用户名: 密码: 验证码:
泥岩膨胀机理的弹塑性力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩石是构成地球最基本的材料,研究地球上的诸多现象和过程,都离不开对岩石物理性质的理解和认识。弹性波在岩石中传播特性的研究,为油气勘探提供了有力工具,提供了关于地球岩石圈应力状态的新认识,将成为解释地震和滑坡等自然灾害机理的理论基础,并形成了岩石断裂力学新领域;对泥岩变形进行宏细观力学机理的研究,对石油工业具有重要作用,它影响到钻井、采油等石油勘探开发的许多方面。
     油田现场调研表明,油水井套管损坏和钻井工程中的井壁坍塌多发于泥岩层。研究泥岩的物理、化学和力学性质,探讨和研究泥岩吸水、水化宏观与微观过程及此过程中地层水化应力、围岩孔隙压力与岩石力学性能的变化规律及影响因素,研究泥页岩水化机理、膨胀机理。从力学的角度上就是研究力学变形机理和建立泥岩材料的本构关系。
     应用本构关系对泥岩所特有的力学性质有全面的理解并对工程问题加以解决,才能更深入地研究地层界面处油水井套管损坏的机理,进而为套管设计、制造、安装和套管损坏防治以及提高井壁稳定性提供理论依据。本构方程的建立将为研究套管的破坏和井壁失稳机理奠定基础,是一个具有理论意义和应用前景的课题。
     通过分析和调研,全面地总结油水井套管损坏和井壁失稳机理,指出岩土力学中本构方程理论的重要性,力图用断裂力学和有限变形弹塑性理论方法,揭示泥岩变形的力学机理,并进行了以下工作:
     1.深入地研究了泥岩吸水和水化的物理变化过程,进行泥岩吸水和水化的实验,指出体积膨胀非线性变化是泥岩吸水过程物理变化的重要特征,建立了反映这一变化影响的非线性蠕变材料的本构方程。
     2.将本构关系与界面断裂力学的理论相结合,应用于泥岩层界面处油水井套管损坏的研究中,建立了地层隆起套管剪切损坏模型的界面裂纹力学模型,即高压注水引起的油藏隆起引起套管剪切损坏的力学模型。通过计算,分析地层倾角对套管剪切损坏的影响,阐明泥岩层界面处油水井套管损坏的力学机理。
     3.鉴于泥岩的体积膨胀效应较大,采用有限变形弹塑性理论对其变形机理进行分析是十分必要的。采用有限变形弹塑性理论,建立了压力敏感性材料本构方程。
As the basic materials of the earth, rock is studied to understand many phenomenon and processes on the earth. Research on the propagation characteristics of the elastic wave in the rock is beneficial to oil gas exploration and gives further insight into the stress state of the earth's lithosphere, which forms the theoretical basis on the natural disaster, such as earthquake, landslide. With its help, a new field in the rock fracture mechanics would occur. It is significant for the petroleum industry to investigate on the macroscopic and mesomechanic mechanism of the mudrock deformation, which influences some aspects of petroleum exploration, such as well drilling and oil extraction.The survey of oilfield on site indicates that on the mudrock layer it happens to the oily water well that casing fails and during well drilling well face collapses. In present paper, the physical, chemical and mechanical properties of mudrock are studied, then the macro and microcosmic process of mudrock under water-injection and hydration is analyzed, during which the variation law and influencing factors on hydration stress in the stratum, on the stress in the wall rock pore and mechanical properties of rocks are given. Also the hydration and dilation mechanism of mud shale is investigated. From the point of view of mechanics, the mechanical deformation mechanism and constitutive relation for mudrock material are established.Based on the constitutive relation, the peculiarly mechanical properties of mudrock are understood fully and engineering problems may be solved. Then the mechanism on the casing failure in the oily water well on the stratum interface could be examined further, which provides theoretical basis for the design, manufacture, and assembling of casing, prevention from casing failure and enhancing the stability of well face. Establishment of constitutive equations lays a solid foundation for the research on the casing failure and instability mechanism of well face, which is of great theoretical significance and wide application.After analysis and survey, the mechanism on the casing failure of oily water well and instability of well face is summed up fully. The significance of constitutive relations in geotechnics is given. Fracture mechanics and finite elasto-plastic deformation theory are introduced to reveal the mechanical mechanism of mudrock deformation. The main work is as follows:Firstly, the mechanical property of mudrock under water-injection and hydration is studied. The experiments of water-injection and hydrochemistry of
