用户名: 密码: 验证码:
干旱区盐生植物的土壤氮素特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新疆是我国盐渍土分布面积最大、范围最广、类型最全的省区,也是世界上盐渍土分布比较集中的地区。新疆广袤的盐渍化土地为盐生植物提供了生物多样性生存和维持的基础,同时也使得新疆的盐生植物多样性具有了明确的干旱区地域特色。艾比湖湿地自然保护区具有十分丰富的盐生植物多样性,占新疆盐生植物种的40.2%,且以干旱生境下居多。近年来环境变化引起的土地荒漠化、盐渍化日益严重,对地球生物多样性造成了严重影响,盐生植物对维持干旱区盐渍土的生态平衡、盐渍土改良利用,以及遏制土地荒漠化、维持地球生物多样性和促进全球生态良性循环有着不可替代的重要作用,且众多的盐生植物中不乏经济价值高、开发潜力大的资源植物。对艾比湖湿地自然保护区内干旱生境下盐生植物的土壤氮素进行了初步探讨,为此地区盐渍化改良提供基础依据和数据支持。本文通过对所选取的9种不同盐生植被覆盖样地土壤氮素特征的初步研究,得出以下结论:
     (1)土壤氮素形态时空动态变化特征。时间动态,硝态氮和无机氮具有相同的季节变化趋势,碱解氮与之相反;全氮和有机氮有相同的季节变化趋势,铵态氮与之相反。各氮素形态均以拒盐盐生植物含量相对最高,稀盐盐生植物和泌盐盐生植物相差不大。水平空间动态,就其平均含量而言氮素形态大体排序为:苦豆子、盐豆木、胡杨、多枝柽柳、盐节木、琵琶柴、木本猪毛菜、梭梭、苏打猪毛菜;表层土壤与之相差不大。在盐生植物之间,除铵态氮外其排序均为:拒盐盐生植物、泌盐盐生植物、稀盐盐生植物。垂直剖面动态,土壤氮素含量在整体上呈现随土壤深度增加而减小的趋势。就平均值而言,土壤硝态氮和全氮为逐渐降低趋势,土壤碱解氮和铵态氮则呈不规则“W”型。
     (2)艾比湖湿地自然保护区干旱生境下盐生植物覆盖的土壤中有效氮素以硝态氮为主。土壤硝态氮含量范围为:1.063mg/kg-27.163mg/kg,平均值为:4.587mg/kg,占全氮量的0.15%-6.99%,无机氮含量的41.27%-96.68%;土壤铵态氮含量范围为:0.328mg/kg-2.722mg/kg,平均值为:1.137mg/kg,占全氮量的0.04%-1.50%,无机氮含量的3.32%-58.73%。土壤硝态氮/铵态氮值的范围为:0.703-29.085。且硝态氮与无机氮的动态变化趋势基本相同,硝态氮与无机氮之间呈极显著正相关关系。
     (3)土壤理化性质的时间动态变化特征为。时间动态,土壤含水量和电导率,土壤容重和pH值具有相同的季节变化趋势,土壤有机质和容重具有相反的季节变化趋势。水平空间动态,土壤有机质、含水量和容重,土壤pH值和电导率的平均值和表层土壤排序相似,土壤有机质、含水量、容重排序为拒盐盐生植物、泌盐盐生植物、稀盐盐生植物,而pH值、电导率则为泌盐盐生植物、拒盐盐生植物、稀盐盐生植物。垂直剖面动态,土壤有机质含量、pH值、电导率随土壤深度的增加而降低,土壤含水量随土壤深度的增加而升高,土壤容重变化波动较大。
     (4)土壤硝态氮、全氮、碱解氮、土壤理化性质在同一土壤深度不同样地间存在显著性差异,土壤铵态氮不存在显著性差异。土壤硝态氮、全氮、碱解氮在同一土壤深度不同月份间存在显著差异,土壤含水量、容重和pH值在部分样地存在差异,土壤铵态氮和土壤理化性质则不存在差异。土壤硝态氮、铵态氮、全氮和含水量在同一样地不同土壤深度间不存在显著差异,而碱解氮、有机质、容重、pH值和电导率存在一定程度的显著差异。
     (5)土壤氮素与土壤理化性质的相互关系。硝态氮与碱解氮和无机氮,碱解氮与全氮、有机氮、无机氮和有机质,全氮与有机氮和有机质,有机氮与有机质之间为高度极显著正相关;硝态氮与全氮、有机氮和有机质,无机氮与全氮、有机氮、有机质和容重,含水量与全氮、有机氮、有机质和电导率之间为高度正相关;容重与硝态氮、碱解氮、全氮、无机氮、有机氮、有机质和含水量之间为高度负相关。而铵态氮与所有氮素形态,pH值与全氮和有机质之间为低度相关,密切程度和关联性最低。
     (6)在干旱区盐生植物的土壤中,土壤氮素的主要影响因素为土壤有机质、容重和含水量,土壤pH值和含盐量次之。土壤硝态氮含量受碱解氮、无机氮、全氮、有机氮、有机质含量的影响。土壤全氮直接决定碱解氮的含量,有机氮的多寡直接影响土壤氮素的水平和供应能力。
     (7)在干旱区盐生植物的土壤中,发生淋溶的主要是硝态氮。虽然土壤中的水分含量随土壤深度增加而增加,却未曾发现硝态氮在某层土壤中出现明显的累积现象,即形成硝态氮淋溶的条件不够充分。研究区样地在采样时间和土壤深度未发现硝态氮的淋溶现象。
Xinjiang is the largest, broadest, and most comprehensive province of saline soil distribution in China, also concentrated in the world. The vast saline soil lands not only created the foundation of halophytes biodiversity survival and maintenance but also make the halophyte diversity with clear arid area region characteristics. The Ebinur Lake Wetland Nature Reserve was rich in halophyte diversity, account for 40.2% of Xinjiang halophyte species, and mainly in arid habitats. Recent years, environmental changes caused the land desertification, salinization increasingly serious, and had a serious impact on the globe biodiversity. The halophytes play an irreplaceable role on ecological balance maintain of arid area saline soil, ameliorate and utilize of saline soil, curb desertification, maintain biodiversity and promote virtuous cycle of global ecological. Most of them were high value and development potential resources. Preliminary study on soil nitrogen of halophytes in arid habitats provides basic data for salinization improvement. Through preliminary study of soil nitrogen on the nine different halophytes covered plots. The main conclusions were drawn as follows:
