用户名: 密码: 验证码:
亚精胺对番茄幼苗盐碱胁迫的缓解效应及其调控机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐碱胁迫是造成作物减产的主要非生物胁迫之一,关于提高作物耐盐碱性的研究已引起人们的广泛关注。多胺(PAs)是生物在其生命活动过程中产生的一类次生代谢物,在植物中具有调节基础代谢、影响生长发育、控制形态建成、延缓衰老等功能,主要包括腐胺(Put)、亚精胺(Spd)和精胺(Spm),其中Spd与植物抗逆性的关系最为密切。研究表明,外源Spd处理能够在一定程度上缓解盐胁迫的抑制效应,甚至能提高作物在高盐胁迫下的生产潜力。然而,目前关于外源Spd对植物抗盐性的影响机理研究多集中在NaCl上,而对碱性盐的研究报道极少。
     番茄(Solanum lycopersicum)是一种世界范围内广泛栽培和消费的蔬菜作物,也是植物遗传学及茄科作物研究中的模式植物。栽培番茄属于中度盐敏感型作物,盐碱逆境极易给其生产造成严重损失。本文以耐性不同的两个番茄品种(盐碱耐性较强的‘金棚朝冠’和盐碱耐性较弱的‘中杂9号’)为试材,采用水培法,通过模拟盐碱生态条件(NaCl:Na_2SO4: NaHCO_3: Na_2CO_3=1:9:9:1),结合外源施用0.25mmol·L~(-1)Spd(叶面喷施或浸种),研究Spd对盐碱胁迫下番茄幼苗生长、光合荧光特性、主要矿质元素含量、抗氧化保护系统、渗透调节系统、氮代谢和PAs代谢的影响,探讨外源Spd在提高番茄耐盐碱性中的生理调节功能。同时,对盐碱和外源Spd处理下盐碱敏感型品种‘中杂9号’的叶片差异蛋白进行了质谱分析和功能鉴定,以期初步揭示外源Spd对番茄响应盐碱胁迫的蛋白质表达调控基础。主要结果如下:
     1.盐碱胁迫下,两品种番茄幼苗生长受抑,叶片净光合速率、气孔导度、蒸腾速率、叶绿素含量、PSII光化学量子效率、光合电子传递速率、光化学淬灭系数、全P含量及叶片/根系全N、全K、Ca~(2+)、Mg~(2+)含量均显著降低,叶片非光化学淬灭系数及叶片/根系Na~+含量均显著升高,且‘中杂9号’受胁迫的影响程度较大;在处理第5d,盐碱逆境对‘中杂9号’的光合限制以非气孔因素为主,而对‘金棚朝冠’的则以气孔因素为主。外源喷施Spd能够显著改善盐碱胁迫下番茄幼苗地上部的生长状况,提高叶绿素含量,增强PSII反应中心的光化学活性,有效减轻盐碱逆境对番茄叶片光合电子传递的抑制及其对光合作用的气孔限制和非气孔限制,并有助于维持番茄植株主要矿质营养元素间的相对平衡,且对耐盐碱性相对较弱的‘中杂9号’盐碱毒害的缓解效果更为明显。
     2.盐碱胁迫下,两品种番茄幼苗的游离氨基酸总量、NH_4~+含量及谷氨酸脱氢酶(GDH)活性增加,而NO_3~-含量及硝酸还原酶、亚硝酸还原酶、谷氨酰胺合成酶(GS)、谷氨酸合酶(GOGAT)、谷草转氨酶、谷丙转氨酶活性均有所降低,同时,盐碱逆境的这种效应在外源Spd作用下有所减缓,尤其对‘中杂9号’的效果更明显。表明,外源喷施Spd可通过加强GDH、GS/GOGAT和转氨三大途径的协同作用以促进盐碱条件下过量氨的同化,使细胞内的NH_4~+及其代谢酶维持在适度平衡状态,进而减轻氨毒害作用并有效缓解盐碱胁迫引起的氮代谢紊乱,从而促进植株生长。
     3.盐碱胁迫下,两品种番茄幼苗的超氧阴离子产生速率、过氧化氢含量增加,较高的活性氧(ROS)水平导致膜脂过氧化程度加剧,丙二醛含量明显升高;同时盐碱处理在一定程度上诱导了超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)的活性及脯氨酸、可溶性糖的积累。外源喷施Spd处理一方面通过提高盐碱逆境下细胞内SOD、POD、CAT的活性来降低ROS水平,从而减轻对膜脂的过氧化损伤;另一方面通过诱导盐碱胁迫植株体内渗透调节物质的进一步合成或积累来提高细胞的吸水能力,进而增强番茄幼苗的盐碱耐性。
     4.盐碱胁迫下,两番茄品种的根系不同种类、不同形态PAs含量均显著增加。与‘中杂9号’相比,‘金棚朝冠’的根系游离态和束缚态Spd、结合态Spd和Spm含量,及其S-腺苷蛋氨酸脱羧酶(SAMDC)和二胺氧化酶(DAO)活性在盐碱胁迫下的增幅较大。盐碱条件下,外源Spd浸种处理抑制了两品种的根系游离态Put积累,显著促进游离态Spd和Spm、结合态Spd及束缚态Put含量的增加。可见,盐碱胁迫下Spd浸种处理促进了游离态Put向游离态Spd和Spm的转化,以及结合态和束缚态PAs的积累。盐碱胁迫下,Spd浸种处理提高了‘中杂9号’根系鸟氨酸脱羧酶(ODC)、SAMDC和DAO活性,降低了其精氨酸脱羧酶(ADC)和PAs氧化酶(PAO)活性;同时,外源Spd降低了‘金棚朝冠’根系ADC和ODC活性,但提高了其SAMDC和DAO活性。这表明,外源Spd参与了盐碱胁迫下番茄幼苗体内PAs代谢的调节,同时,Spd浸种处理对耐性不同品种的效应存在着一定的差异。
     5.对盐碱敏感型番茄品种‘中杂9号’叶片的双向电泳分析结果显示,盐碱+Spd、单纯Spd喷施处理、对照、单纯盐碱处理植株的叶片蛋白点数分别为1172、1243、1084和954个。选取其中82个差异蛋白点进行质谱分析和数据检索,其中72个蛋白点得到了有效的搜库结果,这些蛋白主要参与了胁迫防御反应、氨基酸代谢、光合作用、光呼吸、能量转换、信号转导、蛋白折叠和转录后调控等生理过程。进一步表明,盐碱和外源Spd处理下植株可通过诱导多种代谢途径的协调作用来适应外界环境的变化。
Saline-alkaline stress is one of the major abiotic stresses which causes crop failures, sothe research for improving the saline-alkaline tolerance of crops has been attracted greatattention. As a kind of secondary metabolites in organisms, polyamines (PAs) in plants havemulti-functions, such as regulating basic metabolisms, influencing growth and development,adjusting morphogenesis and slowing the aging process. Putrescine (Put), spermidine (Spd)and spermine (Spm) are common PAs, and Spd is the most closely associated PA with stresstolerance in plants. Under salt stress conditions, exogenous Spd application has beensuccessfully used for alleviating the growth inhibitory effects, and even enhancing theproductive potential of crops exposed to high-salinity stress. However, the current researchabout the influence mechanisms of exogenous Spd on plant resistance, mostly focus on theneutral NaCl solution, while there is nearly no related report on the alkaline salt tolerance.
