用户名: 密码: 验证码:
钻井工程中盐膏层井眼缩径的数值模拟及最佳工程设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐膏层是以盐或石膏为主要成分的地层,在盐盆地中,盐膏层是石油天然气钻井过程中经常钻遇的地层。盐膏层钻井,特别是深层盐膏层钻井,是世界性难题,在钻井过程中经常发生严重的缩径,导致井眼失稳、卡钻和挤毁套管等工程事故,给钻井带来巨大经济损失。为了勘探盐膏层之下的油气藏,顺利钻穿巨厚盐膏层,使盐膏层段在较长时间保持井眼稳定,是钻井和完井工程急待解决的重大技术难题。
     盐膏层属流变地层,尤其在深部高温和高压条件下盐膏层的蠕变性更为明显。与砂岩、页岩和泥岩等地层不同,流变地层的弹性模量非常小,对剪切不具有抵抗能力,即使在较低的水平应力作用下,也将出现较大的连续蠕动变形。在钻井过程中,钻开盐膏层后,原地层中地应力的相对平衡状态被打破,在井璧岩石上产生了较强的应力集中,在横向挤压力的作用下,盐膏层发生蠕动和变形,向井中滑移和流动,导致井眼缩径和失稳。
     计算机数值模拟是研究钻井过程中盐膏层井眼缩径和井眼失稳的重要手段,它可以再现钻井过程中不可能直接观察到的盐膏层蠕动和变形随时问的演化过程。对钻井过程中来说,时间是重要的,通过数值模拟,我们可以将整个钻井过程中盐膏层井眼缩径变形过程在时间上和空间上的分布展现出来,因此,长期以来数值模拟方法一直受到国内外学者的重视,特别是近十年,基于对盐膏层蠕变规律的研究,对盐膏层变形的研究有了很大进展。
     对钻井过程中盐膏层的蠕变速度、盐膏层的空间位移和井眼缩径的整个过程进行定量的研究和计算模拟,这是成功地进行盐膏层钻井设计和井下事故防治和治理的关键。论文根据岩芯三轴蠕变实验,建立盐膏层本构关系;根据地层、构造、盐膏层的空间分布和产状,建立钻井的工程模型、地质模型和数值模拟模型;对钻井过程中盐膏层蠕变的速度、位移和井眼缩径的整个过程进行计算机数值模拟。研究了钻井液密度与盐膏层缩径之间的关系,为盐膏层钻井工程设计提供了最佳依据。
Salt and gypsum layers are mainly consist of salt and gypsum. In salt basins, salt and gypsum layers are frequently confronted in drilling for oil and natural gas. Drilling into salt and gypsum layers(especially deep salt and gypsum layers) is a worldwide difficult problem. Serious hole shrinkage often occurs during drilling, which leads to the instability of borehole, the drill gets stuck and the annular tubes be pressed to break, which brings huge economic loss to the drilling. To explore oil and natural gas under salt and gypsum layers, and to drill through the thick salt and gypsum layers and make the borehole be stable for a relatively long period, we need to urgently solve this significant problem for drilling engineering.Salt and gypsum layers are rheological. The creep characteristics is especially obvious under high temperature and high pressure in deep for salt and gypsum layers. Being different from sandstone, shale and mudstone, the elasticity modulus of rheological layers is very small. They can not resist shear forces, large and continuous creep deformation may occur even under low horizontal stresses. When the salt and gypsum layer is drilled through in the drilling process, the relative balance of stresses in the primary layers, comparatively strong stress concentration is produced in the wall rock of the hole. Under the horizontal press, the salt and gypsum layers creep and deformed, and then, they drift and flow into the hole and finally leads to hole shrinkage and hole instability.Numerical modeling by computer is a important method to study hole shrinkage and hole instability in drilling through salt and gypsum layers, from which we can reproduce the creep and deformation process of salt and gypsum layers with time during drilling. For drilling process, time is important. By numerical modeling, we can unfold the temporal and spatial deformation process of hole shrinkage of salt and gypsum layers during drilling. So, foreigners have paid much attention to numerical modeling. Especially in recent ten years, based on study for the laws of rheology of salt and gypsum layers, large progresses have been achieved in the study of the deformation of salt and gypsum layers.Making quantitative study and numerical modeling for the entire process of creep velocity, spatial displacement and hole shrinkage of salt and gypsum layers is the key to successfully making design of drilling at salt and gypsum layers and to prevent and manage accidents in deep hole. Based on tri-axial creep experiments of core specimen, the constitutive law for salt and gypsum layers is established in this paper. Based on layers, structures and spatial distribution and attitude of salt and gypsum layers, the engineering model, geological model and numerical model of drilling hole are established. Numerical modeling for the entire process of creep velocity, displacement and hole shrinkage of salt and gypsum layers in drilling is carried out. The relationship between the intensity of hole liquid and the hole shrinkage of salt and gypsum layers is studied, and an optimum basis is provided for the design of drilling engineering at salt and gypsum layers.