     (1) The temporal dynamic change characters of soil nitrogen forms. Time dynamic: nitrate nitrogen and inorganic nitrogen have similarly seasonal variation tendency, alkali-hydrolyzable nitrogen was the opposite; total nitrogen and organic nitrogen was similar, ammonium nitrogen opposite. The content was relatively highest on exclude halophytes plots of each soil nitrogen forms; more or less between succulent halophytes and salt secrete halophytes. Horizontal space dynamic: the content of soil nitrogen forms in average was Sophora alopecuroides, Halimodendron halodendron, Populus euphratica, Tamarix ramosissima, Halocnemum strobilaceum, Reaumuria soongorica, Salsola arbuscula, Haloxylon persicum, Salsola soda from high to low in order. The surface soil has the similar tendency. The order was exclude halophytes, salt secrete halophytes, succulent halophytes on halophytes types, except ammonium nitrogen. Vertical profile dynamic: soil nitrogen content decrease with soil depth increased overall, soil ammonium nitrogen and alkali-hydrolyzable nitrogen showed an irregular "W" type in average.
     (2) Soil nitrate nitrogen was the main form of available nitrogen in research area. The mean soil nitrate nitrogen was 4.587mg/kg, rang from 1.063mg/kg to 27.163mg/kg, accounting for 0.15% to 6.99% of total nitrogen, 41.27% to 96.68% of inorganic nitrogen; the mean soil ammonium nitrogen was 1.137mg/kg, rang from 0.328mg/kg to 2.722mg/kg, accounting for 0.04% to 1.50% of total nitrogen, 3.32% to 58.73% of inorganic nitrogen. The ratio between nitrate and ammonium nitrogen was 0.703 to 29.085. Nitrate and inorganic nitrogen almost has the same dynamic change tendency, and also have a high significant positive correlation.
     (3) The temporal dynamic change characters of soil physicochemical properties. Time dynamic: It has the same seasonal tendency between soil moisture and electrical conductivity, bulk density and pH value; soil organic matter and bulk density was opposite. Horizontal space dynamic: the similar tendency among soil organic matter, water content and bulk density, soil pH value and soil conductivity in average and surface soil. Soil organic matter, moisture content and bulk density was exclude halophytes, salt secrete halophytes, succulent halophytes from high to low in order. Soil pH value and electrical conductivity was salt secrete halophytes, exclude halophytes, succulent halophytes in order. Vertical profile dynamic: soil organic matter, pH value, electrical conductivity decreased with soil depth increased, while soil moisture increased. Soil bulk density exhibited great seasonal fluctuations.