     Tomato (Solanum lycopersicum) is one of the widely cultivated and consumed crop inthe world, and it is also a good model for the plant genetics and solanaceous crops research.Cultivated tomatoes are moderately sensitive to salt stress, and salinity-alkalinity seriouslyreduces its production. In the present study, the effects of exogenous0.25mmol·L~(-1)Spd(foliar spraying or seed soaking) on the plant growth, photosynthetic fluorescencecharacteristics, main mineral elements contents, antioxidant system, osmotic adjustmentsystem, nitrogen metabolism and PAs metabolism were investigated, in two cultivars oftomato seedlings (‘Jinpengchaoguan’ and ‘Zhongza No.9’, the former being more tolerant tosaline-alkaline stress than the latter), grown under salinity-alkalinity stress condition (NaCl:Na_2SO4: NaHCO_3: Na_2CO_3=1:9:9:1), to explore the physiological functions of exogenous Spdon improving the saline-alkaline tolerance of tomato. Meanwhile, the differentially expressedproteins in leaves of ‘Zhongza No.9’ tomato seedlings under each treatment were identifiedand classified by MALDI-TOF/MS, in order to preliminarily reveal the protein foundationsinduced by Spd under saline-alkaline stress. Main research results were as follows:
     1. Under salinity-alkalinity stress, the seedling growth of the two tomato cultivars wasinhibited. The net photosynthetic rate, stomatal conductance, transpiration rate, chlorophyllcontents, photochemical quantum efficiency of PSII, photosynthetic electron transport rate, photochemical quenching coefficient and total P contents in leaves, as well as the total N,total K, Ca~(2+), Mg~(2+)contents in leaves and roots, were all significantly reduced undersaline-alkaline stress. However, the leaf non-photochemical quenching coefficient and the Na~+contents in leaves and roots were all significantly increased. Besides, there was greaterinfluence on ‘Zhongza No.9’. At the fifth day of treatment, the main limiting factor ofphotosynthesis in ‘Zhongza No.9’ tomato seedling was non-stomatal factor undersaline-alkaline stress, while it was stomatal factor for‘Jinpengchaoguan’. Under stressconditions, exogenous foliar spraying Spd could significantly improve the shoots growth, theleaf chlorophyll contents and PSII photochemical activities of both tomato cultivars.Moreover, the inhibition of leaf photosynthetic electron transportation, as well as the stomataland non-stomatal limitation, caused by salinity-alkalinity stress, could be effectively reducedby exogenous Spd, meanwhile, the main mineral elements contents were maintained in aproper balance, and the alleviative effect of Spd treatment on saline-alkaline damages wasmore obvious in ‘Zhongza No.9’ cultivar.
     2. Exogenous Spd may help reduce salinity-alkalinity stress-induced increases in freeamino acids, ammonium (NH_4~+) contents, and glutamate dehydrogenase (GDH) activities;depress stress-induced decreases in nitrate contents, and nitrate reductase, nitrite reductase,glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate oxaloacetatetransaminase (GOT), and glutamate pyruvate transaminase (GPT) activities, especially for‘Zhongza No.9’. The results showed that exogenous Spd promotes the assimilation of excesstoxic NH_4~+, by coordinating and strengthening the synergistic action of GDH, GS/GOGAT,and transamination pathways, all during saline-alkaline stress. Subsequently, NH_4~+and itsrelated enzymes (GDH, GS, GOGAT, GOT and GPT), in vivo, are maintained in a proper andbalanced state, to enable mitigation of stress-resulted nitrogen metabolic disturbances, andeventually promote plant growth.
     3. Under saline-alkaline stress, the Oˉ2.production rate and H2O2contents in leaves androots of both tomato cultivars increased at different degrees, and the higher levels of reactiveoxygen species (ROS) aggravated the membrane lipid peroxidation, which facilitated theproduction of malondialdehyde. Moreover, the activities of superoxide dismutase (SOD),peroxidase (POD) and catalase (CAT), as well as the accumulation of proline and solublesugar, could be induced by salinity-alkalinity stress to some extent. Exogenous Spd, on onehand, may help to alleviate the membrane lipid peroxidative injury, by further increasing thestress-induced SOD, POD and CAT activities to reduce the excessive ROS level. On the otherhand, Spd treatment can enhance the saline-alkaline tolerance of tomato seedlings, throughinducing the further biosynthesis and accumulation of osmotic adjustment materials.
     4. PAs content, in any form, increased significantly during salinity-alkalinity stress. Theactivities of S-adenosylmethionine decarboxylase (SAMDC) and diamine oxidase (DAO),contents of free Spd, soluble conjugated Spd and Spm, and insoluble bound Spd in roots wereincreased to a greater extent in ‘Jinpengchaoguan’ tomato seedlings exposed to saline-alkalinestress. Exogenous Spd markedly suppressed the accumulation of free Put, but promoted anincrease in free Spd and Spm contents, as well as soluble conjugated Spd and insoluble boundPut in both cultivars. From these data, we deduced that exogenous Spd promotes theconversion of free Put into free Spd and Spm, and soluble conjugated forms and insolublebound forms PAs under salinity-alkalinity stress. Furthermore, under saline-alkaline stress,exogenous Spd enhanced the activities of ornithine decarboxylase (ODC), SAMDC and DAO,and reduced the activities of arginine decarboxylase (ADC) and polyamine oxidase (PAO) in‘Zhongza No.9’ roots. In addition, exogenous Spd reduced the activities of ADC and ODC,and increased the activities of DAO and SAMDC in ‘Jinpengchaoguan’ roots undersaline-alkaline stress. These results suggest that Spd treatment can regulate the metabolicstatus of PAs caused by saline-alkaline stress, and the effects of exogenous Spd on differentcultivars with differential salinity-alkalinity tolerance exist certain differences.
     5. Two dimensional gel electrophoresis analysis results showed that the leaf protein spotsin control, single Spd, single salinity-alkalinity, and salinity-alkalinity plus Spd treated plantswere1084,1243,954and1172, respectively. Eighty-two differentially expressed proteinspots were identified by MALDI-TOF/MS and related databases, in which72protein spotsgot valid results. The identified proteins were associated with the regulation of photosynthesis,photo respiration, energy pathway, signal transduction, amino acid metabolism, proteinfolding, post-transcriptional regulation, and so on. This provides further evidence thatsaline-alkaline stress and exogenous Spd treatment could induce the synergy of numerousmetabolic processes in plants to adapt to the changing environment.
