用户名: 密码: 验证码:
耐盐砧木通过调节Na~+吸收和运转提高黄瓜耐盐性的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着设施栽培的迅速发展,设施内土壤盐渍化日趋严重,成为限制设施栽培发展的主要障碍。黄瓜是设施内栽培的主要蔬菜之一,其耐盐性较弱;但南瓜是相对耐盐的蔬菜作物,本课题组之前的研究表明,耐盐南瓜砧木嫁接可以提高黄瓜的耐盐性,其根本原因在于耐盐砧木具有较强的限制Na+从地下部向地上部运输的能力,但是其调节Na+吸收和运输的机制尚不清楚。本研究以盐敏感黄瓜、耐盐南瓜砧木、黄瓜自嫁苗和嫁接苗等为材料,采用X-射线微区分析、非损伤微测以及基因表达分析等技术,研究了NaCl处理下耐盐砧木嫁接植株和自嫁植株Na+吸收和转运的差异,以期为阐明耐盐砧木嫁接提高黄瓜耐盐性提供理论依据。本研究-主要结果如下:
     1.以耐NaCl胁迫能力弱的津春2号(Cucumis sativus L.)黄瓜为接穗,耐NaCl胁迫能力强的超级拳王(Cucurbita moschata Duch.)南瓜为砧木,黄瓜和南瓜自根苗为对照,利用X-射线微区分析技术,研究了黄瓜和南瓜以及嫁接苗在0和90mMNaCl处理时不同组织中离子的相对含量。结果表明,NaCl处理后南瓜自根苗和黄瓜嫁接苗地下部Na+的相对含量比黄瓜高,地上部分Na+的相对含量比黄瓜低而K+和Ca2+的相对含量比黄瓜高。南瓜自根苗和黄瓜嫁接苗根系皮层的Na+相对含量高于黄瓜自根苗,但是中柱中Na+相对含量低于黄瓜自根苗,南瓜及嫁接苗通过其根系皮层较强的控制Na+向木质部的装载的能力,降低了地上部分Na+的含量。
     2.以津春2号黄瓜和超级拳王南瓜为材料,测定了NaCl处理后南瓜和黄瓜不同组织中Na+的浓度,结果显示南瓜地下部Na+浓度较高,而地上部Na+浓度较低。采用非损伤微测技术(NMT)研究了NaCl处理对黄瓜和南瓜茎横切面Na+、K+流速的影响,以及NaCl、Na+H+向转运蛋白抑制剂阿米洛利、质膜H+-ATPase的抑制剂钒酸钠处理对黄瓜和南瓜根系Na+、K+、H+流速的影响。结果表明,南瓜根系比黄瓜储存Na+的能力强,同时南瓜从地下部向地上部Na+运输速率比黄瓜小,而从地上部分向地下部分Na+流速比黄瓜大,而且南瓜根系有较强的排出Na+和吸收H+的能力,抑制剂处理显著抑制了Na+的排出和H+的吸收,说明Na+的排出是受质膜Na+/H+反转运系统调控的,此结果为解析黄瓜和南瓜Na+从地下部向地上部运输的差异提供了直接证据。
     3.以津春2号黄瓜为接穗,超级拳王南瓜为砧木,黄瓜自嫁植株为对照,对嫁接黄瓜在0和90mM NaCl处理下植株的生长、Na+浓度、质膜和液泡膜H+-ATPase、液泡膜H+-PPase活性及其编码基因的转录水平进行了研究。结果表明,NaCl胁迫抑制了黄瓜自嫁和嫁接植株的生长,提高了自嫁和嫁接植株地上部和地下部Na+浓度,但黄瓜嫁接植株受抑制程度较轻。NaCl处理提高了黄瓜自嫁和嫁接植株根系质膜和液泡膜H+-ATPase和液泡膜H+-PPase勺活性,影响了编码酶的相关基因的表达水平。但是耐盐砧木嫁接可维持其根系较高的质膜和液泡膜]H+-ATPase、液泡膜H+-PPase活性,编码质膜和液泡膜H+-ATPase基因的调节可能发生在转录后水平,而编码液泡膜H+-PPase的基因的调节可能发生在转录水平。
     4.以津春2号黄瓜为接穗,超级拳王南瓜为砧木,黄瓜自嫁植株为对照,进行以下处理:(1)CK(对照):营养液;(2)Ca:10mM Ca(N03)2+营养液;(3)NaCl:90mM NaCl+营养液;(4)NaCl+Ca:90mM NaCl+10mM Ca(N03)2+营养液,研究了Ca2+对NaCl处理时黄瓜自嫁和嫁接植株的生长、离子积累以及质膜H+-ATPase活性和其编码基因表达的影响。结果表明,添加Ca(N03)2处理缓解了NaCl处理对植株的生长抑制,显著提高了地上部K+和Ca2+的浓度,降低了Na+的浓度,对NaCl处理时黄瓜嫁接植株的缓解作用更显著。黄瓜嫁接植株通过其较敏感的Ca2+响应途径维持了较高的质膜H+-ATPase活性和PMA以及SOS1的表达,以及较强的限制Na+和调节K+和Ca2+从地下部向地上部运输的能力,具有较强的维持离子平衡的能力,表现出较强的耐盐性。
     5.以津春2号黄瓜为接穗,超级拳王南瓜为砧木,进行以下处理:(1)CK(对照):营养液;(2)K:10mM KN03+营养液;(3)NaCl:90mM NaCl+营养液;(4)NaCl+K:90mM NaCl+10mM KN03+营养液,研究了K+对NaCl处理下自嫁和砧木嫁接植株的生长、离子积累的影响。结果表明,添加KN03处理显著提高了地上部分的K+和Ca2+浓度,降低了Na+的浓度,提高了K+/Na+和Ca2+/Na+,嫁接植株具有较强的K+、Na+选择性,具有较强的维持离子平衡的能力,从而缓解了NaCl处理对植株生长的抑制作用,表现出较强的耐盐性。