     (4) Soil nitrate, total nitrogen, alkali-hydrolyzable nitrogen, soil physicochemical properties have significant differences in same soil layer different plots; soil ammonium showed no difference. Soil nitrate, alkali-hydrolyzable and total nitrogen have notable difference between months; soil water content, bulk density and pH value only exist in some plots; ammonium nitrogen and physicochemical properties do not exist. Soil nitrate, ammonium, total nitrogen and water content have no significant difference in same plots different depth. Soil alkali-hydrolyzable nitrogen, organic matter, bulk density, pH value and electrical conductivity have difference in some degree.
     (5) Relationship between soil nitrogen and physicochemical properties. It was high significant positive correlation among soil nitrate, alkali-hydrolyzable and inorganic nitrogen; alkali-hydrolyzable nitrogen, total nitrogen, organic nitrogen, inorganic nitrogen and organic matter; total nitrogen, organic nitrogen and organic matter; organic nitrogen and organic matter.There was a highly positive correlation among soil nitrate, total nitrogen, organic nitrogen and organic matter;inorganic nitrogen and total nitrogen;organic nitrogen, organic matter and bulk density; water content,total nitrogen,organic nitrogen,organic matter and electrical conductivity; highly negative correlation among soil bulk density, nitrate nitrogen, alkali hydrolyzable nitrogen, total nitrogen, inorganic nitrogen, organic nitrogen, organic matter and water content.The correlation and associated between ammonium nitrogen and other N forms; soil pH value, total nitrogen, and organic matter was the lowest.
     (6) Soil nitrogen contents in arid areas of halophytes were mainly influenced by soil organic matter, bulk density and water content; soil pH value, salt content to be second.Soil alkali-hydrolyzable nitrogen, inorganic nitrogen, total nitrogen, organic nitrogen, organic matter content were the main influencing factors of soil nitrate content.Soil alkali-hydrolyzable nitrogen content determined by total nitrogen, soil organic nitrogen affect the amount of soil nitrogen and supply capacity directly.
     (7) Soil nitrate nitrogen was the main leaching nitrogen forms in arid areas of halophytes. Although the soil moisture content increased with soil depth decreased, soil nitrate haven’t show obvious accumulation phenomenon in any layer.So, the condition of formatting nitrate leaching is not sufficient.It means that the phenomenon of nitrate leaching do not presence in the research area, sampling time and soil depth.
引文
Abe H,Yamaguchi-Shinozaki K,Urao T,et al..Role of Arabidopsis MYC and MYB homologies in drought and abscisic acid-regulated gene expression[J].Plant Cell,1997,9:1859-1868.
    Attiwill PM,Adams MA.Nutrient cycling forest[J].New Phytologist,1993,124:561-582.
    Balnokin YV,Kotov AA,Myasoedov NA,et al..Involvement of long-distance Na+ transport in maintaining water potential gradient in the medium-root-leaf system of a halophyte Suaeda altissima[J].Russian Journal of Plant Physlogy,2005,52(4):489-496.
    Barrett JE,Johnson DW,Burke IC.Abiotic nitrogen unmake in semiarid grassland soils of the US Great Plains[J].Soil Science Society of America Journal,2002,66(3):979-987.
    Belanger G,Ziadi N,Walsh JR,et a1..Residual soil nitrate after potato harvest[J].Journal of Environmmental Quality,2003,32:607-612.
    Bergstrom LH,Jonsson,Orstensson TG.Simulation of nitrogen dynamics using the SOIL model[J].Fertilizer Research,1991,27(2?3):181-188.
    Blumfield TJ,Xu ZH.Impact of harvest residues on soil mineral nitrogen dynamics following clear fall harvesting of a hop pine plantation in subtropical Australia[J].Forest Ecology and Management,2003,179(1-3):55-67.
    Bolan NS,Snggar S,Luo JF,et al..Gaseous emissions of nitrogen from grazed pastures: Processos,measurements and modeling,environmental implications,and mitigation[J]. Advances in Agronomy,2004,84:37-120.