引文
曹栋栋.2010.多胺对超甜玉米种子发育过程中种子质量和萌发的调控作用研究.[博士学位论文].杭州:浙江大学
    曾洪学,王俊.2005.盐害生理与植物抗盐性.生物学通报,40(9):1~3
    曾令江,陈敏,潘夕春,张启堂,廖志华.2007.马铃薯腺苷酸激酶基因的克隆分析及其植物表达载体的构建.生物技术通讯,18(3):405~408
    陈如凯,张木清.1995.甘蔗耐盐生理研究IV. NaCl胁迫对甘蔗多胺代谢影响.作物学报,21(4):479~484
    陈万超.2011.三种经济植物抗碱生理机制研究.[博士学位论文].长春:东北师范大学
    陈晓飞,宁书菊,魏道智,张洪平.2008.氮素营养水平对水稻幼苗氮代谢的影响.中国生态农业学报,16(3):571~575
    崔润丽,刁现民.2005.植物耐盐相关基因克隆与转化研究进展.中国生物工程杂志,25(8):25~30
    戴凌燕,张立军,阮燕晔,胡凯.2012.盐碱胁迫下不同品种甜高粱幼苗生理特性变化及耐性评价.干旱地区农业研究,30(2):77~83
    丁健.2009.柑橘果实粒化变异体的遗传背景及其性状形成的机理研究.[博士学位论文].武汉:华中农业大学
    杜长霞,李娟,郭世荣,樊怀福.2007.外源亚精胺对盐胁迫下黄瓜幼苗生长和可溶性蛋白表达的影响.西北植物学报,27(6):1179~1184
    段九菊.2008.外源亚精胺提高黄瓜幼苗耐盐性的生理调节功能研究.[博士学位论文].南京:南京农业大学
    范远,任长忠,李品芳,任图生.2011.盐碱胁迫下燕麦生长及阳离子吸收特征.应用生态学报,22(11):2875~2882
    方连玉.2011.盐胁迫对欧洲赤松光合作用的影响及耐盐性评价.[博士学位论文].哈尔滨:东北林业大学
    冯立国,生利霞,束怀瑞.2010.低氧胁迫下外源硝态氮对樱桃根系功能及氮代谢相关酶活性的影响.应用生态学报,21(12):3282~3286
    付寅生,崔继哲,陈广东,刘佳,弭晓菊,张海波.2012.盐碱胁迫下碱地肤Na+/H+逆向转运蛋白基因KsNHX1表达分析.应用生态学报,23(6):1629~1634
    高战武.2011.紫花苜蓿和燕麦抗盐碱机制研究.[博士学位论文].长春:东北师范大学
    龚春梅,宁蓬勃,王根轩,梁宗锁.2009. C3和C4植物光合途径的适应性变化和进化.植物生态学报,33(1):206~221
    郭春芳,孙云,赖呈纯,张木清.2009.聚乙二醇胁迫下茶树叶片的蛋白质组分析.茶树科学,29(2):79~88
    郭立泉.2009.星星草抗碱生理适应机制的研究.[博士学位论文].长春:东北师范大学
    郭伟.2011.盐碱胁迫对小麦生长的影响及腐植酸调控效应.[博士学位论文].沈阳:沈阳农业大学
    郭玉春,徐惠龙,陈芳育,郭陞垚,梁义元,梁康迳,林文雄.2010.磷高效水稻根系对低磷胁迫响应的差异蛋白分析.应用生态学报,21(12):3231~3238
    何大澄,肖雪媛.2002.差异蛋白质组学及其应用.北京师范大学学报:自然科学版,38(4):558~562
    何欢乐,蔡润,潘俊松,王晓晔.2005.盐胁迫对黄瓜种子萌发特性的影响.上海交通大学学报:农业科学版,23(2):148~152
    何磊,陆兆华,管博,赵艳云,王睿彤,刘洋.2012.盐碱胁迫对两种高梁种子萌发及幼苗生长的影响.西北植物学报,32(2):0362~0369
    胡锋,黄俊丽,秦峰,岳彩黎,王贵学.2011.植物叶绿体类囊体膜及膜蛋白研究进展.生命科学,23(3):291~298
    胡文海,喻景权.2001.低温弱光对番茄叶片光合作用和叶绿素荧光参数的影响.园艺学报,28(1):41~46
    黄国存,田波.2001.高等植物中的谷氨酸脱氢酶及其生理作用.植物学通报,18(4):396~401
    黄立华,梁正伟,马红媛.2009.苏打盐碱胁迫对羊草光合、蒸腾速率及水分利用效率的影响.草业学报,18(5):25~30
    黄巧玲,黄杏,孙富,孙波,杨丽涛,李杨瑞.2012.低温胁迫对甘蔗叶绿体蛋白质及其相关基因表达的影响.中国农业科学,45(24):4978~4987
    惠红霞,许兴,李守明.2004.盐胁迫抑制光合作用的可能机理.生态学杂志,23(1):5~9
    霍晨敏,赵宝存,葛荣朝,沈银柱,黄占景.2004.小麦耐盐突变体盐胁迫下的蛋白质组分析.遗传学报,31(12):1408~1414
    江行玉,赵可夫,窦君霞,史仁玖.2001. NaCl胁迫下外源亚精胺和二环己基胺对滨藜内源多胺含量和抗盐性的影响.植物生理学通讯,37(l):6~9
    姜伟.2010.温室土壤次生盐渍化及其主要盐分对辣椒幼苗胁迫的研究.[博士学位论文].呼和浩特:内蒙古农业大学
    蒋林,沈曾佑,张志良,颜季琼.1993.多胺对裸小麦离体叶片活性氧代谢的影响.植物生理学报,19(4):367~371
    金艳.2009.盐胁迫下小麦叶片蛋白质组差异研究.[硕士学位论文].郑州:河南农业大学
    柯世省.2007.干旱胁迫对夏蜡梅光合特性的影响.西北植物学报,27(6):1209~1215
    孔敏,杨学东,侯喜林,刘同坤,任君.2011.白菜NRT2基因的克隆及表达模式分析.园艺学报,38(12):2309~2316
    赖秋安,胡建军,孙久荣.2001.腺苷酸激酶与细胞凋亡.生物化学与生物物理进展,28(4):444~446
    李斌,郭世荣,孙锦,李娟.2011.外源亚精胺对盐胁迫下黄瓜幼苗游离态多胺含量和多胺合成酶基因表达的影响.植物科学学报,29(4):480~485
    李合生.2000.植物生理生化实验原理和技术.北京:高等教育出版社:184~185,195~197,258~260
    李俊,李建明,胡晓辉,李之凯,王诗梦.2012.亚精胺浸种对番茄幼苗抗盐碱的生理特性研究.西北植物学报,32(9):1788~1795
    李青云,葛会波,胡淑明,陶秀娟,黄瑞虹.2008.盐胁迫下外源钙对草莓内源激素含量的影响.西北植物学报,28(3):517~522
    李仁,吴新新,李蔚,杨荣超,赵永钦,温常龙,赵冰,郭仰东.2012.番茄水通道蛋白基因SlAQP的克隆与序列分析.中国农业科学,45(2):302~310
    李瑞利.2010.两种典型盐生植物耐盐机理及应用耐盐植物改良盐渍土研究.[博士学位论文].天津:南开大学
    李晓宇.2010.盐碱胁迫及外源植物激素对小麦和羊草生长发育的影响.[博士学位论文].长春:东北师范大学
    李新梅,孙丙耀,谈建中.2006.甜菜碱与植物抗逆性关系的研究进展.农业科学研究,27(3):66~70
    李长有.2009.盐碱地四种主要致害盐分对虎尾草胁迫作用的混合效应与机制.[博士学位论文].长春:东北师范大学
    梁新华,刘凤敏.2006. NaCl和Na2CO3胁迫对甘草幼苗渗透调节物质含量的影响.农业科学研究,27(2):96~98
    廖岩,彭友贵,陈桂珠.2007.植物耐盐性机理研究进展.生态学报,27(5):2077~2089
    林植芳,刘楠.2012.活性氧调控植物生长发育的研究进展.植物学报,47(1):74~86
    刘娥娥,汪沛洪,郭振飞.2001.植物的干旱诱导蛋白.植物生理学通讯,37(2):155~163
    刘凤荣,陈火英,刘杨,卫志明.2004.盐胁迫下不同基因型番茄可溶性物质含量的变化.植物生理与分子生物学学报,30(1):99~104
    刘华,舒孝,赵银,王锁民.1997.盐胁迫对碱茅生长及碳水化合物含量的影响.草业科学,14(1):18~20
    刘杰.2011.向日葵对碱胁迫和盐胁迫适应机制比较.[博士学位论文].长春:东北师范大学
    刘强.2009.五种木本植物对盐碱胁迫的生理响应及外源物质的作用.[博士学位论文].哈尔滨:东北林业大学
    刘润华.2009.拟南芥神经酰胺酶基因的功能分析.[硕士学位论文].昆明:中国科学院研究生院
    刘涛,耿文春,李丽,刘一佳,刘慧民.2009.混合盐碱胁迫对两种抗性不同的绣线菊光合特性的影响.东北农业大学学报,40(5):32~36
    刘颖,王莹,龙萃,张志毅,庞晓明.2011.植物多胺代谢途径研究进展.生物工程学报,27(2):147~155
    刘征,赵彦宏.2011.植物光呼吸及其支路建立的研究进展.西北植物学报,31(6):1282~1290
    刘志勇.2007.热胁迫下番茄多胺代谢与基因差异表达分析.[博士学位论文].北京:中国农业科学院
    陆飞伍,罗兴录,李红雨,莫凡,何远兰.2009.不同木薯品种叶片碳氮代谢与块根淀粉积累特性研究.中国农学通报,25(10):120~124
    罗廷彬,任威,谢春虹.2001.新疆盐碱地生物改良的必要性与可行性.干旱区研究,18(1):46~47
    麻莹.2011.碱地肤抗盐碱胁迫的生理机制研究.[博士学位论文].长春:东北师范大学
    马瑛,刘静.2010.植物体中多胺代谢及其功能研究进展.陕西理工学院学报:自然科学版,26(2):47~54
    毛桂莲,许兴,张渊.2005. NaCl胁迫对枸杞叶绿素荧光特性和活性氧代谢的影响.干旱地区农业研究,23(5):118~121
    潘丽娟,杨庆利,江燕,禹山林.2009.花生水孔蛋白基因(AhAQ1)的克隆及盐胁迫下的表达分析.分子植物育种,7(5):867~872
    皮冬梅,刘悦萍.2011.植物生长素受体蛋白研究现状.生物技术通报,(6):7~11
    尚浩博,强虹,梁东丽,方日尧.2007. ICP-AES测定植株样品中不确定误差的估算.西北农业学报,16(2):94~98
    申玉香.2007.盐分胁迫对小麦产量和品质形成的影响及调控措施研究.[博士学位论文].扬州:扬州大学
    孙璐,周宇飞,李丰先,肖木辑,陶冶,许文娟,黄瑞冬.2012.盐胁迫对高粱幼苗光合作用和荧光特性的影响.中国农业科学,45(16):3265~3272
    孙言伟,姜颖,贺福初.2005.差异蛋白质组学的研究进展.生命科学,17(2):137~140
    田婧,郭世荣,孙锦,王丽萍,阳燕娟,李斌.2011.外源亚精胺对高温胁迫下黄瓜幼苗氮素代谢的影响.生态学杂志,30(10):2197~2202
    汪志伟,贠文俊,颉建明,李盈.2009.外源亚精胺对盐胁迫下辣椒幼苗生长抑制的缓解效应.甘肃农业大学学报,44(4):67~72
    王宝山,赵可夫,邹琦.1997.作物耐盐机理研究进展及提高作物抗盐性的对策.植物学通报,14:25~30
    王波,张金才,宋凤斌,赵敏,韩希英.2007.盐碱胁迫对燕麦光合特性的影响.中国农学通报,23(5):235~238
    王美玲.2011.番茄景天庚酮糖-1,7-二磷酸酯酶基因的克隆及遗传转化.[博士学位论文].泰安:山东农业大学