    mudrock were made. It is an important character that nonlinear bulk strain changes under water-injection for mudrock. The nonlinear creeping constitutive equation of mudrock which influences bulk expanding is established.Secondly, with the combination of constitutive relation and interface fracture mechanics, the interface fracture mechanics model is established which is applicable to analysis of strata uplift and casing shearing failure, i.e. high pressure water-injection causes oil pool uplift and casing shearing failure. Upon calculation, the influence of stratum degree of inclination on casing shearing failure is given, and the mechanism on the casing failure in the oily water well on the mudrock interface could be elucidated.Thirdly, seeing that bulking dilatation effect is evident, it is essential that finite elasto-plastic deformation theory be introduced to study the deformation mechanism. Based on the finite elasto-plastic deformation theory, the constitutive equation for pressure-sensitive material is established.Fourthly, with the constitutive equation for pressure-sensitive material, the finite elasto-plastic deformation of pressured spherical cavity (body cell model) is analyzed. Under the assumption of self-similarity, the governing equations for the deformation of pressured spherical cavity are simplified and the differential equations are established with the effective stress as independent variable. The stress and displacement distribution is given, and the impact of material parameter on the bulking dilatation effect is discussed. All these work lays foundation for establishment of the macro constitutive potential and macro failure criterion based on the analysis of body cell.Fifthly, according to the physical circumstances of the oil field on site, with the combination of theory and practical experience, the measures to prevent and treat casing failure in oily water well and instability accident of well face are proposed. The results give a useful theoretical reference for protection and treatment of casing failure in oily water well, design and appraisal of fracture toughness and investigation on the instability mechanism of well face.
引文
[1] 王仲茂,卢万恒,胡江明.油田油水井套管损坏的机理及防治.北京:石油工业出版社,1994
    [2] 张效羽,赵国珍等.国内外套管损坏研究概况及发展动向.石油机械.1996,24(9):52-54页
    [3] 张先普,陈继明等.我国油田套管损坏的原因探讨.石油钻采工艺.1996,18(5):7-12页
    [4] 王德良.中原油田套管损坏原因分析及预防.石油钻探技术.2003,31(2):36-38页
    [5] 孟祥玉,易文所等.胜利油田套管损坏综合治理评述.石油钻采工艺.1999,21(1):39-42页
    [6] 付继彤,彭苏萍等.孤岛油田和孤东油田套管损坏统计与机理分析.江汉石油学院学报.2002,24(2):84-85页
    [7] 胡显玉,牛全宇等.套损井原因分析及治理工艺.油气田环境保护.2003,13(3):35-37页
    [8] 贾选红,刘玉.辽河油田稠油井套管损坏原因分析与治理措施.特种油气藏.2003,10(2):69-71页
    [9] 杨平阁,付玉红.辽河油田热采井套损机理分析与治理措施.石油钻采工艺.2003,25(增):72-74页
    [10] 大庆油田研究院.国内外油田套损机理、套损防护和修理技术(大庆油田内部资料).1999
    [11] 大庆采油工艺研究所.套管损坏检测技术的新发展(大庆油田内部资料).1999