    Bremner JM,Blackmer AM.Nitrous oxide:Emission from soils during nitrification of fertilizer nitrogen[J].Science,1978,199(4326):295-296. Buring P,Dudal R.Agricultural land use in space and time[D].In:Wolman MG and Fournier FGA (eds).Chichester,UK:John Wiley and Sons,1987.
    Chang C,Entz TJ.Nitrate leachinglosses under repeated cattle feedlot manure applications in Southern Alberta[J].Journal of Environmental Quality,1996,25(1):145-153.
    Chen BM,Wang ZH,Li SX,et al..Effects of nitrate supply on plant growth,nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables[J].Plant Science,2004,167:643-653.
    Chen J,Stark JM.Plant species effects and carbon and nitrogen cycling in a sagebrush-crested wheatgrass soil[J].Soil Biology Biochemisty,2000,32(1):47-57.
    Curtin D,Wen G.Organic matter fractions contributing to soil nitrogen mineralization potential[J]. Soil Science Society of America Journal,1999,63:410-415.
    De Kovel CG,Van Mierlo EM,Wilms YJO,et a1..Carbon and nitrogen in soil and vegetation at sites differing in suecessional age[J].Plant Ecology,2000,149:43-50.
    Di HJ,Cameron KC,Moors S,et al..Nitrate leaching and pasture yields following the application of dairy shed effluent or ammonium fertilizer under spray or flood irrigation Result of lysimeterstudy[J].Soil Use & Manage,1998,14(4):209-214.
    Ferguson RB.De Groot KM.Nutrient management for agronomic crops in Nebraska,Extension Circular[D].Lincoln NE:University Nebraska,2000,101-155.
    Frommer WB,Ludewig U,Rentsch D.Enhanced:taking transgenic plants with a pinch of salt[J].Science,1999,285(5431):1222-1223.
    Garduno MA.Kochia:a new alternative for forage under high salinity conditions of Mexico[M].In Lieth H,Al Masoom A,editors.Towards the rational use of high salinity tolerant plants[M]. Dordrecht:Kluwr,1993:459-464.
    Gilmour JT.The effects of soil properties on nitrification and denitrification inhibition[J].Soil Science Society of America Journal,1984,48,1262-1266.
    Greenway H,Munns R.Mechanisms of tolerance in nonhalophytes[J].Annual Review of Plant Physoilogy,1980,31(6):149-190.
    Grifiths RP,Entry JA,Ingham ER,et al..Chemistry and microbial activity of forest and pasture riparian-zone soils along three Pacific Northwest streams[J].Plant Soil,1997,190(1):169-178.
    Hansen E,Djurhuus J.Nitrate leaching as affected by long-term N fertilization on a coarse sand[J].Soil Use & Manage,1996,12(4):199-204.
    Houerou HN Le.The role of saltbushes(Atriplex spp.)in arid land rehabilitation in the Mediterranean basin:a review[J].Agro forestry Systems,1992,18:107-148.
    Ingestad T.Plant grow in relation to nitrogen supply[J].In:Clark FE & Rosswall T.eds.Terrestrial Nitrogen Cycles of Ecology Bull,Stockholm,1981,33(303):268-271.
    Kasuga M,Liu Q,Miura S,et al..Improving plant drought salt and freezing tolerance by gene transfer of a single stress-inducible transcriptional factor[J].Nature Biotech,1999,17:287-291.
    Keenan RJ,Prescott CE,Kimmins JP.Litter production and nutrient resorption in western red cedar and western hemlock forests on northern Vancouver Island,British Colu.mia[J].Canadian Journal of Forest Research,1995,5:1850-1857.
    Knoepp JD,Swank WT.Using soil temperature and moisture to predict forest soil nitrogen mineralization [J].Biology Fertile Soil,2002,36(3):177-182.
    Levang BN,Biondini ME.Growth rate,root development and nutrient uptake of 55 plant species from the Great Plains Grasslands,USA[J].International Journal of Dairy Technology, 2003,165(1):117-144.
    Lynch JP.Root architecture and plant productivity[J].Plant Physiology,1995,109:7-13.
    Ma BL,Lianne MD,Edward GG.Soil Nitrogen Amendment Effects on Seasonal Nitrogen Mineralization and Nitrogen Cycling in Maize Production[J].Agronomy Journal,1999, 91:1003-1009.
    Maeda M,Zhao B,Ozaki Y,et a1..Nitrate leaching in an Andisol treated with different types of fertilizers[J].Environmental Pollution,2003,121:477-487.
