用户名: 密码: 验证码:
苦楝种苗耐盐胁迫的生理响应机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以两个种源苦楝种子和一年生实生苗为材料,采用不同浓度盐胁迫处理(CK,25,50,100,150,200mmolL~(-1)),研究了不同浓度盐胁迫对苦楝种子萌发和一年生苗木生长的形态及生理状况的影响,探讨苦楝在萌发阶段和幼苗生长阶段的耐盐机理。
     盐胁迫下,苦楝种子发芽率和发芽指数先上升后下降,在100mmol L~(-1)浓度下对种子发芽率和发芽指数有促进作用。活力指数、苗高、根长和干重均呈现下降趋势,盐胁迫抑制了幼苗苗高、根长生长和干重增加,使幼苗质量下降。
     在盐胁迫下,苦楝种子可溶性糖、可溶性蛋白、游离氨基、酸脯氨酸和甜菜碱含量总体变化不是很大,到了胁迫后期,游离氨基、酸脯氨酸含量还略有下降,Ca~(2+)、Mg~(2+)、K~+含量也变化不大,Na~+含量有显著增加。苦楝种子O_2~-·、MDA含量未显著增加,SOD、POD、CAT等抗氧化酶活性有一定程度的增加,GSH、ASA等非酶促抗氧化剂含量也有所增加。苦楝种子在盐胁迫下,既受到了渗透胁迫,也受到一定程度的离子毒害,以渗透胁迫为主。
     苦楝是比较耐盐树种,滨海种源苦楝比滁州种源苦楝耐盐性更强,在150mmolL~(-1)盐浓度下,滨海种源苦楝的苗木成活率为79%,100mmolL~(-1)盐浓度下,滁州种源苦楝的苗木成活率保持在77%以上。随着盐浓度的增加,两个种源苦楝幼苗的苗高、地径和干重均逐渐降低,浓度越高,抑制作用越强。盐胁迫对苦楝苗木不同器官的的抑制作用的大小不同,不同器官对盐胁迫的敏感程度表现为叶>茎>根。
     盐胁迫下,苦楝叶片叶绿素含量逐渐下降。盐胁迫对苦楝苗木光合作用具有显著影响。在胁迫前期,随NaCl处理浓度增大,两个种源苦楝幼苗光合因子发生显著变化, Pn、Gs、Ci、Tr下降,而Ls上升,Pn降低主要受气孔因素控制。在胁迫后期,滨海种源,Pn、Gs、Tr下降,Ci先下降后上升,而Ls先上升后下降,低盐浓度下Pn降低主要受气孔因素控制,而高盐浓度下Pn降低主要受非气孔因素控制;滁州种源,Pn、Gs、Tr下降,Ci逐渐上升,而Ls下降,Pn降低主要受非气孔因素控制。
     对于有机渗透调节物质(可溶性糖、可溶性蛋白、游离氨基酸、脯氨酸、甜菜碱)来说,盐胁迫对苦楝具有一致的影响趋势,即均总体表现增加。只有可溶性蛋白,胁迫前期增加,而到了胁迫后期,可溶性蛋白含量下降。从总量上看,可溶性糖含量最多,而从增加幅度看,在盐胁迫下脯氨酸增加幅度最大,因此,可溶性糖和脯氨酸是苦楝两种比较有效的有机渗透调物质。
     苦楝叶片中Na~+含量最高,是非常重要的无机渗透调物质。盐胁迫下,Ca~(2+)、Mg~(2+)、K~+含量下降,但并不显著,而且依然保持较高的水平,因此,苦楝幼苗控制营养平衡能力较强,幼苗产生的盐害可能主要是由单盐离子毒害引起的而非营养失调。
     在盐胁迫下,苦楝叶片内O_2~-.含量、H_2O_2大量积累,MDA含量升高,膜系统受到了损伤。苦楝主要通过高活性的POD和较高效率的AsA-GSH循环系统清除ROS,减轻了ROS对膜的氧化损伤程度,CAT也有一定的贡献,但是SOD活性受到抑制。
The seeds and one-year-old seedlings in Melia azedarach L. from two provenances wereused as the tested materials. The seed germination and seedling growth were studied under saltstress with six concentrations. The physiological responsing mechanism of Melia azedarach L.was explored by investigating the effects of salt stress on physiological and biochemicalcharacteristics in seed germination and seedling growth.
     With the increasing salinity stress, germination rate and germination index fistly increased,and then decreased. When salt concentration was100mmolL~(-1), the germination rate andgermination index were higher than that of the control, indicating that salt could promote seedgermination; but when salt concentration was higher than100mmolL~(-1), it had an inhibiting rolein germination rate and germination index. The vitality index, seedling high, root length and dryweight gradually reduced with the increasing salinity stress. So the seedling quality wasrestrained by salt stress.
     The content of soluble sugar, soluble protein, free amino acid, proline, betaine in seed didnot change much under salt stress. In the late stage, the content of free amino acid and prolinealso declined slightly. The content of Ca~(2+), Mg~(2+)and K~+changed little, but the content of Na~+increased significantly. The content of O_2~-· and MDA in seed did not increase significantly,antioxidant enzyme activities including SOD, POD and CAT increased, non-enzyme antioxidantcontent including GSH and ASA also increased. So the seeds of Melia azedarach L. were notonly subject to osmotic stress, but also ion toxicity under salt stress. However, osmotic stress wasmajor.
     Melia azedarach L. was a salt tolerant species, the salt tolerance of Binhai provenance wasstronger than that of Chuzhou provenance. At150mmol/L salt concentration, seedling survivalrate in Binhai provenance was79%. At100mmol/L salt concentration, seedling survival rate inChuzhou provenance maintained above77%. With the increasing of salt concentration, the height,ground diameter and dry weight of Melia azedarach L. seedlings gradually reduced, the higherthe concentration, the stronger the inhibition effect. With the inereasing of salt concentration, theincrements of the seedling height, ground diameter and dry weight expressed a decreasing trend.Salinity significantly inhibited the growth and development of Melia azedarach L. seedlings, andthe sensitivity to salt of different organs performed leaf>stem>root.