    [12] 胡博仲,徐志良.大庆油田油水井套损机理及防护措施.石油钻采工艺.1998,20(5):95-98页
    [13] 姚洪田,王伟等.套管损坏原因与修井效果.大庆石油地质与开发.2001,20(1):35-36页
    [14] 周晓玲,郭雷等.萨中开发区注聚区块套管损坏原因.大庆石油地质与开发.2002,21(4):44-45页
    [15] 艾池,王臣等.葡北油田套管损坏规律.大庆石油学院学报.2003,27(2):23-24页
    [16] 傅诚德.“八五”石油科技要览.北京:石油工业出版社,1997
    [17] 李志明,张金珠.地应力与油田勘探开发.北京:石油工业出版社,1997
    [18] 李永东.油水井套管损坏的断裂力学机理的研究[D].哈尔滨:哈尔滨工程大学.2001
    [19] Charlez P. A. Rock Mechanics-Theoretical fundamentals. Ed Technips. 1991
    [20] 杜时贵,樊良本.岩体结构面粗糙度系数的统计估测.地球物理学报.1999,42(4):577-579页
    [21] 张晓春等.岩体裂纹演化及其力学特性的研究进展.力学进展.1999,29(1):97-104页
    [22] 黄荣樽等.石油工程岩石力学研究进展.石油大学学报(自然科学版).1993,17(增刊):13-17页
    [23] 张清.岩石力学基础.北京:中国铁道出版社,1986
    [24] 李先纬.岩块力学性质.北京:煤炭工业出版社,1983
    [25] 孙岩,本亮.论层滑、倾滑和走滑系统.地质力学学报.1999,5(3):53-57页
    [26] 傅征祥,桂萍.平行走滑断层相互作用的粘弹性模型和减震作用.地震.1999,9(2):127-134页
    [27] 路保平等.水化对泥页岩力学性质影响的实验研究.地质力学学报.1999,5 (1):65-70页
    [28] 罗健生,鄢捷年.页岩水化对其力学性质和井壁稳定性的影响.石油钻采工艺.1999,21 (2):7-13页
    [29] 艾池,李士斌.大庆油田泥岩浸水速度试验.石油钻采工艺.2002,24(4):1-3页
    [30] Roegiers J. C. Applied mechanics problems in oil and gas industry. J. Apll. Mech. Rev. 1986, 39: 1687-1696P
    [31] M. R. Mclean, M. A. Addis. Well bore Stability Analysis: AReview of Current: Methods of Analysis and Their Field Application. SPE 1999, 41: 261-274
    [32] J. B. Cheatham Jr. Well bore Stability. Journal of Petroleum Technology. 1984
    [33] S. Bruce. A Mechanical stability. Log. IADC/SPE 1999, 42.
    [34] 邓金根,黄荣樽,王康平.钻井工程中泥页岩井壁稳定的力学研究.北京中国石油天然气总公司八五重点科技项目研究成果报告.1996
    [35] 刘平德等.斜井中泥页岩井眼稳定性研究.石油钻采工艺.2000,22(2):35-37页
    [36] 赵忠举,徐同台,刘玉石等.国外力学和化学稳定井壁机理和方法的调研.北京中国石油天然气总公司信息研究所.1996
    [37] 陈颙,黄庭芳.岩石物理学.北京:北京大学出版社,2001
    [38] Carroll M. M. Appl. Mech. Rew. 1985, 38 (10) : 1256-1260P
    [39] Drucker D. C. A more fundamental approach to plastic stress-train relation. Proc. 1St U. S. Nat. Congr. Appl. Mech. 1951: 481-491P
    [40] IIiushin A. A. On the postulate of plasticity, Apllied Maths. And Mech. 1961, 25: 746-752P
    [41] 王仁,黄可智,朱兆祥.塑性力学进展.北京:中国铁道出版社,1988
    [42] 张晓春等.岩石裂纹演化及其力学特征的研究进展.力学进展.1999,29:97-104页
    [43] 张学言.岩土塑性力学基础.天津:天津大学出版社,2004
    [44] Dafalias Y. F. Int. J. non-linear Mech. 1997, 12: 327-337P Dafalias Y. F. and Popov E. P. A model for nonlinearly hardening materials for complex loading. Acta Mechanics. 1975, 21: 173-192P
    [45] Naghdi P. M. Stress-strain relations in Plasticity and thermoplasticity in "Plasticity" . Ed. Lee. E. H. Symouds. P. S. Pergamon Press. 1960: 121-167P
    [46] Naghdi P. M. and Trapp J. A. The significance of formulation plasticity theory with reference to loading surface in strain space. Int. J. Eng. Sci. 1975, 13: 785-797P
    [47] 曲圣年,殷有泉.塑性力学的Drucker公设和Illshin公设.力学学报.1981,5:465-473页
    [48] 陈惠发.土木工程材料的本构关系.塑性与建模.武汉:华中科技大学出版社,2001,2
    [49] 唐立强,田德谟.一个压力敏感材料的本构方程.哈尔滨船舶工程学院学报.1994,15(1):6-12页
    [50] 陈会军,李永东,唐立强.多孔材料中裂纹尖端的渐近场.哈尔滨工程大学学报.2000,21 (3):58-63页
    [51] Tang L. Q. and Chen H. J. Compressive failure and buckling of circular plate. Mesomechanics 2000. Tsinghua University Press. 2000, 2: 981-986P
    [52] Chen H. J. and Tang L. Q. Crack-tip asymptotic field in porous materials. Mesomechanics 2000. Tsinghua University Press. 2000, 1: 305-311P
