用户名: 密码: 验证码:
典型室内外环境空气污染特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于现代社会人们大部分时间都在建筑室内外环境中度过,所以,研究建筑室内外空气污染物输运特性对于控制和改善其空气质量具有重要意义。基于这一背景,本文利用数值模拟或现场监测相结合的方法对室外典型街谷空气污染特性、建筑室内外污染物相关性和室内典型封闭空间空气污染特性等方面的几个重要问题进行了系统的研究和分析。
     实测数据表明,街谷两侧绿化和建筑物对空气污染物扩散的阻碍有重要影响。因此,引入约束物(建筑或绿化)高度(H)与约束物距机动车道中心距离(D)之比(即高远比H/D)来表征这些约束物对街谷内空气污染物扩散的阻滞作用。街谷局部实测地点的总有效高远比(H/DT)等于单体约束物高远比(Hi/Di)的最大值。静风条件下,街谷总有效高远比(H/DT)越大,约束效应越强,即越不利于空气污染物的扩散。
     本文引入街谷整体换气次数(ηt,)和局部换气次数(ηl)的概念评估街谷内外空气交换能力。数值模拟结果显示,建筑布局对街谷气流组织结构、风速梯度分布及空气交换能力的影响很大。尤其是当组成街谷的建筑错列布置,并且上风侧缺口数量多,宽度大时,街谷局部换气次数(ηl)较大,有利于街谷内外空气交换和污染物稀释。
     街谷各沉积面上颗粒物平均沉积速度主要与流场特点、粒径大小和沉积面的位置有关。关于沉积速度的分布规律,较大值一般出现在建筑棱边附近,从棱边往沉积面中心方向逐渐降低。棱边附近沉积速度梯度变化显著,而沉积面中心基本没有梯度变化。
     实测数据显示,由于典型乡村(鲁西南)建筑的气密性较差,室内外污染物浓度相关性十分密切:取暖设备运行方式、燃料类型和居民日常活动规律对乡村建筑室内外污染物浓度变化规律有很大的影响。春节燃放烟花爆竹会产生大量的颗粒物和气态污染物,其污染程度与烟花爆竹类型和燃放高度有关。
     人工气候室实验结果表明,建筑室内外颗粒物浓度相关性主要与通风类型和粒子尺度谱分布等因素有关。如机械通风房间室内外颗粒物浓度关系最为密切;自然通风房间室内颗粒物浓度变化滞后于室外;空调通风房间的初效过滤器对小粒子室内外浓度关系几乎没有影响;供暖渗透通风房间通风效果最差,室内外颗粒物浓度变化曲线的一致性最差。
     置换通风房间是一种典型室内封闭空间。数值模拟结果显示,气溶胶粒子污染源位置、送风温度和送风口位置对其室内颗粒物浓度空间分布和清除效率具有十分强烈影响。当污染源位置较低时,垂直方向上出现浓度分层现象。送风温度和送风口的垂直位置虽然对置换通风房间上部的气流组织影响不大,但是对下部气流组织的影响却很明显。
     轨道交通系统是另一种典型封闭空间。上海轨道交通系统代表性车站的实测信息表明:站外污染物浓度与局部交通环境和车站周围建筑布局特点有关;站内空间CO2浓度与客流密度、背景浓度和通风系统多种因素有关;而站内空间CO和颗粒物浓度与客流密度基本无关,却与室内外源和通风系统关系密切。尤其是,地下空间内部(如3号线上海火车站和上海南站站厅)污染程度十分严重,而且很有可能有CO室内污染源。
     上海轨道交通系统列车内空气品质监测参数的变化因其种类、监测(即列车运行)方向及工作日与周末的不同而存有差异。各种监测参数与客流密度相关性的强弱顺序依次是CO2,温度和湿度。而颗粒物浓度主要取决于背景,受客流密度的影响较弱。此外,9号线从地上高架过渡到地下隧道过程中,车厢内所有监测参数均有不同程度的变化。相同客流密度条件下,3号线车厢内CO2浓度约为9号线的3.6倍。
People spend most of their time in built-environment in modern society. Study on the transportation characteristics of air pollutants in and out buildings has special significance for controlling and improving indoor or outdoor air quality. Therefore, some important problems about air pollution features in outdoor typical street canyons, relationships of pollutants between indoor and outdoor building environment, and pollutants dispersion characteristics in typical enclosure spaces are investigated and analyzed systemetically by employing numerical simulation and field measurement.
     The field measurement data shows that tree planting along street canyons is as important as buildings on the block effect of air contaminants dispersion. Therefore, ratio of the height of restrictive objects (buildings or tree planting) to the distance of them to the center of motor vehicles driveways, ratio of height to distance (H/D), is introduced to denote the constraint effect of street canyon obstacles. The total effective ratio of height to distance (H/DT) of the local street canyon monitoring site is equal to the maximum among those of all the individual restrictive objects (Hi/Di). On the condition of calm wind, the higher the H/DT, the stronger the restriction effect of the objects to the disadvantage of air contaminants dispersion.
     The total air exchange rateηt and local air exchange rateη1 are introduced to evaluate the air exchange level of street canyons. The numerical simulation results show that air flow structure, velocity gradient distribution and air exchange level are tremendously changed by buildings layout. Especially, when the buildings are stagger arrangement, and there are more interspaces, larger interspaces width among upwind buildings, the local air exchange rateη1 of street canyon will be larger, which is good for the air exchange and pollutants dilution.
     Particles average deposition rate on each surface of street canyons is mainly associated with flow field, particle diameter and location of the surface. About distribution of particles deposition rate on surfaces of street canyons, the largest ones appear near the edges of buildings, and they decrease gradually from the edges to the center of surface. The remarkable gradient variation exists near the edges, while almost no gradient variation in the surface center.
     The field measurement data indicates that there is closely correlation between indoor and outdoor air contaminant concentrations, for the terrible obturation feature of rural building in the southwest of Shandong Province. The types of heating facilities, fuel type and habit of resident daily activity have great effects on the variations of pollutant concentrations indoor and outdoor. Fireworks during the Spring Festival can produce large number of particles and gaseous contaminants, and the consequent pollution level depend on their form and height of blowing up.
     The experiment data in climate chamber indicates that the correlation of particle concentration between indoor and outdoor of a building is greatly affected by ventilation type and particle size distribution. For example, particle concentration in a mechanical ventilation room is directly affected by the outdoor concentration. Indoor particle concentration of a natural ventilation room changes with a time delay comparing to outdoor concentration. The primarily efficient filter of air conditioning room has a little influence on the correlation of fine particle concentration between indoor and outdoor environment. The consistency of particle concentration curves indoor and outdoor of a heating room is the worst among which mentioned above.