    王宁.2009.不同玉米品种苗期对盐胁迫的生物学响应及耐性机制研究.[博士学位论文].沈阳:沈阳农业大学
    王素平.2007.多胺对黄瓜幼苗耐盐性调控机理的研究.[博士学位论文].南京:南京农业大学
    王晓云,邹琦.2002.多胺与植物衰老关系研究进展.植物学通报,19(1):11~20
    韦朝领,袁家明.2000.植物抗逆境的分子生物学研究进展.安徽农业大学学报,27(2):204~208
    吴良欢,蒋式洪,陶勤南.1998.植物转氨酶(GOT和GPT)活度比色测定方法及其应用.土壤通报,29(3):136~138
    吴雪霞,于力,朱为民.2009.外源一氧化氮对NaCl胁迫下番茄幼苗叶绿素荧光特性的影响.中国生态农业学报,17(4):746~751
    吴月燕,李波,张燕忠,崔鹏.2011.盐胁迫对杜鹃生理生化与叶绿体亚显微结构的影响.浙江大学学报:农业与生命科学版,37(6):642~648
    谢金水,邵彩虹,唐秀英,石庆华.2011.养分胁迫对籽粒灌浆期水稻叶片衰老影响的蛋白质组学分析.中国水稻科学,25(2):143~149
    熊军波.2011.紫花苜蓿响应盐胁迫的蛋白质组研究.[博士学位论文].北京:中国农业科学院
    徐萌,刘清岱,朱晔荣,王勇.2008.植物蛋白酶研究进展.生物学通报,43(6):7~9
    闫永庆.2009.松嫩平原盐碱胁迫对目的园林植物生理生态学影响.[博士学位论文].哈尔滨:东北林学大学
    燕辉,彭晓邦,薛建杰.2012. NaCl胁迫对花棒叶片光合特性及游离氨基酸代谢的影响.应用生态学报,23(7):1790~1796
    杨凤军,李天来,臧忠婧,鲁少尉.2010.外源钙施用时期对缓解盐胁迫番茄幼苗伤害的作用.中国农业科学,43(6):1181~1188
    杨洪强,黄天栋.1993.赤霉素和多效唑对苹果叶片内源游离多胺积累的影响.山东农业大学学报,24(2):143~148
    杨淑萍,危常州,梁永超.2010.盐胁迫对不同基因型海岛棉光合作用及荧光特性的影响.中国农业科学,43(8):1585~1593
    於丙军,吉晓佳,刘俊,刘友良.2004.氯化钠胁迫下野生和栽培大豆幼苗体内的多胺水平变化.应用生态学报,15(7):1223~1226
    于利刚,解莉楠,李玉花.2011.植物抗逆反应中水孔蛋白的表达调控研究.生物技术通报,8:5~14
    岳智亮.2012.拟南芥类糖苷水解酶基因AtGHL的功能研究.[硕士学位论文].石家庄:河北农业大学
    张春梅.2009.外源亚精胺对干旱胁迫下番茄幼苗的缓解效应及机理研究.[博士学位论文].杨凌:西北农林科技大学
    张飞,梁燕.2011.番茄对盐胁迫的反应及其耐盐性鉴定的研究进展.长江蔬菜,4:1~4
    张海燕,赵可夫.1998.盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究.植物学报,40(1):56~61
    张纪涛,徐猛,韩坤,王林权.2011.盐胁迫对番茄幼苗的营养及生理效应.西北农业学报,20(2):128~133
    张建秋,陆海,王智,杜希华,张玉玲.2004.双向电泳技术分析白刺盐胁迫蛋白的表达.吉林农业大学学报,26(5):511~514
    张立新,李生秀.2004.甜菜碱与植物抗旱/盐性研究进展.西北植物学报,24(9):1765~1771
    张娜,尚忠林.2010.植物细胞中的膜联蛋白.植物生理学通讯,46(3):277~283
    张锐,刘洁,诸钧,金基石,魏青松,史玉升.2013.实现作物需水触动式自适应灌溉的痕量灌溉技术分析.节水灌溉,(1):48~51
    张润花,郭世荣,李娟.2006a.盐胁迫对黄瓜根系活力、叶绿素含量的影响.长江蔬菜,2:47~49
    张润花,郭世荣,樊怀福.2006b.外源亚精胺对盐胁迫下黄瓜植株氮化合物含量和硝酸还原酶活性的影响.武汉植物学研究,24(4):381~384
    张毅,石玉,胡晓辉,邹志荣,曹凯,张浩.2013.外源Spd对盐碱胁迫下番茄幼苗氮代谢及主要矿质元素含量的影响.应用生态学报,24(5),1401~1408
    张志刚,尚庆茂.2010.低温、弱光及盐胁迫下辣椒叶片的光合特性.中国农业科学,43(1):123~131
    赵晨阳,郑荣梁.2000. DNA氧化性损伤与端粒缩短.生物化学与生物物理进展,27(4):351~354
    赵福庚,刘友良.2000a.高等植物体内特殊形态多胺的代谢及调节.植物生理学通讯,36(1):1~5
    赵福庚,刘友良.2000b.大麦幼苗多胺合成比脯氨酸合成对盐胁迫更敏感.植物生理学报,26(4):343~348
    赵福庚,王晓云,王汉忠,张国珍.1999.花生叶片生长发育过程中多胺代谢的变化.作物学报,25(2):249~253
    赵瑞雪,朱慧森,程钰宏,董宽虎.2008.植物脯氨酸及其合成酶系研究进展.草业科学,25(2):90~97
    周晨楠,施晓梦,袁颖辉,郭世荣,束胜.2012.外源亚精胺对Ca(NO3)2胁迫下番茄幼苗光合特性和抗氧化酶活性的影响.西北植物学报,32(3):0498~0504
    周峰,华春,丁春霞,王仁雷,李萍,郑春梅.2013.外源亚精胺对盐胁迫下毕氏海蓬子体内多胺含量的影响.西北植物学报,33(1):83~89
    Abd-El Baki G K, Siefritz F, Man H M, Weiner H, Kaldenhoff R, Kaiser W M.2000. Nitrate reductase inZea mays L. under salinity. Plant Cell Environ,23:515~521
    Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio A F.2010.Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta,231:1237~1249
    Allakhverdiev S I, Nishiyama Y, Miyairi S, Yamamoto H, Inagaki N, Kanesaki Y, Murata N.2002. Saltstress inhibits the repair of photo damaged photosystem II by suppressing the transcription andtranslation of psbA genes in Synechocystis. Plant Physiol,130:1443~1453
    Almansouri M, Kinet J M, Lutts S.2001. Effect of salt and osmotic stresses on germination in durum wheat(Triticum durum Desf.). Plant Soil,231:243~254
    Alshammary S F, Qian Y L, Wallner S J.2004. Growth response of four turfgrass species to salinity. AgricWater Manage,66:97~111
    Antony T, Thomas T, Shirahata A. Thomas T J.1999. Selectivity of polyamines on the stability ofRNA-DNA hybrids containing phosphodiester and phosphorothioate oligodeoxyribonucleotides.Biochemistry,38(33):10775~10784
    Askari H, Edqvist J, Hajheidari M, Kafi M, Salekdeh G H.2006. Effects of salinity levels on proteome ofSuaeda aegyptiaca leaves. Proteomics,6(8):2542~2554
    Bortolotti C, Cordeiro A, Alcázar R, Borrell A, Culia ez-Macià FA, Tiburcio AF, Altabella T.2004.Localization of arginine decarboxylase in tobacco plants. Physiol Plant,120(1):84~92
    Botella M A, Martínez V, Nieves M, Cerdá A.1997. Effect of salinity on the growth and nitrogen uptake bywheat seedlings. J Plant Nutr,20:793~804
    Brieger L.1885. über Spaltungsprodukte der Bacterien, Zweite Mittheilung. Zeitschr Physiol Chem,9:1~7
    Bruns S, Hecht-Buchholz C.1990. Light and electron-microscope studies on the leaves of several potatocultivars after application of salt at various developmental stages. Potato Res,33(1):33~41
    Chartzoulakis K S, Loupanaki M H.1997. Effects of NaCl salinity on germination, growth, gas exchangesand yield of greenhouse eggplant. Agric Water Manage,32:215~225
    Couee I, Hummel I, Sulmon C, Gouesbet, G, El Amrani A.2004. Involvement of polyamines in rootdevelopment. Plant Cell Tiss Org,76(1):1~10
    Doganlar Z B, Demir K, Basak H, Gul I.2010. Effects of salt stress on pigment and total soluble proteincontents of three different tomato cultivars. Afr J Agr Res,5(15):2056~2065