引文
1.徐天光,顾家裕,薜叔浩.盐湖沉积硬石膏特征及其在油气勘探中的应用.石油勘探与开发,1997,24(5):54-57.
    2.张朝军,田在艺.塔里木盆地库车坳陷第三系盐构造与油气.石油学报,1998,19(1):6-10.
    3.罗权生,荆文波,聂朝强.台北凹陷第三系膏盐岩对油气运聚的意义.石油勘探与开发,2000,27(1):29-31.
    4.汤良杰,金之均等.塔里木盆地多期盐构造与油气聚集.中国科学D辑地球科学,2004,34(增刊Ⅰ):89-97.
    5.张抗.塔河油田性质和塔里木碳酸盐岩油气勘探方向.石油学报,2002,23(1):6-10.
    6.周江羽,林忠民等.塔里木盆地北部石炭系盐体塑性变形与油气圈闭.石油与天然气地质,1999,20(3):216-219.
    7.吕修祥,金之均等.塔里木盆地库车坳陷与膏盐岩相关的油气聚集.石油勘探与开发,2000,27(4):20.
    8.陈发亮,朱晖等.东濮凹陷下第三系沙河街组层序地层划分及盐岩成因探讨.沉积学报,2000,18(3):384-388.
    9.张景廉,金之均等.塔里木盆地深部地质流体与油气藏的关系.新疆石油地质,2001,(22)5:371-374.
    10.孙书贞.高抗挤厚壁套管的开发与应用.石油钻采工艺,2002,(24)2:28-30.
    11.黄承建,闫志刚.吐哈油田盐膏层钻井液技术.石油钻探技术,2002年第2期.
    12.何开平,张良万等.盐膏层蠕变粘弹性流体模型及有限元分析.石油学报,2002,(23)3:102-106.
    13.刘群,吕景英等.塔河地区石炭系盐体对地震参数及成像精度的影响.新疆石油地质,2003,(24)6:517-519.
    14.何开平.盐膏层蠕变粘弹性固体模型及有限元分析.天然气工业.2003,(23)3.
    15.吴应凯,石晓兵等.深部盐膏层安全钻井技术的现状及发展方向研究.天然气工业,2004,(24)2:67-69.
    16.韩建增等.一种盐岩层蠕变参数的现场评价方法.西南石油学院学报,2001:23(3).
    17.曾义金等.钻井液密度对盐膏层蠕变的三维分析.石油钻采工艺,2001:23(6).
    18.李玉民.塔河油田南缘盐膏层钻井技术.石油钻探技术,2004,(32)3:8-11.
    19.侯殿波.深井盐膏层固井水泥桨体系研究与应用.石油钻探技术,2004,(32)3:18-20.
    20.梁大川,张英.盐层的特殊性及钻井液技术.西部探矿工程,2004,(99)8:74-79.
    21.金衍,陈勉等.盐膏层地层的井眼缩径变形分析.石油大学学报,1999年第2期.