     Photosynthesis of Melia azedarach L. seedlings were significantly affected by salt stress.Under salt stress, the chlorophyll content of leaves decreased gradually. In the first period, withthe increasing of NaCl concentration, photosynthetic parameters of Melia azedarach L. seedlingsfrom two provenances changed significantly. The net photosynthetic rate(Pn), stomatalconductance(Gs), intercellular CO2concentrations(Ci) and transpiration rate(Tr) dropd, butstomatal limiting value (Ls) rised, which denoted that the the main factor inhibiting Pn was stomatal control. In the later stress period, Pn, Gs and Tr in the Melia azedarach L. seedlingsfrom Binhai provenance decreased, Ci firstly decreased and then increased, while Ls increasedfirstly and then decreased. So drop of Pn was mainly controlled by stomatal factor at low saltconcentration and drop of Pn was mainly controlled by non-stomatal factor at high saltconcentration. In the later stress period, Pn, Gs and Tr in the Melia azedarach L. seedlings fromChuzhou provenance decreased, Ci increased gradually, and Ls decreased, so drop of Pn wasmainly controlled by non-stomatal factors.
     The organic osmotic adjustment substances such as soluble sugar, soluble protein, freeamino acid, proline, betaine in Melia azedarach L. seedlings, had an identical changing trendunder salt stress, that is, all above substances increased. The content of soluble sugar was themost highest among all the organic osmotic adjustment substances, and the increment of theproline was the highest among all the organic osmotic adjustment substances under salt stress.Therefore, soluble sugar and proline were two effective organic osmotic adjustment substances.
     The content of Na~+in leaves was the highest positive ion, Na~+is a very important inorganicosmotica. The content of Ca~(2+), Mg~(2+)and K~+decreased, but this decline was not significant, andthe content of Ca~(2+), Mg~(2+)and K~+still maintained a high level. Therefore, seedlings of Meliaazedarach L. had strong nutrition balance control ability; salt injury might be caused mainly bythe single salt ion toxicity rather than malnutrition.
     Under salt stress, the content of O_2~-., H_2O_2and MDA in leaves increased, so the membranesystem was damaged. ROS in Melia azedarach L. seedlings were cleaned mainly throughAsA-GSH circulatory system and the high POD activity, which reduced the oxidative damagedegree of ROS to the membrane, CAT also had a certain contribution to clean ROS, but SODactivity was inhibited.
引文
[1]刘寅,贾黎明,张博,等.滨海盐碱地绿化植物筛选及耐盐性评价研究进展[J].西南林业大学学报,2011,31(3):80-85.
    [2]张永锋,梁正伟,隋丽,等.盐碱胁迫对苗期紫花苜蓿生理特性的影响[J].草业学报,2009,18(4):230-235.
    [3]李彬,王志春,孙志高,等.中国盐碱地资源与可持续利用研究[J].干旱地区农业研究,2005,23(2):154-158.
    [4]王遵亲,祝寿泉,俞仁培,等.中国盐渍土[M].北京:科学出版社,1993.
    [5]俞仁培,陈德明.我国盐渍土资源及其开发利用[J].土壤通报,1999,30(4):158-159,177.
    [6]孙振元,刘金,赵梁军.盐碱土绿化技术[M].北京:中国林业出版,2004:1-2.
    [7]杨继涛.植物耐盐性研究进展明.农艺科学,2003,19(6):46-48.
    [8]江苏农学院.植物生理学.北京:农业出版社,1984.
    [9]陈瑞珊.果树植物的耐盐力.河北农学报,1981,2:73-76.
    [10]Partrick Boursier, André l uchli. Growth responses and mineral nutrient relations of salt-stressedsorghum[J]. Crop science,1990,30:1226-1233
    [11]石德成,殷立娟.盐(NaCl)与碱(Na2CO3)对星星草胁迫作用的差异[J].植物学报,1993,35(2):144-149.
    [l2]石德成,殷立娟. NaCl、Na2CO3胁迫下星星草根际K+、Ca2+的生理行为[J].应用环境生物学报,1997,3(2):112-118.
    [13]武维华.植物生理学[M].北京:科学出版社,2003.
    [14]陈洁,林栖凤.植物耐盐生理及耐盐机理研究进展[J].海南大学学报(自然科学版),2003,21(2):177-182.
    [15]董丽华,兰剑,姚爱兴,等.草坪草抗盐、抗旱性研究进展[J].宁夏农学院学报,2004,25(3):84-87.
    [16]杨月红,孙庆艳,沈浩.植物的盐害和抗盐性[J].生物学教学,2002,27(11):1-2.
    [17]Khan M A, Sheith K H. Effects of different levels of salinity on seed germination and growth of Capsicumannuum[J]. Biologia,1996,22:15-16.
    [18]苏永全,吕迎春.盐分胁迫对植物的影响研究简述[J].甘肃农业科技,2007,5:23-27.
    [19]阎秀峰,孙国荣.星星草生理生态学研究[M].北京:科学出版社,2000.
    [20]王征宏,杨起,张亚冰.盐胁迫下紫花苜蓿种子的萌发特性[J].河南科技大学学报(自然科学版),2006,27(1):67-69.
    [21]陈国雄.盐胁迫对西葫芦和黄瓜种子萌发影响的对比研究[J].中国沙漠,1996,16(3):307-310.
    [22]álvarez-Rogel J, Alcaraz F, Ortiz R. Soil salinity and moisture gradients and plant zonation inMediterranean salt marshes of southeast Spain[J]. Wetlands,2000,20:357-372.
    [23]álvarez-Rogel J, Martínez-S á nchez J J, Carrasco L, et al. Vegetal bioindicators for monitoringhydrological and saline gradients in a coastal dune salt marsh of southeast Spain: a conceptual model[J].Wetlands,2006,26:703-717.
    [24]Ungar I A. Ecophysiology of Vascular Halophytes[M]. Boca Raton F L: CRC Press,1991.
    [25] María José Vicente, Encarnación Conesa, José álvarez-Rogel, et al. Effects of various salts on thegermination of three perennial salt marsh species[J]. Aquatic Botany,2007,87:167-170.
    [26]罗庆云,於丙军.大豆苗期耐盐性鉴定指标的检验[J].大豆科学,2001,20(3):177-82.
    [27]解秀娟,胡晋.沙引发对紫花苜蓿种子盐逆境下发芽及幼苗生理生化变化的影响[J].种子,2003,4:5-6.
    [28]渠晓霞,黄振英.盐生植物种子萌发对环境的适应对策[J].生态学报,2005,25(9):2389-2398.
    [29]de-Lacerda C F, Cambraia J, Oliva M A, et al. Solute accumulation and distribution during shoot and leafdevelopment in two sorghum genotypes under salt stress [J]. Environmental and Experimental Botany,2003,49(2):107-120.
    [30]谢德意,王惠萍,王付欣,等.盐胁迫对棉花种子萌发及幼苗生长的影响.种子,2000,3:10-12
    [31]赵檀方,闫先喜,胡延吉.盐胁迫对大麦种子吸胀萌发及根尖细胞结构的影响.大麦科学,1994,41:17-20.