    Dondini L, Bonazzi S, Del Duca S, Bregoli A M, Serafini-Fracassini D.2001. Acclimation of chloroplasttransglutaminase to high NaCl concentration in a polyamine-deficient variant strain of Dunaliellasalina and in its wild type. J Plant Physiol,158:185~197
    Du C X, Fan H F, Guo S R, Tezuka T, Li J.2010. Proteomic analysis of cucumber seedling roots subjectedto salt stress. Phytochemistry,71(13):1450~1459
    Duan J J, Li J, Guo S R, Kang Y Y.2008. Exogenous spermidine affects polyamine metabolism insalinity-stressed Cucumis staves roots and enhances short-term salinity tolerance. J Plant Physiol,165:1620~1635
    Dudley H W, Rosenheim O, Starling W W.1926. The chemical constitution of spermine III. Structure andsynthesis. Biochem J,20:1082~1094
    Dudley H W, Rosenheim O, Starling W W.1927. The constitution and synthesis of spermidine, a newlydiscovered base isolated from animal tissues. Biochem J,21:97~103
    Fatehi F, Hosseinzadeh A, Alizadeh H, Brimavandi T.2013. The proteome response of Hordeumspontaneum to salinity stress. Cereal Res Commun,41(1):78~87
    Ferreira-Silva S L, Silva E N, Carvalho F E L, de Lima C S, Alves F A L, Silveira J A G.2010.Physiological alterations modulated by rootstock and scion combination in cashew under salinity. SciHortic,127:39~45
    Galston A W.1983. Polyamines as modulators of plant development. Bioscience,33(6):382~388
    Gangwar S, Singh V P.2011. Indole acetic acid differently changes growth and nitrogen metabolism inPisum sativum L. seedlings under chromium (VI) phytotoxicity: Implication of oxidative stress. SciHortic,129:321~328
    Gao C Q, Wang Y C, Liu G F, Yang C P, Jiang J, Li H Y.2008. Expression profiling of salinity-alkali stressresponses by large-scale expressed sequence tag analysis in Tamarix hispid. Plant Mol Biol,66:245~258
    Gorbe E, Calatayud A.2012. Applications of chlorophyll fluorescence imaging technique in horticulturalresearch: A review. Sci Hortic,138:24~35
    Groppa M D, Benavides M P.2008. Polyamines and abiotic stress: recent advances. Amino Acids,34:35~45
    Guo R, Zhou J, Hao W P, Gong D Z, Yang S T, Zhong X L, Gu F X.2011. Comparion of the effects ofsaline and alkaline stress on growth, photosynthesis and water-soluble carbohydrate of oat seedling(Avena sativa L). In: Gungor E B O (Ed.), Principles, application and assessment in soil science.Rijeka (CRO): InTech Press,6:117~128
    Gupta A K, Kaur N.2005. Sugar signalling and gene expression in relation to carbohydrate metabolismunder abiotic stresses in plants. J Biosci,30(5):761~776
    Gupta A S, Heinen J L, Holaday A S, Burke J J, Allen R D.1993. Increased resistance to oxidative stress intransgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Nati Acad Sci USA,90(4):1629~1633
    Hamana K, Matsuzaki S.1985. Distinct differences in the polyamine compositions of bryophyta andpteridophyta. J Biochem,97(6):1595~1601
    Hamilton E W, Heckathorn S A.2001. Mitochondrial adaptations to NaCI. Complex I is protected byanti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine.Plant Physiol,126(3):1266~1274
    Hansen E H, Munns D N.1988. Effect of CaSO4and NaCl on mineral content of leucaena leucocephala.Plant Soil,107(1):101~105
    Hetherington A M, Woodward F I.2003. The role of stomata in sensing and driving environmental change.Nature,424:901~908
    Hsiao T C.1973. Plant responses to water stress. Annu Rev Plant Physiol,24:519~570
    Hu X H, Zhang Y, Shi Y, Zhang Z, Zou Z R, Zhang H, Zhao J Z.2012. Effect of exogenous spermidine onpolyamine content and metabolism in tomato exposed to salinity-alkalinity mixed stress. Plant PhysiolBiochem,57:200~209
    Hubbard M, Germida J, Vujanovic V.2012. Fungal endophytes improve wheat seed germination under heatand drought stress. Botany,90:137~149
    Hussain, S S, Ali M, Ahmad M, Siddique K H M.2011. Polyamines: natural and engineered abiotic andbiotic stress tolerance in plants. Biotechnol Adv,29(3):300~311
    Igarashi K, Kashiwagi K.2010. Modulation of cellular function by polyamines. Int J Biochem Cell B,42:39~51
    Jellouli N, Jouira H B, Skouri H, Ghorbel A, Gourgouri A, Mliki A.2008. Proteomic analysis of Tunisiangrapevine cultivar Razegui under salt stress. J Plant Physiol,165(5):471~481
    Kakehi J, Kuwashiro Y, Niitsu M, Takahashi T.2008. Thermospermine is required for stem elongation inArabidopsis thaliana. Plant Cell Physiol,49(9):1342~1349
    Kasinathan V, Wingler A.2004. Effect of reduced arginine decarboxylase activity on salt tolerance and onpolyamine formation during salt stress in Arabidopsis thaliana. Physiol Plant,121(1):101~107
