用户名: 密码: 验证码:
盐岩力学特性及其在储气库建设中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于盐岩具有良好的密封性、低渗透性和损伤自愈合性,使得深部地下盐矿成为世界各国地下储存的一种主要介质。由于盐矿地下开采后形成的地下空间,能够保持较长时间的稳定,这些地下空间能够为不溶于盐的物质提供储存和处置场所。针对我国盐矿盐层夹层多、杂质多的特点,本文以西气东输金坛盐矿储气库为工程背景,对盐岩力学特性及储气库建设中关键问题,开展了以下几个方面的研究工作:
     1.盐岩的强度特性研究:主要通过对金坛盐矿盐岩的单轴、三轴压缩实验,获得了其强度参数,并分析了其强度特性。
     2.盐岩的蠕变特性研究:结合金坛盐矿盐岩进行了单轴、三轴盐岩蠕变实验,分析了金坛盐矿盐岩的蠕变变形规律,并对金坛盐矿盐岩、含泥盐岩、泥岩的蠕变特性进行了比较。
     3.盐岩蠕变损伤本构关系研究:采用半理论半经验的方法,建立的金坛盐矿盐岩的蠕变损伤本构关系,该本构模型能够反映盐岩的稳态蠕变和加速蠕变。
     4.盐岩蠕变损伤本构关系应用研究:通过三维数值方法对盐岩蠕变损伤本构关系进行了编程,结合储气库建设实例对本构关系进行了验证,研究了储气库运行过程中的腔周损伤演化规律、体积变形规律等。
     5.盐岩储气库洞形优化研究:采用数值模拟方法研究了不洞体积、不同腔体形状下储气库腔周塑性区范围、变形规律及长期流变下的体积变形规律,针对金坛盐矿新建溶腔提出了储气库的最优腔体形状。
     6.金坛盐矿已有溶腔可用性评价:结合金坛盐矿已有采空区筛选获得的6口进行储气库改造的溶腔,通过数值模拟方法对溶腔的长期体积变形规律、损伤区、最佳采气速率等进行了研究,并结合突破压力对其地质密封性进行了评价。
Salt rock has very low penetrability and good creep behavior, and can ensure the leak tightness of the natural gas storage. In addition, its mechanical behavior is steady, and can adapt well to the variety of the pressure in the storage. So the salt rock layer in the stratum is the preferential medium to store the natural gas and the high-radioactive waste. Considering the characters of salt rock that there are plentiful impurity and mudstone interlayers in the salt mines in China, the mechanical behavior of salt rock and the key technique of natural gas storage constructing are investigated on the natural gas storage in Jintan salt mine in the XiQiDongShu project. The main research work of this dissertation is as follow:
     1. The strength behavior research of salt rock: The strength parameters of salt rock are obtained by the uniaxial and triaxial compressing experiment. The strength character of salt rock is also analyzed.
     2. The creep behavior research of salt rock: The creep strain law of salt rock is studied by the uniaxial and triaxial creep experiment. The creep behavior is also compared between the salt rock, salt rock with mudstone interlayers and the mudstone.
     3. The creep damage constitutive law research of salt rock: The creep damage constitutive law of salt rock in Jintan salt mine is established by the theoretical and experiential method. The constitutive law can embody the steady creep and the accerlated creep of salt rock.
     4. The application research of salt rock creep constitutive law: The creep damage constitutive law is combined with the three dimension numerical method and is applied in the natural gas storage analysis. The evolvement law of damage bound and the displacement law around the natural gas storage are studied by the creep damage constitutive law.
     5. The optimized research of natural gas storage shape in the salt rock layer: The comparison research is done between different storage volumes and shapes. The difference of yielded or destroyedzone around storage and convergence law are obtained. Based on the research results, the optimal storage shape is presented.
     6. The brine-extracted caverns available evaluation of Jintan salt mine: The six
引文
[1]周凤起.对中国石油供应安全的再思考.国际石油经济.2005(1):34-38.
    [2]P.Berest, B.Brouard and G.durup. Behavior of sealed solution-mined caverns In: Edited by G. Barla, Proc.EURock’96 on prediction and performance in rock menchanics and rock engineering, Torino. Balkema, Rotterdam,1996:1127-1131.
    [3]Ph. Consenza, M.Ghoreychi et al, in situ rock permeability measurement for long term safety assessment of storage, Int. J. Rock Mech. Min. Sci. 1999 Vol.24:509-526.