    [32]闫先喜,马小杰,刑树平,等.盐胁迫对大麦种子细胞膜透性的影响.植物学报,1995,12:53-54.
    [33]李海云,赵可夫,王秀峰.盐对盐生植物种子萌发的抑制[J].山东农业大学学报,2002,33(2):170-173.
    [34]邵红雨,孔广超,齐军仓,等.植物耐盐生理生化特性的研究进展.安徽农学通报,2006,12:51-53.
    [35]廉彭彭.盐胁迫对白滨黎和疣苞滨藜种子萌发及早期幼苗生长的影响[D].乌鲁木齐:新疆农业大学,2008.
    [36]Ungar I A. Halophyte seed germination[M]. Botanical Review,1978,44:233-263.
    [37]王东明,贾媛,崔继哲.盐胁迫对植物的影响及植物盐适应性研究进展[J].中国农学通报,2009,25(4):124-128.
    [38]鱼小军,师尚礼,龙瑞军.生态条件对种子萌发影响研究进展[J].草业学报,2006,23(10):44-49.
    [39]Salman Gulzar, Ajmal K M. Seed germination of a halophytic grass Aeluropzrs lagopoides[J]. Annals ofBotany,2001,87(3):319-324.
    [40]许祥明,叶和春,李国凤.植物抗盐机理的研究进展[J].应用与环境生物学报,2000,6(4):379-387.
    [41] Eiji Nishihara, Kensuke Kondo, Mohammad Masud Parvez, et al. Role of5-aminolevulinic acid(ALA) onactive oxygen-scavenging system in NaCl-treated spinach(Spinacia oleracea)[J]. Journal of PlantPhysiolog,2003,160(9):1085-1091.
    [42]Wang Y, Nii N. Changes in chlorophyll, ribulose biphosphate carboxylase-oxygenase, glycine betainecontent, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress[J]. Journal ofHorticultural Science and Biotechnology,2000,75(6):623-627.
    [43]杨少辉,季静,王罡宋,等.盐胁迫对植物影响的研究进展.分子植物育种,2006,4:139-142
    [44]孙小芳,刘友良,陈沁.棉花耐盐性研究进展.棉花学报,1998,10:118-124.
    [45]汪贵斌,曹福亮.盐胁迫对落羽杉生理及生长的影响.南京林业大学学报(自然科学版),2003,27(3):11-14.
    [46]李玉明,石德成,李毅丹,等.混合盐碱胁迫对高粱幼苗的影响[J].杂粮作物,2002,22(1):41-45.
    [47]M. B Lovato, J. P de Lemos Filho, P. S Martins. Growth responses of Stylosanthes humilis (Fabaceae)populations to saline stress[J]. Environmental and Experimental Botany,1999,41(2):145-153.
    [48]N Katerji, J. W van Hoom, A Hamdy, et al. Salinity effect on crop development and yield, analysis of salttolerance according to several classification methods[J]. Agricultural water management,2003,62(1):37-66.
    [49]朱新广,张其德. NaCl对光合作用影响的研究进展[J].植物学通报,1999,16(4):332-338.
    [50]张福锁.环境胁迫与植物育种.北京:农业出版社,1993.
    [51]Munns R, Schaehtman D P, Condon A G. The significance of a two-phase growth response to salinity inwheat and barley[J]. Australian Journal of Plant Physiology,1995,22(4):561-569.
    [52]Munns R. Physiological processes limiting plant growth in saline soil: some dogmas and hypotheses[J].Plant, cell and environment,1993,16(1):15-24.
    [53]张教方,刘小东,刘宏伟,等.毛百合繁殖生物学研究(Ⅳ):种子萌发的动态形态解剖[J].东北林业大学学报,1994,22(5):49-58.
    [54]左志锐.百合耐盐机理及其遗传多样性研究[D].北京:中国农业大学,2005.
    [55]郝治安,吕有军.植物耐盐机制研究进展[[J].河南农业科学,2004,11:30-33.
    [56]周芬.拟南芥受盐胁迫的细胞及生理生化研究[D].武汉:武汉大学,2004.
    [57]华春,王仁雷.盐胁迫对水稻叶片光合效率和叶绿体超显微结构的影响[[J].山东农业大学学报(自然科学版),2004,35(1):27-31.
    [58]秘彩莉,黄占景,邵素霞,等.近似等位基因系小麦盐胁迫下叶绿体超微结构下比较研究[[J].电子显微学报,2001,20(2):98-101.
    [59]Bressan R A, Nelson D E, Iraki N M, et al. Reduced cell expansion and changes in cell walls of plant cellsadapted to NaCl. In Environmental injury to plants(edited by Frank Katterman), San Diego, CA:Academic Press Inc.1990,137-171.
    [60]龚明,丁念诚,贺子义,等.盐胁迫下大麦和小麦叶片脂质过氧化伤害与超微结构变化的关系[J].植物学报,1989,31(11):841-846.
    [61]Cramer G R, Lauchli A, Polito V S. Displacement of Ca2+by Na+from the plasmalemma of root cell[J].Plant Physiol,1985,79:207-211.
    [62]Pareek A S, Singla L, Grover A. Short-term salinity and high temperature stress-associated ultrastructuralalterations in young leaf cells of Oryza sativa L.[J]. Annals Botany,1997,80(5):629-639.
    [63]Chang P F L,Damsz B, Kononowicz A K, et al. Alterations in cell membrane structure and expression of amembrane-associated protein after adaptation to osmotic stress[J]. Physiologia Plantarum,1996,98(3):505-516.
    [64]Keiper F J, Chen D M,Filippis L F. Respiratory, photosynthetic and ultrastructural changes accompanyingsalt adaptation in culture of Eucalyptus microcorys[J]. Journal of Plant Physiol,1998,152(4-5):564-573.
    [65]柯玉琴,潘廷国. NaCl胁迫对甘薯叶片叶绿体超微结构及一些酶活性的影响[J].植物生理学报,1999,25(3):229-233
    [66]Piqueras A, Olmos E, Hellin E. Cytological changes related with salt tolerance in embryogenic callus ofCitrus limon[J]. Plant cell, tissue an organ culture,1994,39(1):13-18.
    [67]Morales M A, Sánchez-Blanco M J, Olmos E, et al. Changes in the growth, leaf water relations and cellultrastructure in Argyranthemum coronopifolium plants under saline conditions[J]. Journal of plantphysiology,1998,153(1-2):174-180
    [68]张立桢,曹卫星,张思平,等.棉花根系生长和空间分布特征研究[J].植物生态报,2005,29(2):266-273
    [69]苏鹏,方小英.土壤盐碱含量对葡萄根系分布的影响[J].新疆农垦科技,2002,2:21.