    22.周江羽,韩燕英等.塔北地区下石炭统含盐系的沉积演化及成盐机理.新疆石油地质, 1999,(20)3.
    23.宋卫东等.塔里木盆地A区深部盐层蠕变特性试验研究.断块油气田,第6卷2期.
    24.李建军,李治等.东濮凹陷沙河街组盐岩成因研究.断所油气田,1998,(5)5:18-21.
    25.张同台.井壁稳定技术研究现状及发展方向.钻井液与完井液,1997,(14)4:36-43.
    26.禹金营,张洪安等.东濮凹陷盐岩沉积模式研究.江汉石油学院学报,2003,(25)3:40-43.
    27.侯高文,刘和甫,左胜杰.尼日尔三角洲盆地油气分布特征及控制因素.石油与天然气地质,2005,26(3):374-378
    28.张保恒.江汉盐湖盆地套管损坏原因分析.石油学报,1983,4(4)
    29.李允子,李根明.中原油田复合盐层的特性及其钻井工艺技术.石油钻采工艺,1985,7(6)
    30.孙建成,王宝新等.胜利油田郝科1井套管挤毁的启示.石油钻采工艺,1998,20(4).
    31.王合林,薛宥堂,孙保民.荆丘地区防止膏岩层挤毁套管的钻井完井工艺.石油钻采工艺,1994,16(6).
    32.齐兴宇.东濮凹陷盐岩与油气.石油学报,1992,13(1):23-29.
    33.刘群等.中国中、新生代陆家源碎则-化学岩型盐类沉积.北京:北京科学技术出版社,1987.
    34.陈开远,何胡军等.潜江凹陷潜江组古盐湖沉积层序的地球化学特征.盐湖研究,2002,10(4):19-23.
    36.张明勇.S84井塑性蠕动盐膏层钻井液技术.石油钻探技术,2003,31(6):58-59.
    37.曾义金.深部盐膏层蠕变关系研究.石油钻探技术,2004,32(3).
    38.杨春和,白世伟,吴仪明.应力水平及加载路径对盐岩时效的影响.岩石力学与工程学报,2000,19(3):271-275.
    39.瞿扬等.白云岩及盐膏层安全钻井技术.钻采工艺,2001,24(3).
    40.金衍等.盐岩地层井眼缩径控制技术新方法研究.岩石力学与工程学报,2000年第6期(增刊).
    41.韩建增等.一种盐岩层蠕变参数的现场评价方法.西南石油学院学报,2001,23(3).
    42.马新华,华爱刚,李景明等.含盐油气盆地.北京:石油工业出版社,2000,1-112
    43.汤良杰,贾承造,皮学军等.库车前陆褶皱带盐相关构造样式.中国科学D辑,2003,33(1):38-46.
    44.汤良杰,贾承造,金之均等.库车前陆褶皱冲断带中段第三系盐枕构造.地质科学,2003,38(3):281-290.
    45.刘晓峰,解习农.与盐构造相关的流体流动和油气运聚.地学前缘,2001,8(4)343-349.
    46.樊世忠.岩盐层和膏盐层的井壁稳定问题.钻井泥浆,1985(2).
    47.徐同台.各油田盐膏层基本情况及泥浆技术措施.钻井泥浆,1985(2).
    48.雷鹤年等.华北油田束鹿凹陷钻探复合盐地层的回顾和认识.钻采工艺,1989,12(1).
    49.夏俭英编.钻井液有机处理剂.东营:石油大学出版社,1990.
    50.刁立孟,鞠德平.对付盐膏层的钻井液技术.钻井液与完井液,1990,7(4):37-44.
    51.Greeim,孙应民.钻蠕动盐层用的新型扩眼钻头.钻采工艺研究,1990(2):27-35.
    52.Kimcm,曾中立.盐层段井眼闭合的现场测量与控制,国外钻井技术,1990,5(3).
    53.陈武.用偏心PDC钻头钻盐岩层可防止卡钻.油气工业技术情报,1990,17(6):9-17.