    [4]Ph. Consenza, M.Ghoreychi et al, Effect of added fluids on mechanical behavior of rock salt. Proc. 1998 Euroconference on Pore pressure, scale effects and the deformation of rocks. Aussois, France,1998.
    [5]P.A.Fokker, the behavioer of salt and salt caverns. Prodfschrift,technische Universiteit Delft, 1995:143.
    [6]R.L.Thoms and R.M. Gehle. A Brief history of salt caverns use. The 8th world salt symposium Volume 1 Edited By Rob M.Geertman, ELSEVIER 200:207-214.
    [7]K.-H. Lux. Optimising underground gas storage operations in salt caverns, with special reference to the rock mechanics and thermodynamics involved. The 3rd Conference on the Mechanical Behavior of salt. Trans Tech publications 1996 :445-458.
    [8]Nicolas Alla, Pierre Berrest, Pierre Antoine Blum. In situ tests in brine-filled caverns. The 3rd Conference on the Mechanical Behavior of salt. Trans Tech publications 1996 :459-468.
    [9]Mark A. Frayne. Four case studies in saltrock. The 3rd Conference on the Mechanical Behavior of salt. Trans Tech publications 1996:472-482.
    [10]Zhiping Dong, Ralf Eickemeier and Manfred Wallner. Probalbilistic Structural analysis of thermomechanical response in rock salt. The 3rd Conference on the Mechanical Behavior of salt. Trans Tech publications 1996:513-522.
    [11]Duc Nguyen-minh. Incompressible numerical modeling for long term convergence evaluation of underground works in salt. The 3rd Conference on the MechanicalBehavior of salt. Trans Tech publications 1996:523-531.
    [12]Reinhard Rokahr and Kurt staudtmeister. The assessment of the stability of a cavern field in bedded salt with the help of the new hannover dimensioning concept. The 3rd Conference on the Mechanical Behavior of salt. Trans Tech publications 1996 :534-544.
    [13]Udo Hunsche& H. Albricht Results of true triaxial strength tests on rock salt Enginnering fracture mechanics 35(4/5),1990:867-877.
    [14]I.W. Farmer and M.J. Gilbert. Dependent strength reduction of rock salt. The first Conference on the Mechanical Behavior of salt. Trans Tech publications 1981:.4-18.
    [15]Werner Skrotzki. An estimate of the Brittle to ductile transition in salt. The first Conference on the Mechanical Behavior of salt. Trans Tech publications 1981 :381-388.
    [16]Udo Husche and Plischke,I. Stand der untersuchungen zum festigkeits-und fliessverhalten von steinsalz. Forschungsvorhaben, Hannover, Archiv-Nr.87952:32.
    [17]Udo Husche. Fracture experiments on cubic rock salt samples. The first Conerfence on the Mechanics Behavior of Salt. Trans Tech publications 1981:169-179.
    [18]Hansen, F.D.,Mellegard,K.D. and Senseny,P.E.. Elasticity and strength of the natural rock salt. The Mechanical Behavior of Salt Proc. Ist Conf. Eds. H.R.Hardy,Jr. and M.Langer, Trans Tech Publ. Clausthal-Zellerfeld,1981:71-83.
    [19]Hunsche,U.. A failure criterion for natural polycrystalline rock salt. Advances in Constitutive Laws for Engineering Material. Proc. ICCLEM. Eds. Fan Jinghong and S. Murakami, International Academic Publ. 1989 Vol.2:1043-1046.
    [20]Michel Aubertin. On the physical oring and modeling of kinematic and isotropic hardening of salt. The 3rd Conference on the Mechanical Behavior of salt. Trans Tech publications 1996 :1-17.
    [21]Hunsche, U. Determination of the dilatancy boundary and damage up to failure for four types of rock salt at different stress geometrics. The Mechanical Behavior of salt Proc. 4th Conf. Eds.P. Hardy, B. Ladanyi, and M. Langer. Trans Tech Publ.. Clausthal-zellerfeld 1996:163-174.
    [22]T.Popp, O.Schulze & H.Kern, Permeation and development of dilatancy andpermeability in rock salt, 5th conference on the mechanical behavior of salt, Mecasalt V, Bucharest, August 9-11,1999.
    [23]U.Hunsche&O.Schulze, Measurement and Calculation of the Evolution of Dilatancy and Permeability in rock salt. Proc.3. Workshop uber Kluftaquifere, Gekoppelte Prozesse. Hannover, Nov.2000.