    [53] Drucker, D. C, and Prager, H. J. Soil mechanics and plastic analysis or limit design. Quat. of Appl. Math. 1952, 10: 157-165
    [54] Lade P. V. Elasto-plastic stress-strain theory for cohesionless soil with curved yield surface. Int. J. solids and structures. 1977, 3: 1019-1035
    [55] Landes J D and Begley J A. A fracture mechanics approach to creep crack growth. In Mechanics of Crack Growth, Special Technical Publication 590, 1976: 128-148
    [56] E. Hoek and E. TBrown. Underground Excavations in Rock, Austin & Sons Ltd, Hertford, England, 1980
    [57] E. Hoek and E. T. Brown, Strength of jointedrockmasses. Geotechnique, 1983, 33 (3) : 187—223
    [58] E. Hoek and D. Wood. A modified Hoek-Brown failure criterion for jointed rock masses. Pro. Int. Conf. Eurock'92, Chest, England, 1992: 202—214
    [59] Hoek E and Brown, E. T. Underground Excavation in Rock, The Institute of Mining and Metallurgy, London, 1980: 131—182
    [60] Sandler I. S. et al. Third International Conference on Numerical Methods in Geomechanics. Aachen. 1979: 363-376P
    [61] 杨挺青.粘弹塑性本构理论及其应用.力学进展.1992,22:10-19页
    [62] Cheneter M. E. and Thomtson T. W. Perforation stability in low-permeability gas reservoirs. SPE/DOE. 1990, 5 (1) : 63-89P
    [63] 余寿文,冯西桥.损伤力学.北京:清华大学出版社,1997
    [64] 卡恰诺夫L. M. 连续介质损伤力学.哈尔滨:哈尔滨工业大学出版社,1989
    [65] Rabotnov Y. N. Creep problems in structural members. North-Holland. Amsterdam. 1969
    [66] Lemaitre J. and Chaboche J. L. Aspect phenomenologique de la rupture par endomnagemeat. J. Meca. Appl. 1978, 2 (3) : 317-365P
    [67] Cheboche J. L. and Rousselter G. On the plasticand viscoplastiec constitutive equation-Part Ⅰ: Rules developed with internal variable concept; Part Ⅱ: Application of internal variable concepts to the 316 stainless steel. Journal of Pressure Vessel Technology. 1983, (105) 153-158P, 159-164P
    [68] Krajcinovic D. Continuum damage mechanics. J. Appl. Mech. Reviews. 1884, 37 (1) : 1-6P
    [69] Lemaitre J. A continuous damage mechanics model for ductile fracture. J. Eagng. Mat. Tech. 1985, 107: 83-89P
    [70] 王自强,段祝平.塑性细观力学.北京:科学出版社,1995
    [71] Eshelby J. D. The determination of the elastic field of an ellipsoidal inclusion and Related problems. Proc. Roy. Soc. London. A241. 1957: 376-396P
    [72] Eshelby J. D. Elastic inclusion and inhomogeneities. In Progress on Solid Mechanics. Ⅱ. North-Honand. Publ. 1961
    [73] Hill R. Continuum micromechanics of elasto-plastic polycrystals. J. Mech. Phys. Solids. 1965, 13: 89-101P
    [74] Bishop J. F. W. and Hill R. A. Theoretical derivation of the plastic properties of a polycrystalline face centered metal. Philos. Mag. 1951, 42: 414-427P
    [75] Tanaka K. and Mori T. Note on volume integrals of the elastic field around an ellipsoidal inclusions. J. Elasticity. 1972, 2: 199-200P
    [76] Gurson, A. L. Continuum theory of ductile rupture by the void nucleation and growth. J. Eagng. Mater. Technology. 1977, 99
    [77] McClintock F. A. A criterion for ductile fracture bythe growth of holes. J. Appl. Mech. Vol. 1968, 35: 363-371P
    [78] Riee I. R. and Tracey D. M. On the ductile enlargement of voids in triaxil stress fields. J. Mech. Phys. Solids. 1969, 17: 201-227P