     Displacement ventilation (DV) room is one of the typical enclosure spaces. The numerical simulation indicates that the aerosol source location, temperature and vertical location of the inlet supply air have strong impact on the spatial distribution and removal rate of indoor particles. When the aerosol source location is low, there will be the satisfying vertical concentration stratification. The temperature and vertical location of inlet supply air do not greatly affect the air distribution in the upper part of a DV room, but could significantly influence the airflow pattern in the lower zone of the room.
     Rail transit system is another typical enclosure space. The monitoring information of representative stations of Shanghai Rail Transit System shows that air pollutant concentrations outside the stations are related to local traffic environment and layout features of buildings around stations. CO2 concentration inside stations is connected with density of passenger flow, background concentration and ventilation system. However, CO and particle concentration inside stations are not associated with density of passenger flow, but with sources inside and outside stations as well as their ventilation system. Specially, the underground spaces of stations, halls of Shanghai Railway Station and South Station of line 3, are polluted seriously, and there could be CO sources in all probability.
     The variations of monitored parameters of air quality in carriages of Shanghai Rail Transit System differ from their kinds, traveling direct, weekends and workdays. The correlation level between the monitored parameters and density of passenger flow from the strongest to the weakest is CO2, temperature and humidity in proper sequence. However, particle concentration in carriages primarily depends on the background concentration, and influence the density of passenger flow is relativily weak. In addition, the monitored parameters in carriages on line 9 vary at different extent when the train travels from the over ground elevated road to subterranean tunnel. Under the condition of the same density of passenger flow, CO2 concentration in carriages of line 3 is about 3.6 times higher than that of line 9.
引文
[1]Klepeis N E, Nelson W C, Ott W R, et al. The national human activity pattern survey (NHAPS):a resource for assessing exposure to environmental pollutants[J]. Journal of Exposure Analysis and Environmental Epidemiology,2001,11(3):231-252.
    [2]Robinson J, Nelson W C. National human activity pattern survey data base[DB]. US EPA, Research Triangle Park, NC, USA,1995.
    [3]Aliaga C, Winqvist K. Commnet les femmes et les homes utilisent leurs temps-Resultats de 13 pays europeens[R]. Eurostat, KS-NK-03-012-FR-N,2003.
    [4]Kaur S, Nieuwenhuijsenb M J, Colvile R N. Fine particulate matter and carbon monoxide exposure concentrations in urban street transport microenvironment[J]. Atmospheric Environment, 2007,41(23):4781-4810.
    [5]Jenklins P L, Phillips T J, Mulberg E J, et al. Activity patterns of Californians:use of proximity to indoor pollutant sources [J]. Atmospheric Environment,1992,26A(12):2141-2148.
    [6]李先庭,杨建荣,王欣.室内空气品质研究现状与发展[J].暖通空调,2000,30(3):36-40.
    [7]Dockery D W, Pope 3rd C A, Xu X P, et al. An association between air pollution and mortality in six US cities [J]. New England Journal of Medicine,1993,329:1753-1759.
    [8]Pope 3rd C A, Thun M J, Namboodiri M M, et al. Particulate air pollution as a predictor of mortality in a prospective study of US adults[J]. American Journal of Respiratory and Critical Care Medicine,1995,151:669-674.
    [9]Li Y, Leung G M, Tang J W, et al. Role of ventilation in airborne transmission of infectious agents in the built environment—a multidisciplinary systematic review[J]. Indoor Air,2007, 17(1):2-18.
    [10]Nieuwenhuijsen M J, Gomez-Perales J E, et al. Levels of particulate air pollution, its elemental composition, determinants and health effects in metro systems[J]. Atmospheric Environment,2007,41(37):7995-8006.
    [11]Kamens R, Lee C T, Wiener R, et al. A study to characterize indoor particles in three non-smoking homes [J]. Atmospheric Environment.1991,25A(5-6):939-948.
    [12]Shair F H, Heitner K L. Theoretical model for relating indoor pollutant concentration to those outside[J]. Environment Science and Technology,1974,8(5):444-451.
    [13]Thatcher T L, Layton D W. Deposition, resuspension, and penetration of particles within a residence[J]. Atmospheric Environment,1995,29(13):1487-1497.
    [14]DETR (2000). The Air Quality Strategy for England, Scotland, Wales and Northern Ireland, United Kingdom[R]. Department of the Environment, Transport and the Regions, the Scottish Executive, The National Assembly for Wales and The Department of Environment for Nor-thern Ireland, The Stationary Office, ISBN 0101454821.
    [15]Chaloulakou A, Mavroidis I, Duci A. Indoor and outdoor CO concentration relationships at different micro-environments in the Athens area[J]. Chemosphere,2003,52(6):1007-1019.
    [16]Daisey J M, Hodgson A T, Fisk W J. Volatile organic compounds in twelve California office buildings:classes, concentrations and sources[J]. Atmospheric Environment,1994,28(22): 3557-3562.
    [17]Monn C, Fuchs A, Kogelschatz D, Wanner H U. Comparison of indoor and outdoor concentrations of PM10 and PM2.5[J]. Journal of Aerosol Science,1995,26(1):S515-S516.
    [18]Perry R, Gee I L. Vehicle emission and effects on air quality:indoors and outdoors[J]. Indoor Environment,1994,3:224-236.
    [19]Quackenboss J J, Lebowitz M D, Crutchfield C D. Indoor-outdoor Relationships for particulate matter:exposure classifications and health effects [J]. Environment International,1989, 15(1-6):353-360.
    [20]Ross D I, Upton, et al. Preliminary measurements of ultra fine aerosols emissions from gas cooking[C]. Proceedings of the English International Conference on Indoor Air Quality and Climate,1999,4:1043-1048.
    [21]Spengler J D, Dockery et al. Long term measurements of reparable sulfates and particles inside and outside homes[J]. Atmospheric Environment,1981,15:23-30.
    [22]Yocom J E. Indoor-outdoor air quality relationships:A critical review[J]. Journal of the Air Pollution Control Association,1982,32(5):500-520.
    [23]Jayanty R K M, Gay J B W. Summary of the 1993 EPA/A and WMA international symposium:Measurement of toxic and related air pollutants. Journal of the Air and Waste Management Association,1994,44 (3):254-259.
    [24]Monn C, Fuchs A, Hogger D, et al. Particulate matter less than 10 μm (PM10) and fine particles less than 2.5 μm (PM2.5):Relationships between indoor, outdoor and personal concentrations [J]. Science of the Total Environment,1997,208 (1-2):15-21.
    [25]Lawrence A J, Masih A, Taneja A. Indoor/outdoor relationships of carbon monoxide and oxides of nitrogen in domestic homes with roadside, urban and rural locations in a central Indian region[J]. Indoor Air,2005,15(2):76-82.