    [24]Cristescu,N. Evolutive damage in rock salt. Mechanical Behavior of salt. Proc. of the 4th Conf. Eds. P.Habib, H.R. Hardy, B. Ladanyi, and M. Langer. Trans Tech Publ., Clausthal-zwllerfeld. 1996:131-142.
    [25]Cristrscu, N. and Parachiv,I.. Creep and Creep damage around large rectangular-like caverns. Mechanics of Cohesive-Frictional Material. 1996(1):165-197.
    [26] 金 尧 , 孙 训 方 . 考 虑 载 荷 交 互 作 用 的 蠕 变 损 伤 累 积 [J]. 机 械 强度,2001,23(3):323-325.
    [27]Werner Skrotzki. An estimate of the brittle to ductiole transition on salt [A]. Langer, The mechanical behavior of slat proceedings of the first conference[C]. Clausthal, trans tech publication, 1981:381-388.
    [28]Kwon S. Wilson J W. Deformation mechanical of the underground excavation at the WIPP site [J]. Rock mechanics and rock Engineering, 1999,32(2):101-122.
    [29]Aubertin M. Gill D E. Ladanyi B. Constitutive equations with internal state variables for the inelastic behavior of soft rocks. Appl, Mech. Reviews, ASME(1994)47(6-2):97-101.
    [30]Cristescu,N.. A general constitutive equation for transient and stationary creep of rock salt. Int. J. Rock Mech. Min. Sci&Geomech Abstr. 1993(30),2:125-140.
    [31]Hample, A.,Hunsche, U., Weidinger, P., and Blum,W.. Description of the creep of rock salt with the composite model-II. Steady-state creep. Mechanical Behavior of salt .Proc. 4th Conf. Eds. Hardy and M.Langer. Trans Tech Publ. Clausthal-Zellerfeld. 287-299.
    [32]Hunsche, U.. Result and interpretation of creep experiments on rock salt. The Mechanical Behavior of salt. Proc. 1st Conf. Eds. H.R. Hardy, Jr., and M.Langer, Trans Tech Publ., Clausthal-Zellerfeld, 1981:159-167.
    [33]Hunsche, U. Uniaxial and triaxial creep and failure tests on rock:experimentaltechnique and interpretation. Visco-Plastic Behavior of Geomaterials. Eds. N.D. Cristescu, and G. Gioda, Springer-verlag, Wien-New York, 1994:1-53.
    [34]Lux,K.H. and Heusermann, S.. Creep tests on rock salt with changing load as a basis for the verification of theoretical material laws. Proc. 6th Int. Symp on salt. Eds. B.C. Schreiber and H.L.Harner. The salt Institute, Alexandria, USA. 1983, Vol.1:417-435.
    [35]Senseny, P.E. Determination of a constitutive law for salt at elevated temperature and pressure. Measurement of Rock Properies at Elevated Pressure and Temperature. ASTM STP 869, Eds.H.J.Pincus and E.R.Hoskins.ASTM, Philadelphia, 1985:55-71.
    [36]Munson, D. and Wawersik, W. Constitutive modeling of salt behavior-state of the technology. Proc 7th Int. Conger. On Rock Mechanics. Ed. W. Wittke. Balkema, Rotterdam, 1993(3):1797-1810.
    [37]Munson, D.E. Devries, K.,Fossum, A.F. and Callahan, G.D..Extension of the M-D model for treating stress drops in salt. The mechanical Behavior of salt. Proc. 3rd Conf. Eds. Hardy&M.Langer, Trans Tech Publ.,Clausthal-Zellerfeld. 1996:31-44.
    [38]Aubertin, M.Gill,D.E. and Ladanyi,B.. Constitutive equations with internal state variables for the inelastic behavior of soft rocks. Appl. Mech. Reviews. ASME(1994)47(6-2):97-101.
    [39]Aubertin,M.. On the physical origin and modeling of kinematic and isotropic hardening of salt. The Mechanical Behavior of salt. Proc. 3rd Conf. Eds. M. Ghoreychi, P.Berest, H.R.Hardy, Jr.and M. Langer. Trans Tech Publ., Clausthal-Zellerfeld. 1996:3-17.