    [70]Maricle B R, Koteyeva N K, Voznesenskaya E V, et al. Diversity in leaf anatomy, and stomatal distributionand conductance, between salt marsh and freshwater species in the C(4) genus Spartina (Poaceae)[J].New Phytologist,2009,184:216-33.
    [71]William Hamilton E,A Scott Heckathorn. Mitochondrial adaptations to NaCl[J]. Plant physiology,2001,126:1266-1274.
    [72]陆静梅,李建东.三种双子叶耐盐碱植物根的解剖研究[J].东北师范大学报(自然科学版),1994,3:96-99.
    [73]王勋陵,王静.植物形态结构与环境[M].兰州:兰州大学出版社,1989.
    [74]陆静梅,张常钟,张洪芹,等.单子叶植物耐盐碱的形态解剖特征与生理适应的相关性研究[J].东北师范大学报(自然科学版),1994,2:79-82.
    [75]张其德.盐胁迫对植物及其光合作用的影响(中)[J].植物杂志,2001, l:28-29.
    [76]Sultana N, Ikeda T, Itoh R. Effect of NaCl salinity on photosynthesis and dry matter accumulation indeveloping rice grains [J]. Environmental and Experimental Botany,1999,42:211-220.
    [77]张川红,沈应柏,尹伟伦,等.盐胁迫对凡种苗木生长及光合作用的影响[[J].林业科学,2002,38(2):27-31.
    [78]方连玉.盐胁迫对欧洲赤松光合作用的影响及耐盐性评价[D].哈尔滨:东北林业大学,2011.
    [79]Cushman J C, Meyer G, Michalowski C B, et al. Salt stress leads to differential expression of two isogenesof PEP Case during CAM induction in the common Ice plant[J]. Plant cell,1989,1(7):715-725.
    [80]Zhu J, Meinzer F C. Efficiency of C-4photosynthesis in Atriplex lentiformis under salinity stress[J].Australian Journal of Plant Physiology,1999,26:79-86.
    [81]钱琼秋,朱祝军,何勇.硅对盐胁迫下黄瓜根系线粒体呼吸作用及脂质过氧化的影响[[J].植物营养与肥料学报,2006,12(6):875-880.
    [82]杨晓慧,蒋卫杰,魏眠,等.植物对盐胁迫的反应及其抗盐机理研究进展[[J].山东农业大学学报(自然科学版),2006,37(2):302-305.
    [83]Abd-El Baki G K, Siefritz F, Man H M, et al. Nitrate reductase in Zea mays L. under salinity[J]. Plant, Celland Environment,2000,23(5):515-521.
    [84]Yong Ye, Nora Fung-Yee Tam, Chang-Yi Liu, et al. Effects of salinity on germination, seedling growth andphysiology of three salt-secreting mangrove species [J]. Aquatic Botany,2005,83(3):193-205.
    [85]Alshammary S F, Qian Y L, Wallner S J. Growth response of four turf grass species to salinity[J].Agricultural water management,2004,66:97-111.
    [86]Somaru R, Naidoo Y, Naidoo G. Morphology and ultrastructure of the leaf salt glands of Odysseapaucinervis(Stapf)(Poaceae)[J]. Functional ecology of plant,2002,197(1):67-75.
    [87]王厚麟,缪绅裕.大亚湾红树林及海岸植物叶片盐腺与表皮非腺毛结构[J].台湾海峡,2000,19(3):372-378.
    [88]MacFarlane G R, Burchett M D. Cellular distribution of copper, lead and zinc in the grey mangrove,Avicennia marina(Forsk.)Vierh[J]. Aquatic botany,2000,68(1):45-59.
    [89]王波,张金才,宋凤斌,等.燕麦对盐碱胁迫的生理响应[J].水土保持学报,2007,21(3):86-89.
    [90]赵可夫.植物抗盐生理[M].北京:中国科学技术出版社,1993.
    [91]李振国,倪君蒂,余叔文.乙烯削减盐渍胁迫对苜蓿种子萌发的抑制作用[J].植物生理学报,1995,21(1):50-56.
    [92]曾洪学,王俊.盐害生理与植物抗盐性[J].生物学通报,2005,40:1-3.
    [93]景璐,刘涛,白玉娥.草本园林植物耐盐性研究进展[J].中国农学通报,2011,27(l5):284-289.
    [94]夏汉平,刘世忠.香根草等三种植物的抗盐性比较[J].应用与环境生物学报,2006,6(l):7-17.
    [95]Meyer M T, Smith M A, Knight S L. Salinity effects on St. Augustine grass: A novel system to quantifystress response[J]. Journal of Plant Nutrition,1989,12(7):898-908.
    [96]陆静梅,李建东.松嫩平原5种盐生牧草耐盐结构研究[J].草业学报,1996,5(2):9-13.
    [97]Blum A. Drought resistance, water-use efficiency, and yield potential-are theycompatible, dissonant, ormutually exclusive[J]. Australian Journal of Agricultural Research,2005,56:1159-1168.
    [98]赵可夫.盐分过多对植物的伤害作用和伤害机理[J].曲阜师院学报(植物抗盐生理专辑),1984,30-32.
    [99] Volkmar K M, Hu Y, Steppuhn H. Physiological responses of plants to salinity: aReview[J]. Can J Plant Sci,1998,78:19-27.
    [100]赵可夫.植物抗盐生理[M].北京:中国科学技术出版社,1993,259-271.
    [101]Smirnoff C, Thonke B, Popp M. The compatibility of D-pinitol and1D-1-O-methylmucoinositol withmalate dehydrogenase activity[J]. Bot. Acta,1990,103(3):270-273.
    [102]宋杰.内陆干旱区几种盐生植物种子和幼苗抗盐性的研究[D].中国农业大学,2005:4-5.
    [103]Niu X, Bressan R A, Hasegawa P M, et al. Ion homeostasis in NaCl stress environments[J]. Plantphysiology,1995,109(3):735-742.
    [104]Zhu J K, Liu J, Xiong L. Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role ofpotassium nutrition. Plant cell,1998,10(7):1181-1191.
    [105]李平华,王宝山,王慧.盐胁迫下植物细胞离子稳态重建机制[J].西北植物学报,2003,23(10):1810-1817.
    [106]Briskin D P, Reynolds-Niesman I. Determination of H+-ATP stoichiometry for the plasma membraneH+-ATPase from Red Beet (Beta vulgaris L.) storage tissue[J]. Plant Physiology,1991,95(1):242-250.