    Kaufmann K, Smaczniak C, de Vries S, Angenent GC, Karlova R.2011. Proteomics insights into plantsignaling and development. Proteomics,11(4):744~755
    Kaur-Sawhney R, Shih L M, Flores H E, Galston A W.1982. Relation of polyamine synthesis and titer toaging and senescence in oat leaves. Plant Physiol,69(2):405~410
    Kav N N V, Srivastava S, Goonewardene L, Blade S F.2004. Proteome-level changes in the roots of Pisumsativum in response to salinity. Ann Appl Biol,145(2):217~230
    Kerepesi I, Galiba G.2000. Osmotic and salt stress-induced alteration in soluble carbohydrate content inwheat seedlings. Crop Sci,40(2):482~487
    Khatkar D, Kuhad M S.2000. Short-term salinity induced changes in two wheat cultivars at differentgrowth stages. Biol Plant,43(4):629~632
    Khavari-Nejad R A, Mostofi Y.1998. Effects of NaCl on photosynthetic pigments, saccharides, andchloroplast ultrastructure in leaves of tomato cultivars. Photosynthetica,35(1):151~154
    Kim D W, Rakwal R, Agrawal G K, Jung Y H, Shibato J, Jwa N S, Iwahashi Y, Iwahashi H, Kim D H,Shim I S, Usui K.2005. A hydroponic rice seedling culture model system for investigating proteomeof salt stress in rice leaf. Electrophoresis,26(23):4521~4539
    Kusano T, Berberich T, Tateda C, Takahashi Y.2008. Polyamines: essential factors for growth and survival.Planta,228:367~381
    Ladenburg A, Abel J.1888. über das Aethylenimin (Spermine). Ber Dtsch chem Ges.21:758~766
    Lee S, Lee E J, Yang E J, Lee J E, Park A R, Song W H, Park O K.2004. Proteomic identification ofannexins, calcium-dependent membrane binding proteins that mediate osmotic stress and abscisic acidsignal transduction in Arabiopsis. Plant Cell,16(6):1378~1391
    Leeuwenhoek A V.1678. Observationes D. Anthonii Leeuwenhoek, de natis e semine genitali animalculis.Philos Trans Roy Soc London,12:1040~1043
    Lefevre I, Gratia E, Lutts S.2001. Discrimination between the ionic and osmotic components of salt stressin relation to free polyamine level in rice (Oryza sativa). Plant Sci,161(5):943~952
    Lefevre I, Lutts S.2000. Effects of salt and osmotic stress on free Polyamine accumulation in moderatelysalt-resistant rice cultivar Aiwu. Int Rice Res Notes,25(3):36~37
    Li G W, Peng Y H, Yu X, Zhang M H, Cai W M, Sun W N, Su W A.2008. Transport functions andexpression analysis of vacuolar membrane aquaporins in response to various stresses in rice. J PlantPhysiol,165(18):1879~1888
    Liang C G, Chen L P, Wang Y, Liu J, Xu G L, Li T.2011. High temperature at grain-filling stage affectsnitrogen metabolism enzyme activities in grains and grain nutritional quality in rice. Rice Sci,18(3):210~216
    Lichtenthaler H K, Wellburn A R.1983. Determinations of total carotenoids and chlorophylls a and b ofleaf extracts in different solvents. Biochem Soc Trans,11:591~592
    Lissner J, Schierup H H, Comin F A, Astorga V.1999. Effect of climate on the salt tolerance of twoPhragmites australis populations. Growth, inorganic solutes, nitrogen relations and osmoregulation.Aqua Bot,64:317~333
    Liu J, Guo W Q, Shi D C.2010. Seed germination, seedling survival and physiological response ofsunflowers under saline and alkaline conditions. Photosynthetica,48(2):278~286
    Liu J, Shi D C.2010. Photosynthesis, chlorophyll fluorescence, inorganic ion and organic acidaccumulations of sunflower in responses to salt and salt-alkaline mixed stress. Photosynthetica,48(1):127~134
    Lovato M B, Martins P S, Lemos Filho J P D.1994. Germinationin Stylosanthes humilis population in thepresence of NaCl. Aust J Bot,42:717~723
    Maathuis F J.2009. Physiological functions of mineral macronutrients. Curr Opin Plant Biol,12:250~258
    Malik A U, Singh Z.2003. Abscission of mango fruitlets as influenced by biosynthesis of polyamines. JHortic Sci Biotech,78(5):721~727
    Marco F, Alcázar R, Tiburcio A F, Carrasco P.2011. Interactions between polyamines and abiotic stresspathway responses unraveled by transcriptome analysis of polyamine overproducers. Omics,15(11):775~781
    Maxwell K, Johnson G N.2000. Chlorophyll fluorescence--a practical guide. J Exp Bot,51(345):659~668
    Mitsuya S, Takeoka Y, Miyake H.2000. Effects of sodium chloride on foliar ultrastructure of sweet potato(Ipomoea batatas Lam.) plantlets grown under light and dark conditions in vitro. J Plant Physiol,157:661~667
    Mittal S, Kumari N, Sharma V.2012. Differential response of salt stress on Brassica juncea: photosyntheticperformance, pigment, proline, D1and antioxidant enzymes. Plant Physiol Biochem,54:17~26
    Mousavi A, Lessani H, Babalar M, Talaei A R, Fallahi E.2008. Influence of salinity on chlorophyll, leafwater potential, total soluble sugars, and mineral nutrients in two young olive cultivars. J Plant Nutr,31(11):1906~1916