    [40]Hunsche, U., Result and interpretation of creep experiments on rock salt. The Mechanical Behavior of salt. Proc. 1st Conf. Eds. H.R. Hardy, Jr., and M. Langer, Trans Tech Publ., Clausthal-Zellerfeld,1981:159-167.
    [41]Passaris, E.K.S.. The rheological behavior of rock salt as determined in an in situ pressured test cavity. International society for rock mechanics. 5th congress 1, 1979:257-264.
    [42]Musso, J.&Vouille,G.. A comparative study of creep, relaxation, cycle loading tests to determine the rheological model of marl and salt. International society for rock mechanics, 3rd congress IIA,.1974:348-353.
    [43]Bergeron, W.J.. The finite analysis of salt pillar model. Ph.D. thesis, Luisiana state university, Baton Rouge, 1968:165
    [44]Cundall, P.. Explicit finite difference method in geomechanics. Numerical methods in geomichanics, edited by Desai, C.,1978:132-150.
    [45]Winkel, B.V. et al, Analysis of the time dependent deformation in openings in salt media. Inter.J. of rock mech. Sci. & Geomech. Abstract 9,2 1972:249-260.
    [46]Lux, K.H. and Heusermann. S.. Creep tests on rock salt with changing load as a basis for the verification of theoretical material laws. Proc. 6th Int. Symp on salt. Eds.B.C. Schreiber and H.L.Harner. The salt Institute, Alexandria, USA. Vol.1:417-435.
    [47]Hampel, A., Hunsche, U., Weidinger, P., and Blum, W.. Description of the creep of rock salt with the composite model-II. Steady-state creep. Mechanical Behavior of salt. Proc. 4th Conf. Eds. Michel Aubertin&Hardy. Trans Tech Publ. Clausthal-Zellerfed.
    [48]Vogler, S. and Blum, W.. Micromechanical modeling of creep in term of the composite model. Proc, 4th Int. Conf. on Creep and Fracture of Engineering Materials and Structures. Eds. B.Wilshire and R.W. Evans. The Institute of Materials. London:67-69.
    [49]Wawersik, W.. Determaination of steady state creep rates and activation parameters for rock salt. Measurement of Rock Properties at Elevated Pressure and Temperatures. ASTM STP 869. Eds.H.J. Pincus and E.R. Hoskin.. ASTM,Philadephina, 1985:72-92.
    [50]Wawersik, W.R. and Zeuch, D.H.. Modeling and mechanicstic interpretation of creep of rock salt below 200℃. Tectonophysics 121:125-152.
    [51]Munson, D. and Wawersik, W.. Constitutive modeling of salt behavior state of the technology. Proc 7th Int. Congre. On Rock Mechanics. Ed. W. Willke. Balkema, Rotterdam, 3,1993:1797-1810.
    [52]Peter H. Wanten et al. Deformation of NaCl single crystals ad 0.27Tm≤T≤0.44Tm, Mechanical Behavior of salt. Proc. 3rd Conf. Eds. Hardy&M. Langer. Trans Tech Publ. Clausthal-Zellerfeld, 1993:117-128.
    [53]A. Pouya et al. A micro-macro model for polycrystalline halite. Proc. 3rd Conf. Eds.Hardy&M. Langer. Trans Tech Publ. Clausthal-Zellerfeld, 1993:129-141.
    [54]Hunsche U. et al. The influence of textural parameters and mineralogical composition on the creep behavior of rock salt. Proc. 3rd Conf. Eds. Hardy&M. Langer. Trans Tech Publ. Clausthal-Zellerfeld, 1993:44-151.
    [55]Chan K S. A damage mechanics treatment of creep failure in rock salt[J]. International journal of damage mechanics,1997(6):122-152
    [56]Chan K S. and S. R. Bodner. Application of isochronous healing curves in predicting damage evolution in a salt structure. International journal of damage mechanics,2000(9):130-153.
    [57]Chan K S. Permeability of Wipp salt during damage evolution and healing. International journal of damage mechanics,2001(10):347-375.
    [58]Hunsche U. Measurement of creep in rock salt at small strain rates[A|. Langer, The mechanical behavior of salt proceedings of the second conference[C]. Clausthal, Trans Tech Publ.1984:187-196.
    [59]Huncshe U. et al. The influence of textural parameters and mineralogical compositon on the creep behavior of rock salt. Proc 3rd Conf. Eds. P.Hardy&M.Langer, Trans Tech Publ. Clausthal-Zellerfeld, 1993:144-151.