    [107]Rubio F, Gassmann W, Schroeder J I. Sodium-driven potassium uptake by the plant potassium transporterHKT1and mutations conferring salt tolerance[J]. Science,1995,270(5242):1660-1663.
    [108]Apel K, Hirt H. Reactive oxygen species: metabolism, oxidativestress, and signal transduction[J]. AnnualReview of Plant Physiology,2004,55:373-399.
    [109]Reddy M P, Sanish S, Iyengar E R R. Photosynthetic studies and compartmentation of ions in differenttissues of Salicornia brachiata Roxb. under saline conditions[J]. Photosynthetica,1992,26(2):173-179.
    [110]Zhu J K. Salt and drought stress signal transduction in plants[J]. Annual Review Plant Physiology andPlant Molecular Biology,2002,53:247-273.
    [111]Wang B S, Ulrich L, Rafael R, et al. Effects of salt treatment and osmotic stress on V-ATPase and V-PPasein leaves of the halophyte Suaeda salsa[J]. Journal of Experimental Botany,2001,52(365):2355-2365.
    [112]Alscher R G, Donahue JL, Cramer CL. Reactive oxygen species and antioxidants: Relationships in greencells[J]. Physiol. Plant,1997,100:224-233.
    [113]Fridovich I. Superoxide radical and superoxide dismutases[J]. Annu Rev Biochem,1995,64:97-112.
    [114]Grant J J, Loake G J. Role of reactive oxygen intermediates and cognate redox signaling in diseaseresistance[J]. Plant Physiol,2000,124:21-29.
    [115]Mittler R. Oxidative stress,antioxidants and stress tolerance[J]. Trends in Plant Science,2002,7:405-410.
    [116]Chung-Kyoon A, Murphy TM. Plasma membrane redox enzyme is involved in the synthesis of O2andH2O2by phytophthora elicitor-stimulated rose cells[J]. Plant Physiol,1995,107:1241.
    [117]Crane FL, Sun IL, Sun EE, et al. Plasma membrane redox and regulation of cell growth[J]. Protoplasma,1995,184:3.
    [118]Shen B, Jense RG, Bohner HJ. Increased resistance to oxidative stress in transgenic plant by targetingmannitol biosynthesis to chloroplasts[J]. Plant Physiol.,1997,113:1177-1183.
    [119]罗银玲,宋松泉.植物线粒体、活性氧与信号转导[J].西北植物学报,2004,24(4):737-747.
    [120]Imlay JA and Linn S. DNA damage and oxygen radical toxicity[J]. Sci,1998,240:1302-1309.
    [121]Potikha TS, Collins CC, Johnson DI, et al. The Involvement of hydrogen peroxide in the differentiation ofsecondary walls in cotton fibers[J]. Plant Physiol,1999,119:849-858.
    [122]Vaidyanathan H, Sivakumar P, Chakrabarty R. Scavenging of reactive oxygen species in NaCl stressedrice (Oryza sativa L.) differential response in salt-tolerant and sensitive varieties[J]. Plant Science,2003,165:1411-1418.
    [123]Apse MP, Blumwald E. Engineering salt tolerance in plants. Current Opinon Biotechnology,2002,13:146-150.
    [124]何宝坤,李德全.植物渗调蛋白的研究进展[J].生物技术通报,2002,2:6-10.
    [125]杨惠敏,张晓艳,王根轩.植物水通道的生理生态特性及其参与气孔运动的研究进展[J].植物学通报,2005,22(3):276-283.
    [126]Maurel C. Aquaporins and water permeability of plant membranes[J]. Annual review of plant physiologyand plant molecular biology,1997,48:399-429.
    [127]Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants[J]. Annual review of plantphysiology and plant molecular biology,1996,47(1):377-403.
    [128]杨天旭,汪耀富,宋世旭.逆境胁迫下植物LEA蛋白的研究进展[J].干旱地区农业研究,2006,24(6):120-124.
    [129]Guan L M, Zhao J, Scandalios J G. Cis-elements and trans-factors that regulate expression of the maizeCat1antioxidant gene in response to ABA and osmotic stress: H2O2is the likely intermediary signalingmolecule for the response[J]. Plant Journal,2000,22(2):87-95.
    [130]Lopez M V, Satti S M E. Calcium and potassium-enhanced growth and yield of tomato under sodiumchloride stress[J]. Plant science,1996,114(1):19-27.
    [131]郑青松,王仁雷,刘友良.钙对盐胁迫下棉苗离子吸收分配的影响[J].植物生理学报,2001,27(4):325-330.
    [132]王静英,李永春,尹钧,等.干旱胁迫下植物的信号转导及基因表达研究进展[J].中国农学通报,2008,24(1):271-275.
    [133]Zhu J K. Genetic analysis of plant salt tolerance using Arabidopsis[J]. Plant physiology,2000,124(3):941-948.
    [134]王伟.中山衫无性系幼苗耐盐特性及机理研究[D].南京:南京林业大学,2010.
    [135]王良睦,王文卿,王谨,等.厦门地区耐盐园林植物的筛选[J].园林植物栽培与繁育,2001(6):65-67.
    [136]Niknam S R, McComb J. Salt tolerance screening of selected Australian woody species-a review[J].Forest Ecology and Management,2000,139(1):1-19.
    [137]王慧中,黄大年,鲁瑞芳,等.转mtlD/gutD双价基因水稻的耐盐性[J].科学通报,2000,45(7):724-729.
    [138]张春平.不同外源物质提高盐胁迫下黄连种子及幼苗抗逆性机理研究[D].西南大学,2012.
    [139]阮海华,沈文鹰,叶茂炳,等.一氧化氮对盐胁迫下小麦叶片氧化损伤的保护效应[J].科学通报,2001,46(23):1993-1997.
    [140]杨晓慧,蒋卫杰.提高植物抗盐能力的技术措施综述[J].中国农学通报,2006,22(l):88-91.
    [141]火树华.树木学[M].北京:中国林业出版社.1990.
    [142]国家林业局国有林场和林木种苗工作总站.中国木本植物种子[M].北京:中国林业出版社,2001.
    [143]徐汉虹,安玉兴.生物农药的发展动态与趋势展望[J].农药科学与管理,2001,22(1):32-34.
    [144]苗海霞,孙明高,夏阳等.盐胁迫对苦楝根系活力的影响[J].山东农业大学学报,2005,36(1):9-121.
    [145]教忠意,唐凌凌,隋德宗等.苦楝的研究现状与展望[J].福建林业科技,2009,36(4):269-274.