    [26]McCann J M, Currie J I, Addison P S, Capper G. Traffic pollution in and around city center commercial properties[C]. Proceedings of the 2nd International Conference on Urban Air Quality, Institute of Physics, Madrid, Spain,3-5 March,1999, EX1.4:152-153.
    [27]Johnson W B. Air Pollution[M]. New York:Aeademie Press,1973:529-535.
    [28]Oke T R. Street design and urban canopy layer climate[J]. Energy and Buildings,1988, 11(1-3):103-113.
    [29]Boubel R W, Fox D L, Turner D B, et al. Fundamentals of Air Pollution (3rd) [M]. New York:Academic Press,1994:40-96.
    [30]Carruthers D J, Holroyd R J, Hunt J C R, et al. UK-ADMS:a new approach to modelling dispersion in the earth's atmospheric boundary layer[J]. Journal of Wind Engineering and Industrial Aerodynamics,1994,52(c):139-153.
    [31]Vardoulakis S, Fisher B E, Pericleous K, et al. Modelling air quality in street canyons:a review[J]. Atmospheric Environment,2003,37(2):155-182.
    [32]Li X X, Liu C H, Dennis Y C Leung, et al. Recent progress in CFD modelling of wind field and pollutant transport in street canyons[J]. Atmospheric Environment,2006,40(29):5640-5658.
    [33]Sini J F, Anquetin S, Mestayer P G. Pollutant dispersion and thermal effects in urban street canyons[J]. Atmospheric Environment,1996,30(15):2659-2677.
    [34]Baik J J, Kim J J. A numerical study of flow and pollutant dispersion characteristics in urban street canyons[J]. Journal of Applied Meteorology,1999,38(11):1576-1589.
    [35]Kim J J, Baik J J. Urban street-canyon flows with bottom heating[J]. Atmospheric Environment,2001,35(20):3395-3404.
    [36]Jeong S J, Andrews M J. Application of the k-ε turbulence model to the high Reynolds number skimming flow field of an urban street canyon[J]. Atmospheric Environment,2002,36(7): 1137-1145.
    [37]Chan A T, So E S P, Samad S C. Strategic guidelines for street canyon geometry to achieve sustainable street air quality[J]. Atmospheric Environment,2001,35(24):4089-4098.
    [38]Chan A T, Au W T W, So E S P. Strategic guidelines for street canyon geometry to achieve sustainable street air quality—part Ⅱ:multiple canopies and canyons[J]. Atmospheric Environment,2003,37(20):2761-2772.
    [39]张宁,蒋维楣.城市街区内气流的数值模拟与分析[J].南京大学学报(自然科学版),2000,36(6):760-772.
    [40]Huang H, Arai M, Tamura M, et al. A two dimensional air quality model in an urban street canyon:evaluation and sensitivity analysis. Atmospheric Environment,2000,34(5):689-698.
    [41]Assimakopoulos V D, ApSimon H M, Moussiopoulos N. A numerical study of atmospheric pollutant dispersion in different two-dimensional street canyon configurations[J]. Atmospheric Environment,2003,37(29):4037-4049.
    [42]沈祺,王国砚,顾明.某商业街区建筑风压及风环境数值模拟[J].力学季刊,2007,28(4):661-666.
    [43]Soulhac L, Mejean P, Perkins R J. Modelling transport and dispersion of pollutants in street canyons[C]. Sixth International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, INSA de Rouen, France,1999.
    [44]蒋德海,蒋维楣,苗世光.城市街道峡谷气流和污染物分布的数值模拟[J].环境科学研究,2006,19(3):7-12.
    [45]Kim J J, Baik J J. A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG κ-ε turbulence model [J]. Atmospheric Environment,2004,38(35):3039-3048.
    [46]Kim J J, Baik J J. Effects of inflow turbulence intensity on flow and pollutant dispersion in an urban street canyon[J]. Journal of Wind Engineering and Industrial Aerodynamics,2003,91(3): 309-329.
    [47]Xia J, Leung D Y C, Hussaini M. Numerical simulations of flow-field interactions between moving and stationary objects in idealized street canyon settings[J]. Journal of Fluids and Structures,2006,22(3):315-326.
    [48]Jicha M, Pospisil J, Katolicky J. Dispersion of pollutants in street canyon under traffic induced flow and turbulence[J]. Environmental Monitoring and Assessment,2000,65(1-2): 343-351.
    [49]Hider Z E, Hibberd S, Baker C J. Modelling particulate dispersion in the wake of a road vehicle[J]. Journal of Wind Engineering and Industrial Aerodynamics,1997,67-68:733-744.
    [50]Kastner-Klein P, Sini J F, Fedorovich E, et al. Similarity concept for dispersion of car exhaust gases in street canyon tested against wind-tunnel and numerical model data[C]. In:Second International Conference on Urban Air Quality, Madrid, Spain,1999.
    [51]Ca V T, Asaeda T, Ito M, Armfield S. Characteristics of wind field in a street canyon[J]. Journal of Wind Engineering and Industrial Aerodynamics,1995,57(1):63-80.
    [52]Mestayer P G, Sini J F, Jobert M. Simulation of wall temperature influence on flow and dispersion within street canyons [C]. Third International Conference on Air Pollution, Proto Carras, Greece, Turbulence and Diffusion,1995:109-116.
    [53]Kim J J, Baik J J. A numerical study of thermal effects on flow and pollutant dispersion in urban street canyons [J]. Journal of Applied Meteorology,1999,38(8):1249-1260.
    [54]Louka P, Vachon G, Sini J F, et al. Thermal effects on the airflow in a street canyon—Nantes'99 experimental results and model simulations[J]. Water, Air, and Soil Pollution, 2002, Focus 2 (5-6):351-364.
    [55]Bohnenstengel S, Schlunzen K H, Grawe D. Influence of thermal effects on street canyon circulations[J]. Meteorologische Zeitschrift,2004,13(5):381-386.
    [56]Xie X M, Huang Z, Wang J S, et al. The impact of solar radiation and street layout on pollutant dispersion in street canyon[J]. Building and Environment,2005a,40(2):201-212.
    [57]Xie X M, Huang Z, Wang J S. Thermal effects on vehicle emission dispersion in an urban street canyon[J]. Transportation Research Part D:Transportation and Environment,2005b,10(3): 197-212.
    [58]Xie X M, Huang Z, Wang J S. Impact of building configuration on air quality in street canyon[J]. Atmospheric Environment,2005c,39(25):4519-4530.
    [59]Tsai M Y, Chen K S, Wu C H. Three-dimensional modeling of air flow and pollutant dispersion in an urban street canyon with thermal effects [J]. Journal of the Air and Waste Management Association,2005,55(8):1178-1189.