    [60]A.F.Fossum et al. Constitutive basis of the MDCF model for rock salt. The mechanical behavior of salt Proc. 4th Conf. Eds. Michel Aubertin &Hardy, Trans Tech Publ., Clausthal-Zellerfeld 1996:235-248.
    [61] Hunsche, U.&Schulze O., Das Kriechverhalten von Steinsalz. Kali und Steinsalz, Band 11, Heft 8/9, 1994:238-255.
    [62]N.D. Cristescu&U. Hunsche. Time effects in rock mechanics. Proc. 6th Int. Symp on salt. Eds.B.C. Schreiber and H.L.Harner. The salt Institute, Alexandria, USA. Vol.2, :315-323.
    [63]Fokker. Elasticity and strength of natural rock salts. Proc. 1st Conf. Eds. Hardy, M. Lnager. Trans Tech Publ. Clausthal-Zellerfeld, 1981:271-283.
    [64]Hunsche, U. True triaxial tests on cubic rock salt samples-experimental methods and results, finite inelastic deformations-theory and applications. IUTAM symp.Eds. D.Besdo and E.Stein. Springer-verlag, Berlin-Heidelberg:525-536.
    [65]邱贤德, 姜永东, 东兰 . 岩盐流变特性与卸荷损伤本构关系研究 .中国井矿盐,2003,vol34(4):21-24.
    [66]邱贤德,姜永东,阎宗岭,庄乾城. 岩盐的蠕变损伤破坏分析.重庆大学学报(自然科学版),2003(5):106-109.
    [67]余海龙,谭学术,鲜学福,姜德义.岩盐溶腔稳定性模拟试验研究矿山压力与顶板管理,1995(Z1):156-159.
    [68]杨春和,陈锋,曾义金. 盐岩蠕变损伤本构关系研究. 岩石力学与工程学报.2002(11):1602-1604.
    [69]Yang Chunhe, Daeman JJK, Yin Jianhua. Experimental investigation of creep behavior of salt rock[J]. International Journal of Rock Mechanics and Mining Science,2000,36(2):336-341.
    [70]杨春和,殷建华,Daeman JJK. 盐岩应力松弛效应的研究. 岩石力学与工程学报,1999,18(3):262-265.
    [71]严仁俊,裴小彬,罗鑫,熊玉霞,刘绘新.四川三叠系盐岩蠕变规律实验研究.西部探矿工程,2005(4):93-94.
    [72]王贵君. 一种盐岩流变损伤模型. 岩土力学. 2003,24(增):81~84.
    [73]Robert L. Thoms and Richard M.Gehle. Survey of existing caverns in U.S. salt domes. The mechanical behavior of salt proceedings of the second conference. 1984, 703-717.
    [74]Stephen Horseman and Evan Passaris. Creep tests for storage cavity closure prediction. The mechanical behavior of salt proceedings of the first conference. Clausthal, trans tech publications. 1981:119-157.
    [75]Gerhard Staupendahl and Manfred W. Schmidt. Field investigation of the long term deformational behavior of a 10,000m3 cavity at the asse salt mine. The mechanical behavior of salt proceedings of the first conference. Clausthal, trans tech publications. 1981:511-525.
    [76]Philippe Boucly. In situ experience and mathematical representation of the behavior of rock salt used in storage of gas. The mechanical behavior of salt proceedings of the first conference. Clausthal, trans tech publications. 1981:453-471.
    [77]Karl Heinz Lux and Reinhard Rokahr. Laboratory investigations and theoreticalstatements as a basis for the design of caverns in rock salt formations. The mechanical behavior of salt proceedings of the first conference. Clausthal, trans tech publications. 1981:275-310.
    [78]Ussam A. Mirza. Prediction of creep deformations in rock salt pillars. The mechanical behavior of salt proceedings of the first conference. Clausthal, trans tech publications. 1981:311-325.
    [79]Stefan Heusermann, Olaf Rolfs and Uwe Schmidt. Nonlinear finite-element analysis of solution mined storage caverns in rock salt using the LUBBY2 constitutive model. Computers & Structures. 2003(81):629-638.
    [80]K. Staudtmeister and R. B. Rokahr. Rock mechanical design of storage caverns for natural gas in rock salt mass. Int. J. rock Mech. Min Sci. 1997, Vole34(3):646.