    [146]程诗明,顾万春.苦楝遗传资源学研究进展及其展望[J].浙江林业科技,2007,27(2):64-69.
    [l47]刘金萍,高奔,李欣,等.盐旱互作对不同生境盐地碱蓬种子萌发和幼苗生长的影响[J].生态学报,2010,30(20):5485-5490.
    [l48]党伟光,高贤明,王瑾芳,等.紫茎泽兰入侵地区土壤种子库特征[J].生物多样性,2008,16(2):126-132.
    [149]李合生.植物生理生化实验原理与技术[M].北京:高等教育出版,2000.
    [150]Naoki Nishimura, Jing hua Zhang,Mitsuru Abo, et a1. Application of capillary electrophoresis to thesimultaneous determination of betaines in plants[J]. Analytical sciences,2001,17:103-106.
    [151]王爱国,罗广华.植物的超氧物自由基与羟氨反应的定量关系[J].植物生理学通讯,1990,26(6):55-57.
    [152]陈建勋,王晓峰.植物生理学实验指导[M].广州:华南理工大学出版社,2002.
    [153] Hulusi Koca, Melike Bor, Filiz O’zdemir, et al. The effect of salt stress on lipid peroxidation,antioxidative enzymes and proline content of sesame cultivars[J]. Environmental and Experimental Botany,2007,60:344-351.
    [154]曹帮华.刺槐抗旱抗盐特性研究[D].北京林业大学,2005,38-40.
    [l55]王东明,贾媛,崔继哲.盐胁迫对植物的影响及植物盐适应性研究进展[J].中国农学通报,2009,25(4):124-128.
    [l56]韩亚琦,唐宇丹,张少英,等.盐胁迫抑制槲栎2变种光合作用的机理研究[J].西北植物学报,2007,27(3):538-587.
    [l57]张华新,刘正祥,刘秋芳.盐胁迫下树种幼苗生长极其耐盐性[J].生态学报,2009,29(5):2264-2271.
    [158]秦景,董雯怡,贺康宁,等.盐胁迫对沙棘幼苗生长与光合生理特征的影响[J].生态环境学报,2009,18(3):1031-1036.
    [189]王增兰.盐芥(Thellungiella Halophila)耐盐生理及分子生物学基础研究[D].山东师范大学,2004:56-57.
    [160]吴薇.杂交新美柳的盐胁迫响应及外源NO处理的调节作用[D].南京林业大学,2008:26-27.
    [161]王伟.中山杉无性系幼苗耐盐特性及机理的研究[D].南京林业大学,2010:23.
    [162]刘强.五种木本植物对盐碱胁迫的生理响应及外源物质的作用[D].东北林业大学,2009:22-23.
    [163]罗庆云.野生大豆和栽培大豆耐盐机理及遗传研究[D].南京农业大学,2003:12-41.
    [164]周俊山,史功伟,张艳,等。盐胁迫对二色补血草光合作用的影响[J].山东师范大学学报(自然科学版),2007,22(1):125-127.
    [165]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual review of plantphysiology,1982,33:317-345.
    [166]王玉萍,何文亮,程李香,等.不同海拔珠芽蓼叶片类囊体膜色素含量及光系统功能变化[J].草业学报,2011,20(1):75-81.
    [l67]曾杰,曾凡江, Arndt S K,等. NaCl对骆驼刺幼苗生长、生理和离子分布特性的影响[J].科学通报,2008,53(增刊Ⅱ):151-158.
    [168]Kennedy B F, De Fillippis L F. Physiological and oxidative response to NaCl of the salt tolerant Grevilleailicifolia and the salt sensitive Grevillea arenaria[J]. J. Plant Physiol.1999,155:746-754.
    [169]刁丰秋,章文华,刘友良.盐胁迫对大麦叶片类囊体膜脂组成和功能的影响[J].植物生理学报,1997,23(2):105-110.
    [170]Parida A, Das A B, Das P. NaCl stress causes changes in photosynthetic pigments, proteins and othermetabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures[J]. J.Plant Biol.2002,45:28-36.
    [171]Wang Y, Nil N. Changes in chlorophyll, ribulose biphosphate carboxylase-oxygenase, glycine betainecontent, photosynthesis and transpiration in Amaranthus tricolorl eaves during salt stress[J]. J. Hortic. Sci.Biotechnol,2000,75:623-27.
    [172]Romero A R, Soria T, Cuartero J. Tomato plant-water uptake and plant-water relationships under salinegrowth conditions[J]. Plant Sci.2001,160:265-272.
    [173]郇树乾,刘国道,张绪元,等. NaCl胁迫对刚果臂形草种子萌发及幼苗生理效应的研究[J].中国草地,2004,26(6):45-49.
    [174]董晓霞,赵树慧,孔令安,等.苇状羊茅盐胁迫下生理效应的研究[J].草业科学,1998,15(5):10-13.
    [175]韩志平,郭世荣,冯吉庆,高新昊.盐胁迫对西瓜幼苗生长、叶片光合色素和脯氨酸含量的影响[J].南京农业大学学报,2008,3l(2):32-36.
    [176]王仁雷,华春,刘友良.盐胁迫对水稻光合特性的影响[J].南京农业大学学报,2002,25(4):11-14.
    [177]冯志红,闰立英,王久兴,等. Na2SO4和CaCl2胁迫对不同黄瓜品种种子萌发和幼苗生长的影响[J].河北农业科学,2004,8(4):47-51.
    [178]王宝增,赵可夫.低浓度NaCl对玉米生长的效应[J].植物生理学通讯,2006,42(4):628-632.
    [179]刘家尧,衣艳君,张其德.盐胁迫对不同抗盐性小麦叶片荧光诱导动力学的影响[J].植物学通报,1998,15(2):46-49.
    [180]Santos C,Azevedo H, Caldeira G. In situ and in vitro senescence induced by KCl stress nutritionalimbalance, lipid per-oxidation and antioxidant metabolism[J]. Journal of experimental botany,2001,52:351-360.
    [181]Santos C. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves[J].Scientia horticulturae,2004,103:93-99.
    [182]Steduto P, Albrizio R, Giorio P, Sorrentino G. Gas-exchange response and stomatal and non-stomatallimitations to carbon assimilation of sunflower under salinity[J]. Env. ExP. Bot.,2000,44:243-255.
    [183]Kurban H, Saneoka H, Nehira K, et al. Effeet of salinity on growth, photosynthesis and mineralcomposition in leguminous plant Alhagi pseudoalhagi (Bieb.)[J]. Soil Sci. Plant Nutr.,1999,45:851-862.