    Malhi SS,McGill WB.Nitrification in three Alberta soils:Effect of temperature, moisture andsubstrate concentration[J].Soil Biology Biochemisty,1982,(14):393-399.
    Markus D,Daniel S,et al..Yield response of lolium perenne swards to free air and CO2 enrichment increased over six years in high N input system on fertile soil[J].Global Change Biology,2000,6:805-816.
    Messedi D,Labidi N,Grignon C,et al..Limits imposed by salt to the growth of the halophyte Sesuvium portulacastrum[J].Journal of Plant Nutrition and Soil Science,2000, 167(6):720-725.
    Naidoo G,Naidoo Y.Effects of salinity and nitrogen on growth,ion relations and proline accumulation in Triglochin bulbosa[J].Wetlands Ecology Management,2001,9(6):491-497.
    Nelson DW,Sommers LE.Total carbon,organic carbon,organic matter[J].In:Page A.L.ed.Methods of Soil Analysis.Wisconsin,USA:Madison,1982,539-579.
    Noy-Meir I.Desert ecosystems:Environment and producers[J].Annual Review of Ecology System, 1973,4:25-51.
    Ohta D,Matoh T,Takahashi E.Sodium stimulates NO3- uptake in Amaranthus tricolor L.plants[J]. Plant Physiology,1988,87(1):223-225.
    Okusanya OT,Ungar IA.The growth and mineral composition of three species of Spergularia as affected by salinity and nutrients at high salinity[J].American Journal of Botany,1984, 71(3):439-447.
    Paul JW,Zebarth BJ.Denitrification during the growing season following dairy cattle slurry and fertilizer application for silage[J].Canadian Journal of Soil Science,1997,77(2):241-248.
    Paul D,Black S,Conyers M.Development of nitrogen mineralization gradients through surfaces soil depth and their influence on surface soil pH[J].Plant and Soil,234(2):239-246.
    Richter J,Nuske A,Habanicht W,et al..Optimized N mineralization parameters of loss soil from incubation experiments[J].Plants and Soil,1982,68:379-388.
    Rush DW.Epstein E.Breeding and selection for salt tolerance by the incorporation of wild germplasm into a domestic tomato[J].Journal of American Society for Horticultural Science,1981,106:699-704.
    Sarig S,Bamess G,Steinberger Y.Annual plant growth and soil characteristics under desert halophyte canopy [J].Acta Oecologica,1994,15(5):521-527.
    Scherer LM,Palmborg C,Prinz A,et a1..The role of plant diversity and composition for nitrate leaching in grasslands[J].Ecology,2003,84:1539-1552.
    Skeffington MJS,Jeffrey DW.Response of America maritime (Mill.)Willd and Plantago martima L. from an Irish salt marsh to nitrogen and salinity[J].New Phytology,1988,110(3):399-408.
    Smart RM, Barko JW.Nitrogen nutrition and salinity tolerance of Distichlis spicata and Spartina alterniflora[J].Ecology,1980,60(3):630-638.
    Stanford GS.Nitrogen mineralization potentials soil[J].Soil Science Society of American Proceedings,1972,36:465-472.
    Tong YA,Emteryd O,Lu DQ,et al..Effect of organic manure and chemical fertilizer on nitrogen uptake and nitrate leaching in a Eum-orthic anthrosols profile[J].Nutrient Cycling in Agroecosystems,1997,48(3):225-229.
    Trindade H,Coutinho J,Jarvis S,et al..Nitrogen mineralization in sandy loam soils under an intensive double-cropping forage system with dairy-caale slurry applications[J].European Journal of Agronomy,2001,15:281-293.
    Turpault MP,Ut C,Boudot JP,et al..Influence of mature Douglas fir roots on the solid soil phase of the rhizosphere and its solution chemistry[J].Plant and Soil,2005,275:327-336.
    Vervaet H,Massart B,Bocekx P,et a1..Use of principal component analysis to assess factors controlling net N mineralization in deciduous and coniferous forest soils[J].Biology and Fertile Soils,2002,36:93-101.
    Vitousek PM,Hattenschwiler S,et a1..Nitrogen and nature[J].Ambio,2002,31(2):97-101.
    Winicov I.Alfinl transcription factor over-expression enhances plant root growth under normal and saline conditions and improves salt tolerance in alfalfa[J].Planta,2000,21(4):16-22.