    [81]Pierre Berest and Duc Nguyen Minh. Deep underground strorage cavities in rock salt: interpretation of in situ data from French and foreign sites. The mechanical behavior of salt proceedings of the first conference. Clausthal, trans tech publications. 1981:555-571.
    [82]黄海. 地下储气库储气量的校核. 石油规划设计. 2001(1):11-15.
    [83]马小明,杨树合,史长林等. 为解决北京市季节调峰的大张坨地下储气库.天然气工业. 2001(1):105-107.
    [84]王红艳,许发年. 江汉油区建设地下储气库库址优选研究. 江汉油田职业大学学报.2002,15(2):28-30.
    [85]谭羽非,陈家新. 天然气地下储气库最优设计方案的确定. 哈尔滨工业大学学报. 2002,34(2):207-210.
    [86]王承权,赵克辉. 外输气质量对储气库影响分析. 石油工程建设.2001(1):29-30
    [87]廉乐明,谭羽飞 . 枯竭油气田天然气地下储气库模拟研究导论. 城市煤气.1997(1):5-10.
    [88]杨树合,何书梅,季静,杨丽蓉. 地下储气库评价设计方法及应用.新疆地质.2002,20(3):271-273.
    [89] 谭 羽 飞 , 廉 乐 明 , 严 铭 卿 . 国 外 地 下 储 气 库 的 技 术 与 发 展 . 油 气 储运.1997,16(12):17-19.
    [90]展长虹,严铭卿,廉乐明. 含水层型天然气地下储气库的有限元数值模拟.煤气与热力.2001,21(4):294-298.
    [91]谭羽飞,廉乐明,严铭卿. 天然气枯竭气藏地下储气库注采动态数值模拟. 煤气与热力. 1999,19(3):18-22.
    [92]谭羽飞,廉乐明,严铭,余其铮. 盐穴储气库动态注采过程的数学模型及应用. 煤气与热力. 2000, 20(2):91-94.
    [93]Hou Zheng-meng,Wu wen. Improvement of design of storage cavity in rock salt by using the Hou/Lux constitutive model with consideration of creep rupture criterion and damage.岩土工程学报.2003,25(1):105-108.
    [94]王贵君. 盐岩层中天然气存储洞室围岩长期变形特征. 岩土工程学报,2003,25(4):431-435.
    [95]梁卫国,赵阳升,李志萍. 盐类矿床群井控制水溶开采溶腔变形数值模拟.化工矿物与加工.2003(3):105-109.
    [96]赵志成,朱维耀,单文文,万玉金. 盐穴储气库水溶建腔机理研究.石油勘探与开发. 2003,30(5):107-109.
    [97]何爱国. 盐穴储气库建库技术. 天然气工业. 2004,24(9):122-125.
    [98]陈锋,李银平等.云应盐矿地质可储性关键技术研究报告. 2005.
    [99]杨春和,陈锋等.金坛盐矿已有溶腔可用性评估报告.2005.
    [100]孟召平,彭苏萍,张慎河.不同成岩作用程度砂岩物理力学性质三轴试验研究[J].岩土工程学报. 2003,25(2):140-143.
    [101]刘新荣,姜德义,余海龙. 盐岩变形特性的试验研究. 矿冶工程,1999,19(4):12-15.
    [102] I.W. Farmer and M.J. Gilbert. Dependent strength reduction of rock salt. The first Conference on the Mechanical Behavior of salt. Trans Tech publications 1981 P.4-18.
    [103] 尤 明 庆 . 围 压 对 杨 氏 模 量 的 影 响 与 裂 隙 摩 擦 的 关 系 . 岩 土 力学,2003,24(增):167-170.
    [104]周时光,阳友奎,李晓东.盐岩力学特性的刚性实验研究. 西南工学院院报,1994,9(2):42-46.
    [105]Francis D,Hansen et. al. Elasticity and strength of ten natural rock salts. [A]. Langer, The mechanical behavior of salt proceedings of the first conference. Clausthal, transtech publications. 1981:71-83.
    [106]Fujii Y Kiyama T. Criumferential strain behavior during creep tests of brittle rocks. Int. J. Rock Mech. Min. Sci. 1999,(36):323-337.
    [107]陈宗基.岩石力学的发展方向. 岩石力学与工程学报.1990, 9(3):175-183.
    [108]Griggs D. creep of rocks. J. Geol. 1939,47:225-251.