    [184]Long S P and Baker N K. Saline terrestrial environment, In Photosynthesis in contrastingenvironment(Baker NR and Long SP eds),1986, pp63-102, Elsevier Science Publishers B.V(BiomedicalDivision).
    [185]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual review plant physiology,1982,33:317-345.
    [186]许大全.光合作用效率[M].第一版,上海:上海科学技术出版社,2002.
    [187]Ouerghi Z, Cornic G, Rrodan I M. Effect of NaCl on photosynthesis of two wheat species(Triticum durumand T. aestivum) differing in their sensitivity to salt stress[J]. J. Plant Physiol.,2000,156:335-340.
    [188]江行玉,窦君霞,王正秋. NaCl对玉米和棉花光合作用和渗透调节能力的调控[J].植物生理学通讯,2001,37(4):303-305.
    [189]Kao W Y, Tsai T T, Tsai H CH, et al. Response of three Glycine species to salt stress[J]. Environmentaland Experimental Botany,2005, in press.
    [190]刘炳响.白榆耐盐生理生态机制的研究[D]。河北农业大学,2012.
    [191]刘强.五种木本植物对盐碱胁迫的生理响应及外源物质的作用[D].东北林业大学,2009.
    [192]姜国斌,丁丽娜,金华,等.盐胁迫对杨树幼苗叶片光合特性及叶绿素荧光参数的影响[J].辽宁林业科技,2007(1):20-23,43.
    [193]谢田玲,沈禹颖,邵新庆,等.黄土高原4种豆科牧草的净光合速率和蒸腾速率日动态及水分利用效率[J].生态学报,2004,24(8):1679-1686.
    [194]Webb A R, Baker A J. stomalta1biology: New techniques,new challenges[J]. New phytologist,2002,153:365-370.
    [195]Plaut Z. Sensitivity of crop p1ants to water stress at specific developmental stages: revaluation ofexperimental findings[J]. Israel Journal of plant science,1995,43:99-111.
    [196]黄占斌,山仑.水分利用效率及其生理生态机理研究进展[J].生态农业研究,1998,6(4):19-23.
    [197]谢会成,朱西存.水分胁迫对栓皮栋幼苗生理特性及生长的影响[J].山东林业科技,2004(2):6-7.
    [198]李玉全,张海艳,沈法富.作物耐盐性的分子生物学研究进展[J].山东科学,2002,15(2):8-14.
    [199]张海燕,赵可夫.盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究[J].植物学报,1998,40(1):56-61.Fernandez-Ballester et al.,1998:
    [200]Fernandez-Ballester G, Martinez V, Ruiz D, et al. Changes in inorganic and organic solutes in citrusgrowing under saline stresses[J]. J Plant Nutri,1998,21(12):2497-2514.
    [201]Munns R Bracely C J, Barlow EWR. Solute accumulation in the apex and leaves of wheat during waterstress[J]. Australian Journal of Plant physiology,1979,6:379-389.
    [202]李兆君,马国瑞,徐建民,等.植物适应重金属Cd胁迫的生理及分子生物学机理[J].土壤通报,35(2):234-238.
    [203]汤章城.植物对渗透胁迫和淹水胁迫的适应机制[M].见:余叔文.植物生理与分子生物学.北京:科学出版社,1999,739-775.
    [204]汪贵斌,曹福亮.盐胁迫对落羽杉生理及生长的影响[J].南京林业大学学报,2003,27(3):11-14.
    [205]孙方行等. NaCl处理对海棠渗透调节的影响[J].西北林学院学报,2005,20(3):62-64.
    [206]王宝山,姚郭义.盐胁迫对沙枣愈伤组织膜透性、膜脂过氧化物和SOD活性的影响[J].河北农业大学学报,1993,16(3):20-24.
    [207]Ashraf M, Learf JWO. Changes in soluble proteins in spring wheat stressed with sodium chloride[J].Biology Plant,1999,42:113-117.
    [208]唐晓敏,王文全,张红瑞,等.不同浓度NaCl处理对甘草叶片生理特性的影响[J].中国农学通报,2005,24(l):229-232.
    [209]於丙军,章文华. NaCl对大麦幼苗根系蛋白质和游离氨基酸含量的影响[J].西北植物学报,1997,17(4):439-442.
    [210]Levitt J. Response of plants to environmental stress[M]. New york: Acdemic press,1980.
    [211]陈京,周启贵,张启堂. PEG处理对甘薯叶片渗透调节物质的影响[J].西南师范大学学报(自然科学版),1995,20(1):73-77.
    [212]赵可夫.植物抗盐生理[M].北京:科学出版社,1993.
    [213]Friedman R, Altman A. The effete of salt stress on poyamie bioynthsis and content in mung bean Plantsand in halophytes[J]. Physiologia plantarum,1989,76:295-302.
    [214]李合生.现代植物生理学[M].北京高等教育出版社,2002.
    [215]Haro R, Banuelos M A, Quintero F J. Genetic basis of sodium exclusion and sodium tolerance in yeast-Amodel for plants[J]. Plant physiology,89(4):868-874.
    [216]Watad A A, Reinhold L, Lerner H R. Comparison between a stable NaCl-seleeted Nicotiana cell line andwild type. Plant physiology,1983,73:624-629.
    [217]吕芝香,乙引. NaCl对小麦苗叶片脯氨酸氧化酶活性和游离脯氨酸积累的影响[J].植物生理学报,1992,18(4):376-382.
    [218]郑国琦,许兴,邓西平,等.盐分和水分胁迫对枸杞幼苗渗透调节效应的研究[J].干旱地区农业研究,2002,20(2):56-59.
    [219]王玉凤.玉米苗期对NaCl胁迫的响应与耐盐性调空机理的研究[D].沈阳农业大学,2008.
    [220]Hanson A D, May A M. Betaine synthesis in chenopods: Localization in chlorplasts[J]. The proceeding ofthe national academy of sciences online(USA),1985,82(1):3678-3695.
    [221]梁峥,赵原,汤岚,等.甜菜碱对呼吸酶的保护效应[J].植物学报,1994,36(12):947-951.
    [222]Munns R. genes and salt tolerance: bringing them together[J]. New phytologist,2005,167:645-663.
    [223]夏阳,梁慧敏,束怀瑞,等.几种肥料根际施用对盐胁迫下苹果矿质营养平衡的影响[J].园艺学报,2005,32(l):6-10.
    [224]王东明,贾媛,崔继哲.盐胁迫对植物的影响及植物盐适应性研究进展[J].中国农学通报,2009,25(4):124-128.
    [225]Niu X, Bressan R A, Hasegawa P M, et al. Ion homeostasis in NaCl stress environments. Plant physiology,1995,109:735-742.