    [79] Rudnicki J. W. Geomechanics. Int. J. Solids. and Structures. 2000, 37 (3) : 349-358P
    [80] 杨卫.宏微观断裂力学.北京:国防工业出版社,1995
    [81] 石永高,黄诚华等.大庆油田地面形变监测.石油规划设计.1995,2:34-37页
    [82] Htchinson J. W. Singular behaviour at the end of a tensile crack in hardening material. J. Mech. Phys. Solids. 1968, 16: 13-31P
    [83] Rice J. R. & Rosengren G. R. Plane strain deformation near crack tip in a power law hardening material. J. Mech. Phys. Solids. 1968, 16, 1-12P
    [84] Dunders J. J. Appl. Mech. 1969, 36: 650-652P
    [85] Williams M. L. , Bull. The stress around a fault or crack in dissimilar media. Seismol. Soc. America. 1959, 49 (2) : 199-204P
    [86] Rice J. R. Elastic fracture concepts for interface cracks. J. Appl. Mech. 1988, 55: 98-103P
    [87] England A. H. A Crack Between Dissimilar Media. J. Appl. Mech. 1965, 32: 400-402P
    [88] Comninou M. The interface crack. J. Appl. Mech. 1977, 44 (4) : 631-636P
    [89] Delale F. & Erdegon F. On the mechanical modeling of the interface region in bonded half-plane. J. Appl. Mech. 1988, 55 (2) : 317-324P
    [90] Knowles J. K. & Sternberg E. Large deformations near a tip of an interface-crack between two Neo-Hookean sheets. J. Elasticity. 1983, 13: 257-293P
    [91] Hao Tian hu. Nonlinear response of mode I crack on bimaterial interfaces, nt. J. Fract. 1989, 41: 23-28P
    [92] Gao Y. C. & Shi Z. F. Large strain field near an interface crack tip. Int. J. Fract. 1994/1995, 69: 269-279P
    [93] Gao Y. C. Elastostatic crack tip behavior for a rubber-like material. Theo. Appl. Fract. Mech. , 1990, 14: 219-231P
    [94] 白若阳.界面裂纹大变形分析及有限元计算.哈尔滨工程大学博士论文.1998.6
    [95] Gao Y. C. Large deformation field near a crack tip in rubber-like material. Theo. Appl. Fract. Mech. 1997, 26: 155-162P
    [96] Shih C. F. & Asaro R. J. Elastic-Plastic Analysis of Crack on Bi-Material Interfaces: Part Ⅰ: Small Scale Yielding. J. Appl. Mech. 1988, 55: 229-316P
    [97] Shih C. F. & Asaro R. J. Elastic-Plastic Analysis of Crack on Bi-Material Interfaces: Part Ⅱ-Structure of Small Scale Yielding Fields. J. Appl. Mech. 1989, 56: 763-779P
    [98] Shih C. F. & Asaro R. J. Elastic-Plastic Analysis of Crack on Bi-Material Interfaces: Part Ⅲ-Large Scale Yielding. J. Appl. Mech. 1991, 58: 450-463P
    [99] Wang T. C. Elastic-plastic Asymptotic Fields for Cracks on Bimaterial Interfaces. Engng. Fract. Mech. 1990, 37 (3) : 527-538P
    [100] Xia L. & Wang T. C. Higher Order Analysis of Crack Tip Fields in Elastic Power-law Hardening Materials. J. Mech. Phys. Solids. 1993, 41 (4) : 665-687P
    [101] Chao Y. J. & Yang S. Higher Order Crack Tip Fields and Its Implication for Fracture of Solids under Mode Ⅱ Conditions. Engng. Fract. Mech. 1996, 55 (5) : 777-794P
    [102] Yang S. , Chao Y. J. & Sutton M. A. Complete theoretical analysis for higher order asymptotic terms and the HRR zone at a crack tip for Mode Ⅰ and Mode Ⅱ loading of a hardening material. Acta Machanica. 1993, 98: 79-98P
    [103] Yue Guang Wei & Wang T. C. Fracture Criterion Based on the Higher-order asymptotic fields. Int. J. Fract. 1995, 73: 39-50P
    [104] Sharma S. M. & Aravas N. Determination on Higher-order Terms in Asymptotic Elastoplastic Crack Tip Solutions. J. Mech. Phys. Solids. 1991, 39 (8) : 1043-1072P