    54.Yearwj,陈奇.大段盐层注水泥技术,井下科技译丛,1991(4):85-90.
    55.宿连秀,含盐地层的注水泥成分.钻井工艺情报,1993(3):1-5.
    56.宿连秀,盐层固井的最优水泥浆设计.钻井工艺情报,1993(3):75-83.
    57.Hackrm,宿连秀.设计盐层套管的新方法.钻井工艺情报,1993(3):35-45.
    58.Jatnesa,宿连秀.用双中心钻头钻—扩流动性盐层.钻井工艺情报,1993(3):25-34.
    59.Khalafa,宿连秀.提高套管抗挤压力,抵制盐层增加的载荷.钻井工艺情报,1993(3).
    60.鄢捷年,黄林基编.钻井液优化设计与实用技术.东营:石油大学出版社,1993.
    61.柳世杰.深井厚盐层固井工.钻采工艺,1994,17(4):33-36.
    62.王合林等.荆丘地区防止膏盐层挤毁套管的钻井完井工艺.石油钻采工艺,1994,16(6).
    63、黄桢.泥页岩石膏盐岩层卡钻的流变模型探讨.钻采工艺,1995,8(4):24-26.
    64.甘霖.塔里木盐岩层、盐水层钻井调研分析.石油钻井工程,1996,3(1):6-11.
    65.邓金根.控制油井盐层段流变缩径的泥浆密度的计算方法.岩石力学与工程学报,1997,16(6):522-528.
    66.陈礼彬.钻遇盐水层的处理技术.钻采工艺,1997,20(3):79-82.
    67.徐朝仪,董振国.塔北深探井厚青层蠕动地层钻井技术.钻采工艺,1997,20(1):1-5.
    68.陈敦辉.荆丘地区膏盐层钻井液技术,钻井液与完井液.1997,14(2):41-42.
    69.栗广科,姜应勇.双层组合套管在定向井盐层段的应州.断块油气田,1998,5(2).
    70.李波.关于钻探盐膏层的点滴启示.钻井液与完井液,1998,15(4):46-47.
    71.Shar.P.J.解决盐层卡钻问题的新型钻井系统.国外钻井技术,1998,13(5):17-23.
    72.肖国益.复合盐膏层双层组合套管设计.断块油气田,1999,6(1):55-59.
    73.陶世平,顾军.吐哈神泉盐膏地层固井技术.钻采工艺,1999,22(6)
    74.杨虹.解决盐下层的井漏问题和优化注水泥的新方法.世界石油工业,2000,7(2).
    75.杨春和等.深层盐岩本构关系及其在石油钻井工程中的应用研究.岩石力学与工程学报,2001,22(10).
    76.曾义金等.深井石油套管盐膏岩层蠕变挤压应力计算研究.岩石力学与工程学报,2002,21(4).
    77.张锦荣等.塔里木深井盐膏层钻井技术.石油钻探技术,2003年,第6期.
    78.邓金根,控制油井盐层段流变缩径的泥浆密度的计算方法.岩石力学与工程学报,1997,16(6).
    79.王香增等.盐岩蠕变三维数值模拟计算方法及应用.石油钻采工艺,2004年第6期.
    80.曾义金,深层盐膏层蠕动规律研究.石油钻采工艺,2002,24(6).
    81.闫东育等.东濮凹陷沙三段盐丘浅析.石油勘探与开发,2001年第6期.
    82.胡炳煊等.潜江凹陷的盐丘构造及形成条件分析.石油勘探与开发,1984年第6期.
    83.谢泰俊等.江汉盆地的盐构造及其对油气的控制作用.石油勘探与开发,1983年第6期.
    84.徐守余等.油井套管损坏动力学机制研究.石油钻采工艺,2003年第6期.
    85.田在艺等.中国含油气沉积盆地论.北京:石油工艺出版社,1996.
    86.周祖辉译.盐岩蠕变模式对预测变形的影响.华东石油学院译丛,1987年总第19期.