    Munns R, Tester M.2008. Mechanisms of salinity tolerance. Annu Rev Plant Biol,59:651~681
    Munns R.2002. Comparative physiology of salt and water stress. Plant Cell Environ,25:241~252
    Nishibori N, Niitsu M, Fujihara S, Sagara T, Nishio S, Imai I.2009. Occurrence of the polyaminescaldopentamine and homocaldopentamine in axenic cultures of the red tide flagellates Chattonellaantiqua and Heterosigma akashiwo (Raphidophyceae). FEMS Microbiol Lett,298(1):74~78
    Ouziad F, Wilde P, Schmelzer E, Hildebrandt U, Bothe H.2006. Analysis of expression of aquaporins andNa+/H+transporters in tomato colonized by arbuscular mycorrhizal fungi and affected by salt stress.Environ Exp Bot,57:177~186
    Parida A K, Das A B.2005. Salt tolerance and salinity effects on plants: a review. Ecotox Environ Safe,60:324~349
    Parida A, Das A B, Das P.2002. NaCl stress causes changes in photosynthetic pigments, proteins and othermetabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures.J Plant Biol,45(1):28~36
    Ramani S, Apte S K.1997. Transient expression of multiple genes in salinity-stressed young seedlings ofrice (Oryza sativa L.) cv. bura rata. Biochem Biophys Res Commun,233(3):663~667
    Rehman S, Khatoon A, Iqbal Z, Jamil M, Ashraf M, Harris P J C.2009. Prediction of salinity tolerancebased on biological and chemical properties of Acacia seeds. In: Lieth H, Ashraf M, Ozturk M, AtharH R.(Eds.), Salinity and water stress: improving crop efficiency. Dordrecht (NLD): Springer Press,44:19~23
    Richards F J, Coleman E G.1952. Occurrence of putrescine in potassium-deficient barley. Nature,170:460~461
    Roussos P A, Pontikis C A.2007. Changes of free, soluble conjugated and bound polyamine titers of jojobaexplants under sodium chloride salinity in vitro. J Plant Physiol,164(7):895~903
    Roy P, Niyogi K, SenGupta D N, Ghosh B.2005. Spermidine treatment to rice seedlings recovers salinitystress-induced damage of plasma membrane and PM-bound H+-ATPase in salt-tolerant andsalt-sensitive rice cultivars. Plant Sci,168:583~591
    Roychoudhury A, Basu S, Sengupta D N.2011. Amelioration of salinity stress by exogenously appliedspermidine or spermine in three varieties of indica rice differing in their level of salt tolerance. J PlantPhysiol,168:317~328
    Rozema J, Flowers T J.2008. Crops for a Salinized World. Science,322:1478~1480
    Sánchez-Rodríguez E, Rubio-Wilhelmi M M, Ríos J J, Blasco B, Rosales M á, Melgarejo R, Romero L,Ruiz J M.2011. Ammonia production and assimilation: its importance as a tolerance mechanismduring moderate water deficit in tomato plants. J Plant Physiol,168:816~823
    Santa-Cruz A, Acosta M, Peres-Alfocea F, Bolarin M C.1997. Changes in free polyamine levels inducedby salt stress leaves of cultivated and wild tomato species. Physiol Plantarum,101:341~346
    Sauvage F X, Pradal M, Chatelet P, Tesniere C.2007. Proteome changes in leaves from grapevine (Vitisvinifera L.) transformed for alcohol dehydrogenase activity. J Agric Food Chem,55(7):2597~2603
    Senaratna T, Mckersie B D, Stinson R H.1985. Simulation of dehydration injury to membranes fromsoybean axes by free radicals. Plant Physiol,77:472~474
    Shen W Y, Nada K, Tachibana S.2000. Involvement of polyamines in the chilling tolerance of cucumbercultivars. Plant Physiol,124(1):431~439
    Shi D C, Sheng Y M.2005. Effect of various salt-alkaline mixed stress conditions on sunflower seedlingsand analysis of their stress factors. Environ exp Bot,54:8~21
    Shi D C, Wang D L.2005. Effects of various salt-alkali mixed stresses on Aneurolepidium chinense (Trin.)Kitag. Plant Soil,271:15~26
    Shiozaki S, Ogata T, Horiuchi S.2000. Endogenous polyamines in the pericarp and seed of the grape berryduring development and ripening. Sci Hortic,83:33~41
    Shu S, Yuan L Y, Guo S R, Sun J, Liu C J.2012. Effects of exogenous spermidine on photosynthesis,xanthophyll cycle and endogenous polyamines in cucumber seedlings exposed to salinity. Afr JBiotechnol,11(22):6064~6074
    Singh S K, Sharma H C, Goswami A M, Datta S P, Singh S P.2000. In vitro growth and leaf composition ofgrapevine cultivars as affected by sodium chloride. Biol Plant,43(2):283~286
    Slocum R, Kaur-Sawhney R, Galston A W.1984. The physiology and biochemistry of polyamines in plants.Arch Biochem Biophys,235(2):283~303
    Soussi M, Lluch C, Ocana A.1999. Comparative study of nitrogen fixation and carbon metabolism in twochick-pea (Cicer arietinum L.) cultivars under salt stress. J Exp Bot,50(340):1701~1708
    Steen H, Mann M.2004. The ABC’s (and XYZ’s) of peptide sequencing. Nat Rev Mol Cell Biol,5(9):699~711
