74(3):193-203.
    傅斌,肖益林,郑永飞,等.大别山双河和碧溪岭超高压变质岩流体包裹体研究.岩石学报,16(1):119—126.
    胡世玲,郝杰,李曰俊,等,1999,大别山榴辉岩激光探针~(40)Ar-~(39)Ar年龄.地质科学,34(2):427-431.
    李龙,郑永飞,周建波.2001,中国大陆地壳铅同位素演化的动力学模型.岩石学报,17(1):61-68.
    李秋立,李曙光,周红英,等.2001,超高压榴辉岩中金红石的U-Ph定年:快速冷却的证据.科学通报,46(18):1655-1658.
    李曙光,Hart S R,郑双根,等.1989,中国华北、华南陆块碰撞时代的Sm-Nd同位素年龄证据.中国科学(B辑),19(3):312-319.
    李曙光,陈移之,葛宁洁,等.1993,青岛榴辉岩及胶南群片麻岩的锆石U-Pb年龄—胶南群中晋宁期岩浆事件的证据.科学通报,38(19):1771-1777.
    李曙光,Jagoutz E,肖益林,等.1996,大别山—苏鲁超高压变质年代学—Ⅰ,Sm-Nd同位素体系.中国科学(D辑),26(3):249-257.
    刘若新,樊祺诚,李惠民,等.1995a,大别山碧溪岭石榴橄榄岩-榴辉岩体高压变质作用的年代学研究.科学通报,40(14):1304-1307.
    刘若新,樊祺诚,李惠民,等.1995b,大别山碧溪岭石榴橄榄岩-榴辉岩体的原岩性质及同位素年代学的启示.岩石学报,11(3):243-254.
    刘颖,周汉文,涂湘林,等.1997,石榴石单矿物阶段酸淋洗Pb-Pb同位素定年技术.地球学报,18:283-285.
    盛英明,夏群科,杨晓志.2004,大陆深俯冲带中的水:来自大别山超高压榴辉岩的证据.科学通报,45(17):1889-1894.
    王松山,葛宁杰,桑海清,等.1999,多硅白云母过剩Ar成因及绿辉石Ar-Ar年龄谱意义:以南大别超高压变质岩为例.科学通报,44(24):2607—2613.
    吴元保,陈道公,程昊,等.2001,碧溪岭岩体中石榴橄榄岩的锆白显微结构及离子探针定年.高校地质学报,7(3):356—362.
    夏群科,盛英名,Deloule E,等.2004.超高压变质作用不同阶段的流体变化:碧溪岭榴辉岩的氢、硼同位素分析.岩石学报,20(3):677-684.
    肖益林,傅斌,李曙光,等.1997,大别山碧溪岭榴辉岩变质岩温压条件计算及氧同位素研究.地球学报,18(3):318—323.
    杨巍然,王林森,韩郁箐,等.1994,大别蓝片岩—榴辉岩年代学研究。见:陈好寿主编.同位素地球化学研究.杭州:浙江大学出版社,1-340.
    张旗,赵大升,刘若新,等.1993,安徽岳西县碧溪岭—五河地区石榴石橄榄岩—榴辉岩组合的原岩性质.科学通报,38(18):1694—1697.
    郑永飞.2004,深俯冲大陆板块折返过程中的流体活动.科学通报,49(10):917—929.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700