    Wang WJ,Chalka PM,Chen D,et al..Nitrogen mineralisation, immobilisation and loss, and their role in determining differences in net nitrogen production during waterlogged and aerobic incubation of soils[J].Soil Biology Bioehemisty,2001,33:1305-1315.
    Wang W,Yung Y,Lacis AA,et a1..Greenhouse effects due to man made perturbation of trace gases[J].Science,1976,194:685-690.
    Wang F,L’Alva AK.Ammonium adsorption and description in sandy soils[J].Soil Science Society of America Journal,2000,64(5):1669-1674.
    白冰,陈效民,王恒祥.莱州湾滨海盐渍土中铵态氮水平运移室内模拟试验[J].农村生态环境,2004,20(4):41-55.
    陈宝明.绿洲-荒漠过渡带典型区段土壤-植被间的氮循环研究[D].兰州大学,2005.
    陈伏生,曾德慧,陈广生.土地利用变化对沙地土壤全氮空间分布格局的影响[J].应用生态学报,2004,15(6):953-957.
    陈龙池,廖利平,汪思龙,等.根系分泌物生态学研究[J].生态学杂志,2002,21(6):57-62.
    陈蜀江,侯平,李文华,等.新疆艾比湖湿地自然保护区综合科学考察[M].乌鲁木齐:新疆科学技术出版社,2006,1-102.
    陈祥伟,陈立新,刘伟琦.不同森林类型土壤氮矿化的研究[J].东北林业大学学报,1999,27(1):5-9.
    串丽敏,赵同科,等.土壤硝态氮淋溶及氮素利用研究进展[J].中国农学通报,2010,26(11):200-205.
    丁洪,蔡贵信,王跃思,等.玉米-潮土系统中氮肥硝化反硝化损失与N2O排放[J].中国农业科学,2001,34(4):416-421.
    段德玉,刘小京,等.N素营养对NaCl胁迫下盐地碱蓬幼苗生长及渗透调节物质变化的影响[J].草业学报,2005,14(1):63-68.
    樊军,郝明德,党廷辉.旱地长期定位施肥对土壤剖面硝态氮分布与累积的影响[J].土壤与环境,2000,9(1):23-26.
    范晓晖,朱兆良.旱地土壤中的硝化-反硝化作用[J].土壤通报,2002,33(5):385-391.
    高丽丽.西藏土壤有机质和氮磷钾状况及其影响因素分析[D].四川农业大学,2004.
    宫大伟.半干旱区草地生产力及植物营养元素对水、N、P添加的响应[D].辽宁大学,2006.
    郭呈芬.宿州市土壤全氮与有机质含量关系研究[J].安徽农业大学学报,1996,23(2):478-479.
    郭雪莲.三江平原不同水位梯度湿地植物-土壤系统氮循环特征研究[D].东北师范大学,2008.
    韩晓日,郭鹏程,陈恩凤,等.土壤微生物对施入肥料氮的固持及其动态研究[J].土壤学报,1998,35(3):412-418.
    胡璐,李心清,等.中国北方-蒙古干旱半干旱区土壤铵态氮的分布及其环境控制因素[J].地球化学,2008,37(6):572-580.
    胡明芳,田长彦,等.土壤/植株硝态氮含量与棉花产量及其相关因素之间的关系[J].西北农业学报,2002,11(3):128-131.
    黄阿童.氮素养分平衡及氮肥的合理施用[J].安徽农学通报,2006,12(1):87-88.
    黄刚,赵学勇,张铜会,等.科尔沁沙地3种灌木根际土壤pH值及其养分状况[J].林业科学,2007,43(8):138-142.
    焦黎,王勇辉,张高,等.艾比湖湖区土壤质地测定及其分析[J].新疆师范大学学报(自然科学版),2007,26(1):74-77.
    巨晓棠,李生秀.土壤氮素矿化的温度水分效应[J].植物营养与肥料学报,1998,4(1):37-42.
    巨晓棠,边秀举,刘学军,等.旱地土壤氮素矿化参数与氮素形态的关系[J].植物营养与肥料学报,2000,6(3):251-259.
    巨晓棠,刘学军,邹国元,等.冬小麦?夏玉米轮作体系中氮素的损失途径分析[J].中国农业科学,2002,35(12):1493-1499.
    李虎,高俊峰,等.新疆艾比湖湿地土地荒漠化动态监测研究[J].湖泊科学,2005,17(2):127-132.