    87.谢又新等.考虑盐岩层蠕变的井身结构设计研究.西南石油学院学报,2002年第4期.
    88.常贵利等.利用地应力分析井眼稳定性.测井与射孔,1999年第2期.
    89.吴应凯等.深部盐膏层安全钻井技术的现状及发展方向研究.天然气工业,2004年第2期.
    90.唐继平等.盐膏层钻井理论与实践.北京:石油工业出版社,2003.
    91.唐世昭主编.江汉盐湖盆地石油地质.北京:石油工业出版社,1997.
    92. Caflisch L.Oil exploration in pre-salt and post-salt sequence of West Africa—results in Cabinda[J].AAPG Bull, 1979,63(3):427.
    93. Willson S M,Fossum A F, Fredrich J T. Assessment of salt loading on well casings.SPE 81820,2003.
    94. Cheatham J B.Behavior of casing subjected to salt loading.Journal of Petroleum Technology, 1964;16(9).
    95. Barker J W, Tsao Y H.Drilling long salt sections along the US Gulf Coast.SPE24605,1992.
    96. F Khalaf. Increasing casing collapse resistance against salt-induced loads. SPE 13712,1985.
    97. Hackney R M. A new approach to casing design for slat formations. SPE 13431,1985.
    98. Greener J M, Webb D D. Underreamer improvements for drilling moving salt formations. SPE 18700, 1989.
    99. Sheffield J S, Collins K B,Hachney R M. Salt drilling in th rocky mountains. SPE11374,1983.
    100. Mclean M R and Addis M A.Wellbore Stability Analysis: A Review of Current Methods of Analysis and Their Field Application[J].SPE 19941.
    101. Hsiao C. Growth of Plastic Zone in Porous Medium Around a Wellbore [J].Haliburton Service, OTC 5858:439-447.
    102. Mclear M R and Addis M A. Wellboue Stability:The Effect of Strength Criteria on Mud Weight Recommendations[J].SPE20405.
    103. John O Brien al Understanding Subsalt Overpressure May Reduce Drilling Risks O. G. J. jan.24.1994.
    104. Leonard LeBlanc Drilling Completion Workover Challenges in Subsalt Formation Offshore Aug 1994.
    105. A. D Koen Discoveries Fuel Gulf of Mexico Subsalt Play O. G. J. Mar.4.1996.
    106. Inching Closer to Preadicting Subsalt Oil Gas Prespectivity Offshore Jan 1996.
    107. Jet Leaching Tool Accurately Underreams Salt Sections O.G.J.Feb 6 1995.
    108. Charlie Freeman et al Fluid Systems Reduce Risk of Drilling Subsait Wells The American Oil Gas Reporter Aug 1995.
    109. S. M. Stash et al Williston Basin An Analysis of Salt Drilling Techniques for Brine-Based Drilling Systems.SPE 15152.
    110. Addressing Gulf of Mexico Drilling Fluid Problems Offshore Apr. 1997.
    111. Chunhe Yang, Daemen J J K, Jianhua Yin. International Journal of Rock Mechanics and Mining Science,1999,(36):233-242.
    112. Munson D E.Constitutive modeling of salt behavior-state of the technology[A].//Proceeding of the 37th U.S.Rock Mechanics Symposium [C].New York:John Willey Sons, 1991:1779-1810.
    113. Einsele G. Sedimentary Basins-Evolution, Facies, and Sediment Budget. Second, Completely Revised and enlarged Edition Springer-verlag, 2000.1-792.
    114. Edgell H S.Salt tectonism in the Persian Gulf basin.In:Lasop G I, Blundell D G, Davison I,eds.Salt Tectonics.Geological Society Special Publication, 1996,100:129-151.
    115. Rowan M G.Structural styles and evolution of allochthonous salt, Central Louisiana Outer Shelf and Upper Slope In:Jackson M P A,Roberts D G.Snelson S,eds. Salt Tectonice, A Global Perspective.AAPG Memoir, 1995,65:199-228.