    [60]Xie X M, Liu C H, Leung D Y C. Impact of building facades and ground heating on wind flow and pollutant transport in street canyons[J]. Atmospheric Environment,2007,41(39): 9030-9049.
    [61]Xie X M, Liu C H, Leung D Y C, et al. Characteristics of air exchange in a street canyon with ground heating[J]. Atmospheric Environment,2006,40(33):6396-6409.
    [62]Baik J J, Kang Y S, Kim J J. Modeling reactive pollutant dispersion in an urban street canyon[J]. Atmospheric Environment,2007,41(5):934-949.
    [63]Kang Y S, Baik J J, Kim J J. Further studies of flow and reactive pollutant dispersion in a street canyon with bottom heating[J]. Atmospheric Environment,2008,42(20):4964-4975.
    [64]张美根,胡非,邹捍等.大气边界层物理与大气环境过程研究进展[J].大气科学,2008,32(4):923-934.
    [65]张美根,韩志伟TRACE-P期间硫酸盐、硝酸盐和铵盐气溶胶的模拟研究[J].高原气象,2003,22(1):1-6.
    [66]欧阳琰,蒋维楣,刘红年.城市空气质量数值预报系统对PM2.5的数值模拟研究[J].环境科学学报,2007,27(5):838-845.
    [67]蒋维楣,王咏薇,刘罡,等.多尺度城市边界层数值模拟系统[J].南京大学学报(自然科学),2007,43(3):221-237.
    [68]Ahmadi G, Li A. Computer simulation of particle transport and deposition near a small isolated building[J]. Journal of Wind Engineering and Industrial Aerodynamics,2000,84(1): 23-46.
    [69]Liu C S, Ahmadi G. Transport and deposition of particles near a building model [J]. Building and Environment,2006,41(6):828-836
    [70]Nazridoust K, Ahmadi G. Airflow and pollutant transport in street canyons [J]. Journal of Wind Engineering and Industrial Aerodynamics,2006,94(6):491-522.
    [71]Jonsson L, Karlsson E, Jonsson P. Aspects of particulate dry deposition in the urban environment[J]. Journal of Hazardous Materials,2008,153 (1-2):229-243.
    [72]Mochida A, Tabata Y, Iwata T, et al. Examining tree canopy models for CFD prediction of wind environment at pedestrian level[J]. Journal of Wind Engineering and Industrial Aerodynamics,2008,96(10-11):1667-1677.
    [73]Matthew Tallis, Gail Taylor, Danielle Sinnett, et al. Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments[J]. Landscape and Urban Planning,2011,103(2):129-138.
    [74]Yin S, Cai J P, Chen L P, et al. Effects of vegetation status in urban green spaces on particle removal in a street canyon atmosphere [J]. Acta Ecologica Sinica,2007,27(11):4590-4595.
    [75]Gayev Y A, Savory E. Influence of street obstructions on flow processes within urban canyons[J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,82(1-3):89-103.
    [76]Gromke C, Ruck B. Influence of trees on the dispersion of pollutants in an urban street canyon—Experimental investigation of the flow and concentration field[J]. Atmospheric Environment,2007,41(16):3287-3302.
    [77]Gromke C, Buccolieri R, Di Sabatino S, et al. Dispersion study in a street canyon with tree planting by means of wind tunnel and numerical investigations-Evaluation of CFD data with experimental data[J]. Atmospheric Environment,2008,42(37):8640-8650.
    [78]Buccolieri R, Gromke C, Di Sabatino S, et al. Aerodynamic effects of trees on pollutant concentration in street canyons[J]. Science of the Total Environment,2009,407(19):5247-5256.
    [79]Salim S M, Buccolieri R., Chan A, et al. Large eddy simulation of the aerodynamic effects of trees on pollutant concentrations in street canyons [J]. Procedia Environmental Sciences,2011,4: 17-24.
    [80]Gromke C. A vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel tests and its application in pollutant dispersion studies[J]. Environmental Pollution, 201,159(8-9):2094-2099.
    [81]Salim S M, Cheah S C, Chan A. Numerical simulation of dispersion in urban street canyons with avenue-like tree plantings:Comparison between RANS and LES[J]. Building and Environment,2011,46(9):1735-1746.
    [82]Ahmad K, Khare M, Chaudhry K K. Wind tunnel simulation studies on dispersion at urban street canyons and intersections a review[J]. Journal of Wind Engineering and Industrial Aerodynamics,2005,93(9):697-717.
    [83]Rudnicki M, Mitchell S J, Novak M D. Wind tunnel measurements of crown streamlining and drag relationships for three conifer species[J]. Canadian Journal of Forest Research,2004, 34(3):666-676.
    [84]Vollsinger S, Mitchell S J, Byrne K E, et al. Wind tunnel measurements of crown streamlining and drag relationships for severa hardwood species[J]. Canadian Journal of Forest Research,2005,35(5):1238-1249.
    [85]Gromke C, Ruck B. Aerodynamic modeling of trees for small scale wind tunnel studies[J]. Forestry,2008,81(3):243-258.
    [86]Meroney R N. Wind-tunnel simulation of the flow over hills and complex terrain[J]. Journal of Wind Engineering and Industrial Aerodynamics,1980,5(3-4):297-321.
    [87]Stacey G R, Belcher R E, Wood C J, et al. Wind flows and forces in a model spruce forest[J]. Boundary-Layer Meteorology,1994,69(3):311-334.
    [88]Aubrun S, Leitl B. Development of an improved physical modelling of a forest area in a wind tunnel[J]. Atmospheric Environment,2004,38(18):2797-2801.
    [89]Kulmala M, Asmi A, Pirjola L. Indoor air aerosol model:the effect of outdoor air, filtration and ventilation on indoor concentrations[J]. Atmospheric Environment,1999,33(14):2133-2144.
    [90]Long C M, Suh H H, Catalano P J, et al. Using time and size-resolved particulate data to quantify indoor penetration and deposition behavior[J]. Environmental Science and Technology, 2001,35(10):2089-2099.
    [91]Jamriska M, Thomas S, Morawska L, et al. Relation between indoor and outdoor exposure to fine particles near a busy arterial road[J]. Indoor Air,1999,9(2):75-84.
    [92]Matson Uve. Comparison of the modelling and the experimental results on concentrations of ultra-fine particles indoors[J]. Building and Environment,2005,40(7):996-1002.
    [93]Ekberg L E. Outdoor air contaminants and indoor air quality under transient conditions[J]. Indoor Air,1994,4(3):189-96.
    [94]Kraenzmer M. Modeling and continuous monitoring of indoor air pollutants for identification of sources and sinks[J]. Environment International,1999,25(5):541-551.