    李生秀,李世清,等.施用氮肥对提高旱地作物利用土壤水分的作用机理和效果[J].干旱地区农业研究,1994,12(1):38-46.
    李世清,高亚军,杜建军,等.连续施用氮肥对旱地土壤氮素状况的影响[J].干旱地区农业研究,1999,17(3):28-34.
    李世清,李生秀,等.半干旱地区农田生态系统中硝态氮的淋失[J].应用生态学报,2000,11(2):240-242.
    李世清,李凤民.半干旱地区不同地膜覆盖时期对土壤氮素有效性的影响[J].生态学报,2001,09:1520-1527.
    李世清,李生秀,等.半干旱农田生态系统作物根系和施肥对土壤微生物体氮的影响[J].植物营养与肥料学报,2004,10(6):613-619.
    李玉强,赵哈林,移小勇,等.沙漠化过程中科尔沁沙地植物-土壤系统碳氮储量动态[J].环境科学,2006,2(4):34-39.
    李玉强,赵哈林,等.科尔沁沙地不同生境土壤氮矿化/硝化作用研究[J].中国沙漠,2009,29(3):438-444.
    李玉中,祝廷成,RedmDnn RE.羊草草地土壤氮的总矿化、硝化和无机氮消耗速率研究[J].中国农业科学,2002,35(11):1428-1431.
    李荣,何兴东,张宁,等.沙丘固定过程中土壤铵态氮和硝态氮的时空变化[J].土壤学报,2010,47(2):295-302.
    廖成章.外来植物入侵对生态系统碳、氮循环的影响:案例研究与整合分析[D].复旦大学,2007.
    刘芳.小麦吸收肥料氮和土壤氮的探讨[J].核农学报,1994,15(2):81-84.
    卢红玲,李世清,等.黄土高原石灰性土壤长期间隙淋洗淹水培养下的氮素矿化过程及其模拟[J].中国农业科学,2008,41(10):3140-3148.
    陆景陵.植物营养学(第2版)[M].中国农业大学出版社,2003.
    孟盈,薛敬意,等.西双版纳不同热带森林下土壤铵态氮和硝态氮动态研究[J].植物生态学报,2001,25(10):99-104.
    莫江明,彭少麟,等.鼎湖山马尾松针阔叶混交林土壤有效氮动态的初步研究[J].生态学报,2001,21(3):492-497.
    穆兴民,樊小林.土壤氮素矿化的生态模型研究[J].应用生态学报,1999,10(1):114-118. 南京农业大学主编.土壤农化分析[M].农业出版社,1986.
    沈其荣,余玲,刘兆普.有机无机肥料配合施用对滨海盐涂土壤生物量态氮及土壤供氮特征的影响[J].土壤学报,1994,31(3):288-293.
    沈善敏.中国土壤肥料[M].北京:科学出版社,1999.
    沈振国,沈其荣,管红英,等.NaCl胁迫下氮素营养与大麦幼苗生长和离子平衡的关系[J].南京农业大学学报,1994,17(1):22-26.
    宋建国,林杉,吴文良,等.土壤易矿化有机态氮和微生物态氮作为土壤氮素生物有效性指标的评价[J].生态学报,2001,21(2):290-294.
    苏永中,赵哈林.几种灌木、半灌木对沙地土壤肥力影响机制的研究[J].应用生态学报,2002,13,(7):802-806.
    王继国.湿地调节气候生态服务价值的估算-以新疆艾比湖湿地为例[J].江苏技术师范学院学报,2007,14(3):58-62.
    王少平,俞立中,许世远,等.上海青紫泥土壤氮素淋溶及其对水环境影响研究[J].长江流域资源与环境,2002,11(6):554-558.
    王胜佳,王家宝,陈义.稻田土壤氮素淋失的形态及其在剖面分布特征[J].浙江农业科学,1997,9(2):57-61.
    王亚俊.《新疆盐生植物》评介[J].干旱区研究,2007,24(4):568.
    王遵亲.中国盐渍土[M].科学出版社,1993:30.
    吴金水,郭胜利,党廷辉.半干旱区农田土壤无机氮积累与迁移机理[J].生态学报,2003,23(10):2040-2049.
    郗金标,田长彦,阎平,等.新疆盐生植物区系初探[J].中国生态农业学报,2006,14(1):7-10.
    郗金标,张福锁,田长彦.新疆盐生植物[M].北京:科学出版社,2006,235-245.