    [226]Kenneth K T. Crop salt tolerance. In: Agricultural Salinity Assessment and Management. New York:Society of Civil Engineers,1996,262-264.
    [227]Syed M A. Nutrient uptake by plants under stress conditions. In: Mohammad pessarakli. Hand book ofplant and crop stress. New York: Marcel Dekker, Inc.1999,285-313.
    [228]Khan MSA, Hamid A, Salahuddin ABM. Effect of NaCl on growth, photosynthesis and mineral ionsaccumulation of different types of riee(Oryza sativa L.). Journal of Agronomy and crop scienee,1997,179:149-161.
    [229]Zou BJ, Mo RC. Distribution of soil zinc, iron, copper and manganese fractions and its relationship withplant availability. Pedosphere,1995,5(1):35-44.
    [230]López-Aguilar R, Orduo-Cruz A, Lucero-Arce A, et al. Response to salinity of three grain legumes forpotential cultivation in arid areas. Soil science and plant nutrition,2003,49(3):329-336.
    [231]Ashraf M, O,Leary JW. Distribution of cations in leaves of salt-tolerant and salt-sensitive lines ofsunflower under saline conditions. Journal of plant nutrition,1995,18:2379-2388.
    [232]Khatun S, Flowers TJ. Effects of salinity on seed set in rice. Plant cell Environment,1995,18:61-67.
    [233]Ashraf M. Some important physiological selection criteria for salt tolerance in plants. Flora,2004,199:361-376.
    [234]王明香,聂俊华,张华芳.钾素营养研究进展[J].云南农业大学学报,2000,15(4):356-358.
    [235]Alfocea FP, EstanMP, CaroMT,Bolarin MC. Response of tomato cultivars to salinity. Plant soil,1993,150:203-211.
    [236]Taha R, Mills D, Heimer Y, Tal M. The relation between low K+/Na+ratio and salt-tolerance in the wildtomato speeies Lycopersicon pennellii. J plant physiol,2000,157:59-64.
    [237]王宝山.植物生理学[M].北京:科学出版社,2004:40.
    [238]李延,刘星辉,庄卫民.缺镁胁迫对龙眼苗期氮代谢的影响[J].植物营养与肥料学报,2001,7(2):218-222.
    [239]Briskin DP, Pooler RJ. Role of magnesium in plasma membrane ATPase of red beet. Plant physiology,1983,71:969-971.
    [240]Knight H, Trewavas A J, Knight M R. Calcium signaling in Arabidopsis thaliana responding to droughtand salinity. Plant J,1997,12:1067-1078.
    [241]Sanders D, Brownlee C, Harper J F. Communicating with calcium. Plant Cell,1999,11:691-706.
    [242]陈亚华,沈振国,刘友良,等. NaCl胁迫下棉花幼苗的离子平衡[J].棉花学报,2001,13(4):225-229.
    [243]王宝山,邹琦,赵可夫. NaCl胁迫对高粱不同器官离子浓度的影响[J].作物学报,2000,26(6):845-851.
    [244]陈少良.胡杨抗盐性的生理生化基础[M].高等教育出版社,2003.
    [245]Nakano Y, Asadas K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinachchloroplasts. Plant Cell Physiol,1981,22:867-880.
    [246]Mccord JM, Fridovich J. Superoxide dismutase: an enzymic function for erythrocuprein(Hemocaprein).Journal of Biological Chemistry,1969,224:6049-6055.
    [247]李忠光,龚明.抗氧化系统在H2O2诱导的玉米幼苗耐热性形成中的作用[J].植物生理学通讯,2003,39(6):575-579.
    [248]Elster E F. Oxygen activation and toxicity. Ann Plant Physiol,1982,33:69-73.
    [249]Shalata A, Tal M. The effect of salt stress on lipid peroxidation and antioxidants in the leaf of thecultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol Plant,1998,104:169-174.
    [250]Dhindsa R S, Matowe W. Drought tolerance in two mosser: correlated with enzymatic defence againstlipid peroxidation. J Exp Bot,1981,32:79-91.
    [251]McCord J M. The evolution of free radicals and oxidative stress. Am J Med,2000,108:652-659.
    [252]谈建康,安树青,王铮峰,等. NaCl, Na2CO3和Na2SO4胁迫对小麦叶片自由基含量及质膜透性的比较研究[J].植物学通报,1998,15(增刊):82-86.
    [253]Sairam R K, Rao K V, Srivastava G C. Differential response of wheat genotypes to long term salinitystress in relation to oxidative stress. Plant Sci,2002,163:1037-1046.
    [254]Mittle R R. Oxidative stress, antioxidants and stress tolerance. Trend Plant Sci,2002,7:405-410.
    [255]Alscherr G A, Donahue L D, Cramer C L. Reactive oxygen species and antioxidants: relationships ingreen cells. Physiol Plant,1997,100:224-233.
    [256]Alscher R G, Erturk N, Heath L S. Role of superoxide dismutases (SODs) in controlling oxidative stress inplants. Journal of Experimental Botany,2003,53(372):1331-1341.
    [257]Bowler C, Van C W, Montagu M, et al. Superoxide dismutase in plants. Critical Reviews in PlantSciences,1994,13(3):199-218.
    [258]Shah K, Kumar R G, Verma A, et al. Effect of cadmium on lipid peroxidation, superoxide aniongeneration and activitivies of antioxidant enzymes in growing rice seedlings. Plant Science,2001,161:1135-1144.
    [259]Zelith I. Further studies on O-.2resistant photosynthesis and photorespiration in a tobacco mutant with theenhanced catalase activity. Plant Physiol,1990,92:352-357.
    [260]Chen GX, Asada K. Inactivation of ascorbate peroxidaseby thiols requires hydrogen peroxide. Plant andCell Physiology,1992,33:117-123.
    [261]Asada K. The water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons.Annu Rev Plant Physiol Plant Mol Biol,1999,50:601-639.
    [262]Foyer CH, Dujardyn M, Lemonie Y. Responses of photosynthesis and the xanthophyll andascorbate-glutathione cycles to changes in irriadiance, photoinhibition and recovery. Plant Physiology andBiochemistry,1989,27:751-760.
    [263]Foryer CH, Descourvieres P, Kunert KJ. Protection against oxygen radicals: an important defensemechanism studied in transgenic plants. Plant Cell Environment,1994,17:507-523.
    [264]Foyer C H, Theodoulou F L, Delrot S. The functions of inter-and intracellular glutathione transportsystems in plants. Trends Plant Sci,2001,6(10):486-492.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700