    [95]Tung T C W, Chao C Y H, Burnett J. A methodology to investigate the particulate penetration coefficient through building shell[J]. Atmospheric Environment,1999,33(6):881-893.
    [96]Mosley R B, Greenwell D J, Sparks L E, et al. Penetration of ambient fine particles into the indoor environment [J]. Aerosol Science and Technology,2001,34(1):127-136.
    [97]Jamriska M, Morawska L, Ensor D S. Control strategies for sub-micrometer particles indoors:model study of air filtration and ventilation[J]. Indoor Air,2003,13(2):96-105.
    [98]Morawska L, He C, Hitchins J, et al. The relationship between indoor and outdoor airborne particles in the residential environment[J]. Atmospheric Environment,2001,35(20):3463-3473.
    [99]Monforti F, Bellasio R, Bianconi R, et al. An evaluation of particle deposition fluxes to cultural heritage sites in Florence, Italy[J]. Sci. Total Environ,2004,334-335:61-72.
    [100]Chan A T. Indoor-outdoor relationship of particulate matter and nitrogen oxides under different outdoor meteorological conditions[J]. Atmospheric Environment,2002,36(9): 1543-1551.
    [101]Anderson I. Relationship between indoors and outdoors air pollution[J]. Atmospheric Environment,1972,6(4):275-278.
    [102]Baek S O, Kim Y S, Perry R. Indoor air quality in homes, offices and restaurants in Korean urban areas-indoor/outdoor relationship[J]. Atmospheric Environment,1997,31(4): 529-544.
    [103]Kingham S, Briggs D, Elliott P, et al. Spatial variations in the concentrations of traffic related pollutants in indoor and outdoor air in Hundersfield, England[C]. Atmospheric Environment,2000,34(6):905-916.
    [104]Sundell J, Lindvall T, Stenberg B. Association between type of ventilation and air flow rates in office building and risks of SBS symptoms among occupants[J]. Environmental International,1994,20(2):239-51.
    [105]Byrne M M. Patients'Perceptions of Pre-Operative Preparation for day Surgery [J]. AORN, 1998,67(5):1039-1040.
    [106]Dockery D W, Spengler J D. Indoor-outdoor relationships of respirable sulfates and particles [J]. Atmospheric Environment,1981,15(3):335-343.
    [107]Chao C Y N, Tung T C W, Burnett J. Influence of different indoor activities on the indoor particulate levels in residential building[J]. Indoor and Built Environment,1998,7(2):110-121.
    [108]Smith K R. Indoors air pollution in developing countries:recommendations for research[J]. Indoor Air,2002,12(3):198-207.
    [109]Zhi Z, Li Y, Chen B, et al. Chinese kang as a domestic heating system in rural northern China—A review[J]. Energy and Buildings,2009,41 (1):111-119.
    [110]Zhi Z, Li Y, Chen B. Thermal storage performance analysis on Chinese kangs[J]. Energy and Buildings,2009,41 (4):452-459.
    [111]Lin B R, Tan G, Wang P, et al. Study on the thermal performance of the Chinese traditional vernacular dwellings in Summer[J]. Energy and Buildings,2004,36(1):73-79
    [112]Zhu Y X, Lin B R. Sustainable housing and urban construction in China[J]. Energy and Buildings,2004,36(12):1287-1297.
    [113]Gao X, Yu Q, Gu Q, et al. Indoor air pollution from solid biomass fuels combustion in rural agricultural area of Tibet, China[J]. Indoor Air,2009,19(3):198-205.
    [114]Mestl H E S, Aunan K, Seip H M, et al. Urban and rural exposure to indoor air pollution from domestic biomass and coal burning across China[J]. Science of the Total Environment,2007, 377(1):12-26.
    [115]Peabody J W, Riddell T J, Smith K. R, et al. Indoor air pollution in rural China:Cooking fuels, stoves, and health status[J]. Archives of Environmental and Occupational Health,2005, 60(2):86-95.
    [116]So K L, Guo H, Li Y S. Long-term variation of PM2.5 levels and composition at rural, urban, and roadside sites in Hong Kong:Increasing impact of regional air pollution[J]. Atmospheric Environment,2007,41(40):9427-9434.
    [117]Fischer S L, Koshland C P. Daily and peak 1 h indoor air pollution and driving factors in a rural Chinese village[J]. Environmental Science and Technology,2007,41(9):3121-3126.
    [118]Jin Y, Ma X, ChenX, et al. Exposure to indoor air pollution from household energy use in rural China:The interactions of technology, behavior, and knowledge in health risk management[J]. Social Science and Medicine,2006,62(12):3161-3176.
    [119]Yang Z F, Xu L Y. Valuing health effects from the industrial air pollution in rural Tianjin, China[J]. Journal of Environmental Sciences,2004,16(1):157-160.
    [120]Venners S A, Wang B, Ni J, et al. Indoor air pollution and respiratory health in urban and rural China[J]. International Journal of Occupational and Environmental Health,2001,7(3): 173-181.
    [121]Hu H S, Liu Y C. Evaluation of indoor air pollution and its effect on human health in Beijing's rural areas[J]. Environment International,1989,15(1-6):321-335.
    [122]Chen Q. Computational fluid dynamics for HAVC:successes and failures[J]. ASHRAE Transactions,1997,103 (part 1):178-187.
    [123]Spengler J D, Chen Q. Indoor air quality factors in designing a healthy building[J]. Annual Review Energy and the Environment,2000,25:567-600.
    [124]Sorensen D N, Nielsen P V. Quality control of computational fluid dynamics in indoor environments[J]. Indoor Air,2003,13(1):2-17.
    [125]Chen Q. Comparison of different κ-ε models for indoor airflow computations[J]. Numerical Heat Transfer, Fundamentals,1995,28(Part B):353-369.
    [126]Chen Q, Xu W. A zero-equation turbulence model for indoor air flow simulation[J]. Energy and Buildings,1998,28(2):137-144.
    [127]Zhao B, Li X, Yan Q. A simplified system for indoor airflow simulation[J]. Building and Environment,2003,38(4):543-552.
    [128]Smargorinsky J. General circulation experiment with the primitive equations[J]. Monthly Weather Review,1963,91(3):99-164.
    [129]Lilly D K. On the application of the eddy viscosity concept in the inertial subrange of turbulence[R].NCAR Manuscript,1966:123.
    [130]Germano M, Piomelli U, Moin P, et al. A dynamic subgrid-scale eddy viscosity model[J]. Physics of Fluids,1991, A3(7):1760-1765.
    [131]Piomelli U, Liu J. Large eddy simulation of rotating channel flows using a localized dynamic model[J]. Physics of Fluids,1995,7(4):839-848.
    [132]Yakhot A, Orszag S A, Yakhot V, et al. Renormalization group formulation of large-eddy simulation[J]. Journal of Scientific Computing,1989,4(2):139-158.