    Su H, Golldack D, Zhao C, Bohnert H J.2002. The expression of HAK-type K+transporters is regulated inresponse to salinity stress in common ice plant. Plant Physiol,129(4):1482~1493
    Surabhi G K, Reddy A M, Kumari G J, Sudhakar C.2008. Modulations in key enzymes of nitrogenmetabolism in two high yielding genotypes of mulberry (Morus alba L.) with differential sensitivity tosalt stress. Environ Exp Bot,64:171~179
    Suzuki N, Koussevitzky S, Mittler R, Miller G.2012. ROS and redox signalling in the response of plants toabiotic stress. Plant Cell Environ,35(2):259~270
    Ta T C, Joy K W, Ireland R J.1984. Amino acid metabolism in pea leaves: utilization of nitrogen fromamide and amino groups of [15N] asparagine. Plant Physiol,74(4):822~826
    Tedeschi A, Dell'Aquila R.2005. Effects of irrigation with saline waters, at different concentrations, on soilphysical and chemical characteristics. Agric Water Manage,77:308~322
    Tiburcio A F, Besford R T, Capell T, Borrell A, Testillano P S, Risue o M C.1994. Mechanism ofpolyamine action during senescence responses induced by osmotic stress. J Exp Bot,45(12):1789~1800
    Tiburcio A F, Kaur-Sawhney R, Galston A W.1990. Polyamine metabolism. In: Miflin B J, Lea P J.(Eds.),The biochemistry of plants, intermediary nitrogen fixation. New York (USA): Academic Press,16:283~325
    Tuna A L, Kaya C, Ashraf M, Altunlu H, Yokas I, Yagmur B.2007. The effects of calcium sulphate ongrowth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environ ExpBot,59:173~178
    Türkan I, Demiral T.2009. Recent developments in understanding salinity tolerance. Environ Exp Bot,67:2~9
    Ungar I A.1996. Effect of salinity on seed germination, growth and ion accumulation of Atriplex patula(Chenopodiaceae). Am J Bot,83:604~607
    Valeria D, William J S, Marcello D, Ron R D C.2005. Changes in the tobacco leaf apoplast proteome inresponse to salt stress. Proteomics,5(3):737~745
    Volkmar K M, Hu Y, Steppuhn H.1998. Physiological responses of plants to salinity: a review. Can J PlantSci,78(1):19~27
    Walden R, Cordeiro A, Tiburcio A F.1997. Polyamines: small molecules triggering path ways in plantgrowth and development. Plant Physiol,113:1009~1013
    Wallace HM.2009. The polyamines: past, present and future. Essays Biochem.46:1~9
    Wang X P, Geng S J, Ri Y J, Cao D H, Liu J, Shi D C, Yang C W.2011. Physiological responses andadaptive strategies of tomato plants to salt and alkali stresses. Sci Hortic,130:248~255
    Wickware P, Smaglik P.2001. Proteomics technology character references. Nature,413:869~875
    Wu H S, Yin X M, Zhu Y Y, Guo S W, Wu C L, Lu Y L, Shen Q R.2007. Nitrogen metabolism disorder inwatermelon leaf caused by fusaric acid. Physiol Mol Plant P,71,69~77
    Wyn J G, Gorham J.2004. Intra-and inter-cellular compartmentation of ions. In: L uchli A, Lüttge U.(Eds.), Salinity: environment-plant-molecules. Dordrecht (NLD): Springer Press,159~180
    Yan S P, Tang Z C, Su W A, Sun W N.2005. Proteomic analysis of salt stress-responsive proteins in riceroot. Proteomics,5(1):235~244
    Yang C W, Chon J N, Li C Y, Kim C M, Shi D C, Wang D L.2007. Osmotic adjustment and ion balancetraits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions.Plant Soil,294:263~276
    Yang C W, Shi D C, Wang D L.2008. Comparative effects of salt and alkali stresses on growth, osmoticadjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.). Plant GrowthRegul,56:179~190
    Yang Y J, Wang L P, Tian J, Li J, Sun J, He L Z, Guo S R, Tezuka T.2012. Proteomic study participatingthe enhancement of growth and salt tolerance of bottle gourd rootstock-grafted watermelon seedlings.Plant Physiol Biochem,58:54~65
    Yokoi S, Quintero F J, Cubero B, Ruiz M T, Bressan R A, Hasegawa P M, Pardo J M.2002. Differentialexpression and function of Arabidopsis thaliana NHX Na+/H+antiporters in the salt stress response.Plant J,30:529~539
    Zhang J T, Mu C S.2009. Effects of saline and alkaline stresses on the germination, growth, photosynthesis,ionic balance and anti-oxidant system in an alkali-tolerant leguminous forage Lathyrus quinquenervius.Soil Sci Plant Nutr,55(5):685~697
    Zhang Y, Hu X H, Shi Y, Zou Z R, Yan F, Zhao Y Y, Zhang H, Zhao J Z.2013. Beneficial role of exogenousspermidine on nitrogen metabolism in tomato seedlings exposed to saline-alkaline stress. J Am SocHortic Sci,138(1):38~49
    Zhao F G, Qin P.2004. Protective effect of exogenous polyamines on root tonoplast function against saltstress in barley seedlings. Plant Growth Regul,42(2):97~103
    Zhao F G, Sun C, Liu Y L, Zhang W H.2003. Relationship between polyamine metabolism in roots and salttolerance of barley seedlings. Acta Bot Sin,45(3):295~300

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700