    116. McBride B C, Rowan M G, Weimer P. The evolution of allochthonous salt systems, Western Green Canyon and Ewing Bank(offshore Louisiana).Northern Gulf of Mexico. AAPG Bulletin, 1998,82(5): 1013-1036.
    117. Letouzey J, Colletta B,Vially R, et al, Evolution of salt-related structures in compressional sett ings. In: Jackson M P A,Roberts D G, Snelson S, eds. Salt Tectonics, A Global Perspective, AAPG Memoir, 1995,65:41-60.
    118. Buchanan P G, Bishop D J, Hood D N. Development of salt-related structures in the Central North Sea:results from section balancing In:Lasop G I,Blundell D G, Davison I,eds.Salt Tectonics.Geological Publication, 1996,100: 111-128.
    119. Talbot C J,Alavi M.The past of a future syntaxis across the Zagros. In: Lasop G I,Blunedll D G, Davison I,eds.Salt Tectonics.Geological Society Special Publication, 1996, 100:89-109.
    120. Mcknight C L.Structural styles and tectonic significance of Tianshan foothill fold-thrust belts,northwest China.Ph.D.thesis. Waco.Texas,Baylor University, 1993.
    121. Tang L J.Multi-level detachments and petroleum potential of the Tarim basin.Acta Geologica Sinica, 1992,5(4):327-338.
    122. David Waltham, 1997, Why does salt start to move? Tcctonophysics, 282, 117-128.
    123. Alik T, Christopher J.T, 2001, Dynamic restoration of profiles across diapiric salt structures numerical approach and its application, Tcctonophysics, 337, 23-38.
    124. Stephane Z and Philippe J,1992,Numerical simulation of Rayleigh-Taylor instability for single and multiple salt diapers, Tcctonophysics, 206,55-69.
    125. B.Daudr, S.Cloetingh,1994,Numerical modelling of salt diapirism:influence of the tectonic regime, Tcctonophysics, 240,59-79.
    126. Holt Charles A, A method for Drilling moving Salt Formations-Drilling and Under reaming Concurrently, SPE13488.
    127. Unger K W.Drilling Techniques Improve Success In Drilling and Casing Deep Overthrust Belt Salt, SPE13108.
    128. Greener J m, Under reamer, Improvements for Drilling moving Salt Formations, SPE18700.
    129. Stash Sandra m.Williston Basin: An Analysis Of Salt Drilling Techniques for Brine-Based Drilling-Fluid Systems, SPE15152.
    130. W K Armagost, Development and Application of a Large-Hole Rotary Steerable System: Accelerating New Technology Introduction through Successful Collaboration, SPE79916.
    131. Donald Whitfill, Drilling Salt-Effect Of Drilling Fluid On Penetration Rateand Hole Size, SPE74546.
    132. Tan CheeP, managing Physico-Chemical Wellboreln—stabilityin Shaleswith the Chemical Potentialmechanism, SPD6971.
    133. Finnie, L., 1960, "stress Analysis in the presence of Greep, "Applied Mechanics Reviews,vol. 13.NO.october.
    134. Senseny, P.E., 1981, "Reviews of constitutive laws used to describe the creep of salt" , ONWI-295,August ,office of nucler waster Isolation, Battelle Memorial Institute,Columbus,OH.
    135. Webster, G.A., Cox,A.P.D. , and Dorn,J.E.,1969, "A Relationship Between Transient and Stead-State Greep at Elevated Temperatures" , Metal Sci.J., Vol.3,pp.221-225.
    136. Mellegard, K.D., Senseny, P.E., and Hansen,F.D.,1981, "Quasi-Static strength and Greep characteristics of 100-mm-diameter Specimens of salt from Arery Island,Louisiana" , ONWI-250,March.
    137. Yang Chunhe, Daemn JJK., Yin Jianhua, Journal of Rock, Mechanics and Mining Science, ,1999.(36):233-242
    138. A.H.EI-Sayed,F.Khalaf.Resistance of Cemented concentric Casing Strings Under Nonuniform Loading. SPE 17927,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700