    [133]Tian Z F, Tu J Y, Yeoh G H, et al. On the numerical study of contaminant particle concentration in indoor air flow[J]. Building and Environment,2006,41(11):1504-1514.
    [134]Murakami S, Kato S, Nagano S, et al. Diffusion characteristics of airborne particles with gravitational settling in a convection-dominant indoor flow field[J]. ASHRAE Transactions,1992, 98(1):82-97.
    [135]Shimada M, Okuyama K, Okazaki S, et al. Numerical simulation and experiment on the transport of fine particles in a ventilated room[J]. Aerosol Science and Technology,1996,25(3): 242-255.
    [136]Holmberg S, Li Y. Modelling of the indoor environment particle dispersion and deposition[J]. Indoor Air,1998,8(2):113-122.
    [137]Holmberg S, Chen Q. Air flow and particle control with different ventilation systems in a classroom[J]. Indoor Air,2003,13(2):200-204.
    [138]Zhao B, Wu J. Numerical investigation of particle diffusion in a clean room[J]. Indoor and Built Environment,2005,14(6):469-479.
    [139]Chen F, Yu S C M, Lai A C K. Modeling particle distribution and deposition in indoor environments with a new drift-flux model[J]. Atmospheric Environment,2006,40(2):357-367.
    [140]Zhao B, Zhang Z, Li X, et al. Comparison of diffusion characteristics of aerosol particles in different ventilated rooms by numerical method[J]. ASHRAE Transactions,2004,110(Part 1): 88-95.
    [141]Zhao B, Zhang Y, Li X, et al. Comparison of indoor aerosol particle concentration and deposition in different ventilated rooms by numerical method[J]. Building and Environment,2004, 39(1):1-8.
    [142]Beghein C, Jiang Y, Chen Q. Using large eddy simulation to study particle motions in a room[J]. Indoor Air,2005,15(4):281-290.
    [143]Zhang Z, Chen Q. Experimental measurements and numerical simulation of fine particle transport and distribution in ventilated rooms[J]. Atmospheric Environment,2006,40(18): 3396-3408.
    [144]Zhao B, Yang C Q, Yang X D, et al. Particle dispersion and deposition in ventilated rooms: Testing and evaluation of different Eulerian and Lagrangian models[J]. Building and Environment, 2008,43(4):388-397
    [145]Fluent. Fluent 6.2 User's Guide[M]. Lebanon, NH:Fluent Inc.,2005.
    [146]Elghobashi S. On predicting particle-laden turbulent flows [J]. Applied Scientific Research, 1994,52(4):309-329.
    [147]Mendell M J, Fisk W J, Petersen M R, et al. Indoor particles and symptoms among office workers:results from a double-blind cross-over study[J]. Epidemiology,2002,13(3):296-304.
    [149]Hinds W C. Aerosol Technology:Properties, Behavior, and Measurement of Airborne Particles[M]. New York:Wiley,1982.
    [149]Zhao B, Zhang Z, Li X T. Numerical study of the transport of droplets or particles generated by respiratory system indoors[J]. Building and Environment,2005,40(8):1032-1039.
    [150]Li A, Ahmadi G. Dispersion and deposition of spherical particles from point sources in a turbulent channel flow[J]. Aerosol Science and Technology,1992,16(4):209-226.
    [151]Rizk M A, Elghobashi S E. The motion of a spherical particle suspended in a turbulent flow near a plane wall[J]. Physics of Fluids,1985,28(3):806-817.
    [152]McLaughlin J B. Aerosol particle deposition in numerically simulated channel flow[J]. Physics of Fluids,1989, A1(7):1211-1224.
    [153]Nazaroff W W, Cass G R. Mathematical modeling of indoor aerosol dynamics[J]. Environmental Science and Technology,1989,23(2):157-165.
    [154]Lu W, Howarth A T, Adam N, Rifat S B. Modelling and measurement of airflow and aerosol particle distribution in a ventilated two-zone chamber[J]. Building and Environment,1996, 31(5):417-423.
    [155]Chung K C. Three-dimensional analysis of airflow and contaminant particle transport in a partitioned enclosure[J]. Building and Environment,1999,34(1):7-17.
    [156]Etheridge D, Sandberg M. Building Ventilation:Theory and Measurement[M]. Chichester: Wiley,1996.
    [157]Loomans M, Lemaire T. Particle concentration caluculations using CFD-a comparison[C]. Proceedings of Indoor Air, Edinburgh, Scotland,2002:153-156.
    [158]Riddle A, Carruthers D, Sharpe A, et al. Comparisons between FLUENT and ADMS for atmospheric dispersion modeling[J]. Atmospheric Environment,2004,38(7):1029-1038.
    [159]Loth E. Numerical approaches for motion of dispersed particles, droplets, and bubbles[J]. Progress in Energy and Combustion Science,2000,26(3):161-223.
    [160]Kam W, Cheung K, Daher N, et al. Particulate matter (PM) concentrations in underground and ground-level rail systems of the Los Angeles Metro[J]. Atmospheric Environment,2011,45(8): 1506-1516.
    [161]Cheng Y H, Yan J W. Comparisons of particulate matter, CO, and CO2 levels in underground and ground-level stations in the Taipei mass rapid transit system [J]. Atmospheric Environment,2011,45(28):4882-4891.
    [162]Grass D S, Ross J M, Family F, et al. Airborne particulate metals in the New York City subway:A pilot study to assess the potential for health impacts[J]. Environmental Research,2010, 110(1):1-11
    [163]Jung, H-J, Kim B, Ryu J, et al. Source identification of particulate matter collected at underground subway stations in Seoul, Korea using quantitative single-particle analysis[J]. Atmospheric Environment,2010,44(19):2287-2293.
    [164]Adams H S, Nieuwenhuijsen M J, Colvile R N, et al. Fine particle (PM2.5) personal exposure levels in transport microenvironments, London, UK[J]. Science of the Total Environment, 2001,279(1-3):29-44.
    [165]Seaton A, Cherrie J, Dennekamp M, et al. The London underground:dust and hazards to health[J]. Occupational and Environmental Medicine,2005,62(6):355-362.
    [166]Chillrud S N, Epstein D, Ross J M. et al. Elevated airborne exposures of teenagers to manganese, chromium, and iron from steel dust and New York City's subway system[J]. Environmental Science & Technology,2004,38(3):732-737.
    [167]Johansson C, Johansson P. Particulate matter in the underground of Stockholm[J]. Atmospheric Environment,2003,37(1):3-9.
    [168]Crump K S. Manganese exposures in Toronto during use of the gasoline additive, methylcyclopentadienyl manganese tricarbonyl[J]. Journal of Exposure Analysis and Environmental Epidemiology,2000,10(3):227-239.