    [105] 唐立强,谭英杰,蔡艳红.泥岩本构方程的研究.哈尔滨工程大学学报.2004,25(1):90-93页
    [106] 徐同台等.钻井工程井壁稳定新技术.北京:石油工业出版社,1999
    [107] 孙钧.岩土材料流变及其工程应用.北京:中国建筑工业出版社,1999
    [108] 陈天愚,刘殿魁.油田注水产生的浸水域的数值模拟及参数确定.哈尔滨工业大学学报.2003,35(10):1235-1239页
    [109] Chandler H. W. Homogeneous and localized deformation in granular materials: A mechanistic model. Int. J. Eng. Sci. 1990, 28 (8) : 719-134
    [110] BaiLey R. Creep relationships and their application to pipes, tubes and cylindrical parts under internal pressure. The Inst. Mech. Eng. 3 Proc. 1951, T164: 4-20
    [111] Odgrist F. K. G. Mathematical Theory of Creep and Creep Rupture. Oxford University Press. 1966
    [112] Hult J. Creep in Engineering Structures. Blaisdell Waltham Mass. 1966
    [113] 邓金根.水泥环性质对套管外载影响的模拟实验.石油大学学报(自然科学版).1997,21(6):24-28页
    [114] 陈良森,李长春.关于岩石的本构关系.力学进展.1992,22:173-181页
    [115] 唐立强,郑贵,谭英杰.弹性尖楔侵入非线性粘弹性材料尖端的应力、应变场.哈尔滨工程大学学报.2004,25(6):743-747页
    [116] Durban D. and Rand O. Singular fields in plane strain penetration. J. Appl. Mech. 1991, 58: 910-915
    [117] Durban D. Axially symmertric radial flow of rigid/linear hardening materials. J. Appl. Mech. 1979, 46: 322-328
    [118] Durban D. Drawing of tubes. J. Appl. Mech. 1980, 47: 736-740
    [119] Durban D. Radial flow simulation of Drawing and extrusion of rigid/hardening materials. Int. J. Appl. Mech. Sci. 1983, 25: 27-39
    [120] Durban D. Rate effects in steaty forming processes of plastic materials. Int. J. Appl. Mech. Sci. 1984, 26: 293-304
    [121] Rand O. Harmonic variables-a new approach to nonlinear periodic problems. J. Comp. Math. Appl. 1988, 15: 953-961
    [122] 崔孝秉等.注水开发油田套管损坏的机理研究.石油学报.1993,14:93-101页
    [123] 匡震邦.非线性连续介质力学基础.西安:西安交通大学出版社,1989
    [124] 黄克智.非线性连续介质力学.北京:清华大学出版社,北京大学出版社,1989
    [125] 黄筑平.连续介质力学基础.北京:高等教育出版社,2003
    [126] Seth, B. R. Generalized strain measure with application to physical problems. Second-effects in elasticity, plasticity and fuid dynamics, Eds. M. Reiner and D. Abir, Macmillan, 1964
    [127] Horgan, C. O. , and Polignone, D. A. Cavitation in Nonlinearly Elastic Solids: A Review. ASME Appl. Mech. Rev. , 1995, Vol. 48: 471-485
    [128] Durban, D. and Fleck, N. A. Spherical cavity expansion in a Drucker-prager solid. J. Appl. Mech. 1997, Vol. 64: 743-750
    [129] Durban, D. and Baruch, M. On the problem of a spherical cavity in an infinite elastic-plastic medium. J. Appl. Mech. 1976, Vol. 43: 633-637
    [130] 陈会军.泥岩的本构方程及油水井套管剪切破坏机理的研究.博士论文.哈尔滨:哈尔滨工程大学.2002
    [131] 李树群,孙先杰等.大庆龙虎泡高台子区块套损原因分析及对策.石油钻采工艺.2001(23)6:62-65页
    [132] 张月敏等.盐膏层段高抗挤厚壁套管的开发与应用.西南石油学院学报.2004,(26)3:79-81页
    [133] 梁卫东等.砂岩油田合理注水压力的确定.大庆石油学院学报.2004,(28)4:42-44页
    [134] 蒋希文.钻井事故与复杂问题.北京:石油工业出版社,2001
    [135] 徐同台等.钻井工程井壁稳定新技术.北京:石油工业出版社,1999
    [136] 金衍,陈勉.工程井壁稳定分析的一种实用方法.石油钻采工艺.2000,22 (1):31-33页
    [137] Ronal Steiger.抑制黏土水化使钻井完井事故最小的钾—聚合物泥浆量论及应用.钻井泥浆.1984,91:43-45页
    [138] Hale, A. H. and Mody, F. K. The Influence of Chemical Potential on Well bore Stability. SPE: Drilling & Complection, 1993
    [139] 华东石油学院钻井教研室泥浆组.水基防塌泥浆.华北科技资料.1978
    [140] 刘庆来等.塔里木超深复杂井钻井液工艺技术.钻井液与完井液.2002,19(6):82-84页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700