    解锋,李颖飞.土壤氮素理化性质研究[J].陕西农业科学,2010,(4):135-137.
    谢辉,于恩涛,吕光辉,等.艾比湖湿地盐生植物区系研究[J].干旱区资源与环境,2009,23(3):176-180.
    徐炳成,梁银丽,等.黄土高原旱塬农田生态系统碳氮循环特征[J].生态农业研究,2000,8(2):42-46.
    许翠清,陈立新,等.温带森林土壤铵态氮、硝态氮季节动态特征[J].东北林业大学学
    报,2008,36(l0):19-21. 闫佰忠,唐国林,宋亚路.氮在土壤中的迁移与转化研究[J].中国环境管理,2009,6:42-44.
    叶优良,张福锁,李生秀.土壤供氮能力指标研究[J].土壤通报,2001,32(6):273-277.
    叶优良,李生秀.淋洗对石灰性土壤硝态氮含量及小麦吸氮量的影响[J].干旱地区农业研究,2002,20(1):26-29.
    印婧婧,郭大立,等.内蒙古半干旱区树木非结构性碳、氮、磷的分配格局[J].北京大学学报(自然科学版),2009,45(3):519-527.
    余晓鹤,朱培立,黄东迈.土壤表层管理对稻田土壤矿化势、固氮强度及铵态氮的影响[J].中国农业科学,1991,24(2):73-79.
    原俊凤,田长彦,等.硝态氮对盐胁迫下囊果碱蓬幼苗根系生长和耐盐性的影响[J].植物营养与肥料学报,2009,15(4):953-959.
    袁新民.硝态氮的淋溶及其影响因素[J].干旱区研究,2000,17(4):46.
    赵俊晔.冬小麦植株-土壤氮素循环及产量与品质形成生理基础的研究[D].山东农业大学,2004.
    赵可夫,李法曾.中国盐生植物[M].北京:科学出版社,1999.
    赵可夫,范海.盐生植物及其对盐渍生境的适应生理[M].北京:科学出版社,2005:72.
    赵琳,李世清,等.半干旱区生态过程变化中土壤硝态氮累积及其在植物氮素营养中的作用[J].干旱地区农业研究,2004,22(4):14-20.
    詹媛媛,薛梓瑜.干旱荒漠区不同灌木根际与非根际土壤氮素的含量特征[J].生态学报,2009,29(1)57-66.
    张丙乾.新疆土壤盐碱化及其防治[J].干旱区研究,1993,10(1):66-71.
    张春娜.中国陆地土壤氮库研究[D].西南农业大学,2004.
    张凤荣.土壤地理学[M].中国农业出版社,2002,90-99.
    张家恩.生态学常用实验研究方法与技术[M].化学工业出版社,2006.
    张金踱,曹广民.高寒草甸系统氮素循环[J].生态学报,1999,509-512.
    张金屯.全球气候变化对自然土壤碳、氮循环的影响[J].地理科学,1998,18(5):463-471.
    张丽华,宋长春,王德宣,等.氮输入对陆地生态系统碳库的影响研究进展[J].土壤通报,2006,37(2):356-361.
    张璐,沈善敏,廉鸿志,等.有机物料中有机碳、氮矿化进程及土壤供氮力研究[J].土壤通报,1997,28(2):71-73.
    张智猛,戴良香.张电学,等.冬小麦-夏玉米轮作周期内碱解氮、硝态氮时空变化及施氮安全值的研究[J].土壤通报,2004,35(1):38-42.
    周才平,欧阳华.温度和湿度对暖温带落叶阔叶林土壤氮矿化的影响[J].植物生态学报,2001,25(2):204-209.
    周建斌,陈竹君,李生秀.土壤微生物量氮含量、矿化特性及其供氮作用[J].生态学报,2001,21:1718-1725.
    周三,韩军丽,赵可夫.泌盐盐生植物研究进展[J].应用与环境生物学报,2001,7(5):496-501.
    周志华,肖化云,刘从强.土壤氮素生物地球化学循环的研究现状与进展[J].地球与环境,2004,32(3):21-26.
    周筑南.施氮水平对小麦植株氮素吸收、利用和籽粒产量、品质形成的影响[D].山东农业大学,2004.
    朱兆良.中国土壤氮素研究[J].土壤学报,2008,45(5):778-783.
    朱兆良,文启孝,主编.中国土壤氮素[M].南京:江苏科学技术山版社,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700