    [109]Szzepanik S D Time-dependent acoustic emission studies on potash[A]. In: Roegies D ed. Rock Mechanics as a Multidiscplinary Science[C]. Rotterdam: A.A. Balkema, 1991,471~479.
    [110]Chan K S. A damage mechanics treatment of creep failure in rock salt[J]. International Joural of Damage Mechanics, 1997,6(1):122~152.
    [111] Cristescu N D. Time-effects on the unaxial compaction of powers[A]. In: Proc 6th Int. Symp. on Plasticity and Its Current Application[C]. Alaska: Neat Press Fulton,1997,303~304.
    [112]Chaboche J L, Lesne PM, Maire J F.. Continuum damage mechanics. A nisotropy and damage deactivation for brittle materials like concrete and ceramic composites. Int. J. Damage Mechanics, 1995,(4):5-22.
    [113]Dougill J W.. Stable progressively fracturing solids. Zeitschrift Fur Angewandte Mathmatik Und Physik, 1976,27(4):423-437.
    [114]Horsrund P, Holt RM, Sonstebo EF. Time dependent borehole stablity: laboratory studies and numerical simulation of different mechanism in shale. Proc. Eurock,94, Rotterdam:Balkema,1994:259-266.
    [115] Качанов,дM.ИэB A H C c c p . O T P , 1958,8:26-31.
    [116]Kachanov L M. Introduction to continuum damage mechanics. Martinus Nijhoff Publishers, Dordrecht. The Netherlands, 1986.
    [117]Lematre J. Evaluation of dissipation and damage in metals submitted to dynamic loading. In: Proceedings of ICM-1, Kyoto, 1971.
    [118]Krampl E, Stouffer D C. Workshop on a Continuum Mechanics approach to damage& life Prediction. Cincinnati OH, Univ. of Cincinnati, AMR-82-2405.
    [119]Kachanov Mark L. Microcrack model for rock inelasticity. Thesis of ph. D. of Rutgers University, Piscataway, USA,1980.
    [120]Jishan Jin and N.D. Cristescu. An elastic/viscoplastic model for transient creep of rock salt. International Journal of Plasticity. 1998,14, Nos 1-3:88-107.
    [121]Hou Z. Lux KH. A constitutive model for rock salt including structural damages as well as practice-oriendted applications. In: Proceedings of the 5th conference on the Mech. Behavior of salt. Bucharest.1999. Lisse:bBalkema, 2002:151-169.
    [122]Hou Z. A healing model to describle the healing of damage in rock salt. Report of the Professorship for Disposal Technology and Geomechanics of TU Clausthal, Clausthal-Zellerfeld, 2002.
    [123]Chan KS, Bodner SR, Munson Dr. Recovery and healing of damage in WIPP salt. Int J Damage Mech 1998,7:143-166.
    [124]Chan KS and Bodner SR. A damage mechanics treatment of creep failure in rock salt. International Journa of Damage Mechanics.1997,Vo16(april):121-132.
    [125]Wolfgang R. Wawwersik. Alternatives to a power-law creep model for rock salt at temperatures below 160℃. The mechanical behavior of salt proceedings of the second conference[C]. Clausthal, Trans Tech Publ.1984:103-128.
    [126]Udo Hunsche. Measurement of creep in rock salt at small strain rates. The mechanical behavior of salt proceedings of the second conference[C]. Clausthal, Trans Tech Publ.1984:186-209.
    [127]A.AIT Chalal. A comparison of the responses of the Munson-Dawson model and the Lemaitre model. The mechanical behavior of salt proceedings of the 3rd conference[C].1996:67-74.
    [128]DURUP G GAZ de France, XU J Sofregaz. Comparative study of certain constitutive laws used to describe the rheological deformation of salts. The mechanical behavior of salt proceedings of the third conference. 1993,75~83.
    [129]余寿文,冯西桥. 损伤力学. 清华大学出版社. 1997, 59~63.
    [130]Bruno Hugout. Mehcanical behavior of salt cavities-in situ tests-model for calculating the cavity volume evolution. The mechanical behavior of salt proceedings of the second conference. 1984,291-310.
    [131]候正猛. 金坛地下储气库 15 口采卤溶腔稳定性评价技术服务报告.2004:18~25
    [132]王少昌等.天然气封盖层的突破压力,石油与天然气地质,2000,21(2):136-138.
    [133]黄志龙、郝石生等.盖层突破压力及排替压力的求取方法,新疆石油地质,1994,(15)2:163~166).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700