    [169]Gomez-Perales J E, Colvile R N, Nieuwenhuijsen M J, et al. Commuters'exposure to PM2.5, CO, and benzene in public transport in the metropolitan area of Mexico City[J]. Atmospheric Environment,2004,38(8):1219-1229.
    [170]Aarnio P, Yli-Tuomi T, Kousa A, et al. The concentrations and composition of and exposure to fine particles (PM2.5) in the Helsinki subway system[J]. Atmospheric Environment, 2005,39(28):5059-5066.
    [171]Chan L Y, Lau W L, Zou S C, et al. Exposure level of carbon monoxide and respirable suspended particulate in public transportation modes while commuting in urban area of Guangzhou, China[J]. Atmospheric Environment,2002,36(38):5831-5840.
    [172]Ripanucci G., Grana M, Vicentini L, et al. Dust in the underground railway tunnels of an Italian town[J]. Journal of Occupational and Environmental Hygiene,2006,3(1):16-25.
    [173]Branis M. The contribution of ambient sources to particulate pollution in spaces and trains of the Prague underground transport system[J]. Atmospheric Environment,2006,40(2):348-356.
    [174]Fromme H, Oddoy A, Piloty M, et al. Polycyclic aromatic hydrocarbons (PHA) and diesel engine emission (elemental carbon) inside a car and a subway train[J]. Science of the Total Environment,1998,217(1-2):165-173.
    [175]Pfeifer G D, Harrison R M, Lynam D R. Personal exposures to airborne metals in London taxi drivers and office workers in 1995 and 1996[J]. Science of the Total Environment,1999, 235(1-3):253-260.
    [176]Sitzmann B, Kendall M, Watt J, et al. Characterisation of airborne particles in London by computer-controlled scanning electron microscopy[J]. Science of the Total Environment,1999, 241(1-3):63-73.
    [177]Johansson C, Johansson P. Particulate matter in the underground of Stockholm[J]. Atmospheric Environment,2003,37(1):3-9.
    [178]Li T T, Bai Y H, Liu Z R, et al. In-train air quality assessment of the railway transit system in Beijing:A note[J]. Transportation Research Part D:Transport and Environment,2007,12(1): 64-67.
    [179]Kim K Y, Kim Y S, Roh Y M, et al. Spatial distribution on particulate matter (PM10 and PM2.5) in Seoul Metropolitan Subway stations[J]. Journal of Hazardous Materials,2008,154(1-3): 440-443.
    [180]Park D U, Ha K C. Characteristics of PM10, PM2.5, CO2 and CO monitored in interiors and platforms of subway train in Seoul, Korea[J]. Atmospheric Environment,2008,34(5):629-634.
    [181]Raut, J C, Chazette P, Fortain A. Link between aerosol optical, microphysical and chemical measurements in an underground railway station in Paris[J]. Atmospheric Environment, 2009,43(4):860-868.
    [182]Gomez-Perales J E, Colvile R N, Femandez-Bremauntz A A, et al. Bus, minibus, metro inter-comparison of commuters'exposure to air pollution in Mexico City[J]. Atmospheric Environment,2007,41(4):890-901.
    [183]Cheng Y H, Lin Y L, Liu C C. Levels of PM10 and PM2.5 in Taipei rapid transit system[J]. Atmospheric Environment,2008,42(31):7242-7249.
    [184]Salma, I, Weidinger T, Maenhaut W. Time-resolved mass concentration, composition and sources of aerosol particles in a metropolitan underground railway station[J]. Atmospheric Environment,2007,41(37):8391-8405.
    [185]Yip M, Madl P, Wiegand A, et al. Exposure assessment of diesel bus emissions[J]. International Journal of Environmental Research and Public Health,2006,3(4):309-315.
    [186]Kinsey J S, Williams D C, Dong Y, et al. Characterization of fine particle and gaseous emissions during school bus idling[J]. Environment Science and Technology,2007,41(14): 4972-4979.
    [187]Richmond-Bryant J, Saganich C, Bukiewicz L, et al. Associations of PM2.5 and black carbon concentrations with traffic, idling, background pollution, and meteorology during school dismissals[J]. Science of the Total Environment,2009,407(10):3357-3364.
    [188]Jayaratne E R, Wang L, Heuff D, et al. Increase in particle number emissions from motor vehicles due to interruption of steady traffic flow[J]. Transportation Research Part D:Transport and Environment,2009,14(17):521-526.
    [189]Wang L, Jayaratne R, Heuff D, et al. Development of a composite line source emission model for traffic interrupted microenvironments and its application in particle number emissions at a bus station[J]. Atmospheric Environment,2010,44(27):3269-3277.
    [190]Cheng Y H, Lin Y L. Measurement of particle mass concentrations and size distributions in an underground station[J]. Aerosol and Air Quality Research,2010,10(1):22-29.
    [191]Karlsson H L, Nilsson L, Moller L. Subway particles are more genotoxic than street particles and induce oxidative stress in cultured human lung cells. Chemical Research in Toxicology,2005,18(1):19-23.
    [192]Karlsson H L, Holgersson A, Moller L. Mechanisms related to the genotoxicity of particles in the subway and from other sources[J]. Chemical Research in Toxicology,2008,21(3): 726-731.
    [193]Antonini J M. Health effects of welding[J]. Critical Reviews in Toxicology,2003,33(1): 61-103.
    [194]Palmer K T, Poole J, Ayres J G, et al. Exposure to metal fume and infectious pneumonia[J]. American Journal of Epidemiology,2003,157(3):227-233.
    [195]Doherty M J, Healy M, Richardson S G, et al. Total body iron overload in welder's siderosis[J]. Occupational and Environmental Medicine,2004,61(1):82-85.
    [196]Aschner M, Vrana K E, Zheng W. Manganese uptake and distribution in the central nervous system (CNS) [J]. NeuroToxicology,1999,20(2-3):173-180.
    [197]McNeilly J D, Heal M R, Beverland I J, et al. Soluble transition metals cause the pro-inflammatory effects of welding fumes in vitro[J]. Toxicology and Applied Pharmacology,2004, 196(1):95-107.
    [198]Costa D L, Dreher K L. Bioavailable transition metals in paniculate matter mediate cardiopulmonary injury in healthy and compromised animal models[J]. Environmental Health Perspectives,1997,105(5):1053-1060.
    [199]Schaumann F, Borm P J A, Herbrich A, et al. Metal-rich ambient particles (particulate matter2.5) cause airway inflammation in healthy subjects[J]. American Journal of Respiratory and Critical Care Medicine,2004,170(8):898-903.
    [200]Bigert C. Cardiovascular Disease among Professional Drivers and Subway Staff in Stockholm[D]. Stockholm:Department of Public Health Sciences Karolinska Institutet,2007:44.
    [201]Tomlin A S, Smalley R J, Tate J E, et al. A field study of factors influencing the concentrations of a traffic-related pollutant in the vicinity of a complex urban junction[J]. Atmospheric Environment,2009,43(32):5027-5037.
    [202]Cheng W C, Liu C-H, Leung D Y C. Computational Formulation for the Evaluation of Street Canyon Ventilation and Pollutant Removal Performance [J]. Atmospheric Environment, 2008,42 (40):9041-9051.
    [203]Sippola M R, Nazaroff W W. Particle deposition from turbulent flow review of published research and its applicability to ventilation ducts in commercial buildings[R]. Lawrence Berkeley National Laboratory Report, LBNL-51432,2002.
    [204]GB50176-93,民用建筑热工设计规范[S].
    [205]Lai A C K. Particle deposition indoors:A review[J]. Indoor Air,2002,12(4):211-214.
    [206]Nazaroff, W. W. Indoor particle dynamics[J]. Indoor Air,2004,14(S7),175-183.
    [207]He G, Yang X, Srebric J. Removal of contaminants released from room surfaces by displacement and mixing ventilation:modeling and validation. Indoor Air,2005,15(5):367-380.
    [208]PATANKAR S K. Numerical Heat Transfer and Fluid flow [M]. Washington DC: Hemisphere.1980.
    [209]Hall D J, Walker S, Spanton A M. Dispersion from Courtyards and Other Enclosed Spaces [J]. Atmospheric Environment,1999,33 (8):1187-1203.
    [210]赵鸣.大气边界层动力学[M].北京:高等教育出版社,2006:29.
    [211]Chamberlain A C. Transport of Lycopodium spores and other small particles to rough surfaces[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1966,295:45-70.
    [212]Valentine J R, Smith P J. Numerical Predictions of Deposition with a Particle Cloud Tracking Technique[DB]. Reaction Engineering International, Salt Lake City,2005, http://www.reaction-eng.com/downloads/deposit.pdf.
    [213]Zhao B, Wu J. Modelling particle deposition from fully developed turbulent flow in ventilation duct. Atmospheric Environment,2006,40(3):457-466.
    [214]Wood N B. Mass transfer of particles and acid vapour to cooled surfaces[J], Journal of the Institute of Energy,1981,54(419):76-93.
    [215]Lai A C K, Nazaroff W W. Modelling indoor Particle deposition from turbulent flow onto smooth surface[J]. Journal of Aerosol Science,2000,31(4):463-476.
    [216]Friedlander S K.烟、尘和霾:气溶胶性能基本原理[M].北京:科学出版社,1983,27-57.
    [217]GB3095-1996,环境空气质量标准[S].
    [218]Heiselberg P. IEA Energy Conservation in Buildings and Community Systems Program, Annex 35:Hybrid Ventilation in New and Retrofitted Office Building[R]. Sydney,2000.
    [219]Gratia E, Bruy'ere I, De Herde A. How to use natural ventilation to cool narrow office buildings[J]. Building and Environment,2004,39(10):1157-1170
    [220]竟峰,张旭,杨洁.我国部分城市办公建筑自然通风潜力分析[J].统计大学学报,2008,26(1):92-96.
    [221]Khayyam H, Nahavandi S, Hu E, et al. Intelligent energy management control of vehicle air conditioning via look-ahead system[J]. Applied Thermal Engineering,2011,31(16):3147-3160.
    [222]朱晖.环境空气中微粒过滤材料性能的实验研究[D].上海:东华大学,2005,22-25.
    [223]吴志勇.住宅通风效果评价方法[D].西安:西安建筑科技大学,2009,45-70.
    [224]Thatcher T L, Layton D W. Deposition, resuspensiion and penetration of particles within a residence[J]. Atmospheric Environment,1995,29(13):1487-1497
    [225]吴国平,胡伟,藤恩江,等.我国四城市空气PM25和PM10的污染水平[J].中国环境科学,1999,19(2):133-137
    [226]Khillare P S, Pandey R, Balachandran S. Characterisation of indoor PM10 in residential areas of Delhi[J]. Indoor Built Environment,2004,13(2):139-147
    [227]Abt E. Suh H H, Catalano P, et al. Relative contribution of outdoor and indoor particle sources to indoor concentrations[J]. Environmental Science and Technology,2000, 34(17):3579-3587.
    [228]李龙凤,王新明.广州街道环境质量浓度变化特征[J].地球与环境,2005,33(22):57-59.
    [229]王玮,汤大刚,刘红杰等.中国PM25污染状况和污染特征的研究[J].环境科学研究,2000,13(1):2-5.
    [230]吴国平,胡伟,藤恩江等.我国四城市空气PM25和PM10的污染水平[J].中国环境科学,1999,19(2):133-137.
    [231]Hinds W C. Aerosol technology:Properties, behavior and measurement of airborne particles (2nd) [M]. New York:John Wiley,1982:42-74.
    [232]Lu W, Howarth A T. Numerical analysis of indoor aerosol particle deposition and distribution in two-zone ventilated system[J]. Building and Environment,1996,31(1):41-50.
    [233]Launder B E, Spalding D B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering,1974,3(2):269-289.
    [234]Hagstrom K, Zhivov A M, Siren K, et al. Influence of the floor-based obstructions on contaminant removal efficiency and effectiveness[J]. Building and Environment,2002,37(1): 55-66.
    [235]Yuan X, Chen Q, Glicksman L R, et al. Measurements and computations of room airflow with displacement ventilation[J]. ASHRAE Transactions,1999,105(1):340-352.
    [236]Cheong K W D, Djunaedy E, Poh T K, et al. Measurements and computations of contaminant's distribution in an office environment[J]. Building and Environment,2003, 38(1):135-145.
    [237]Brohus H. Personal exposure in displacement ventilated rooms[J]. Indoor Air,1996, 6(3):157-167.
    [238]Zhang Z, Chen Q. Experimental measurement and numerical simulations of particle transport and distribution in ventilated rooms[J]. Atmospheric Environment,2006,40(18): 3396-3408.
    [239]Davidson L. Ventilation by displacement in a three-dimensional room:A numerical study[J]. Building and Environment,1989,24(4):363-372.
    [240]He C, Morawska L, Gilbert D. Particle deposition rates in residential houses[J]. Atmospheric Environment,2005,39(21):3891-3899.
    [241]Sandberg M. What is ventilation efficiency [J]. Building and Environment,1981,16(2): 123-135.
    [242]Chung K C, Hsu S P. Effect of ventilation pattern on room air and contaminant distribution[J]. Building and Environment,2001,36(9):989-998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700