     总之,本研究结果表明,与耐盐性弱的黄瓜相比,耐盐南瓜砧木根系具有较强的限制Na+向中柱运输、限制木质部Na+的装载、以及根系较强的Na+外排能力,是耐盐南瓜砧木嫁接黄瓜后能维持地上部分较低的Na+浓度,具有较强耐盐性的主要原因。嫁接和自嫁黄瓜Na+外排受质膜Na+/H+逆向反转运系统调控,较强的质膜质子泵活性、Na+/H+逆向反转运能力,是嫁接黄瓜Na+外排能力强的重要原因。
In recent years, with the development of protected culture, soil salinization has been more and more severe and has become the biggest obstacle of limiting the development of protected culture. Thus, the vegetable production in greenhouses has become a severe problem. Cucumber (Cucumis sativus L.) is one of the most popular vegetables under the protected cultivation conditions, and is sensitive to salt stress, but pumpkin (Cucurbita moschata Duch.) is salt-tolerant to salt stress. Previous studies suggested that the key reason is that pumpkin roots had higher capacity to limit the transport of Na+to the shoot than cucumber; however, the mechanism is not completely known. Cucumber plants 'Jinchun No.2'(Cucumis sativus L.), pumpkin 'Chaojiquanwang'(Cucurbita moschata Duch),'Jinchun No.2'grafted onto itself (self-grafted) and onto 'Chaojiquanwang'(rootstock-grafted) were used, X-ray microanalysis, non-invasive micro-test technique and gene expression were used to determine the differences of Na+uptake and transport between the self-grafted and rootstock-grafted plants, and to supply theoretic basis for clarify grafting enhance salt tolerance of cucumber. The main results are as follows:
     1. Experiments were conducted to investigate the relative content of ions in roots, stems below and above cotyledon of cucumber (Cucumis sativus L.), pumpkin (Cucurbita moschata Duch.) and rootstock-grafted cucumber under salt stress using X-ray microanalysis. The findings show that, the relative Na+content of rootstock-grafted and pumpkin plants were higher than cucumber in the roots, but lower than cucumber in the shoots, and the relative K+and Ca2+content were higher than cucumber. The relative Na+content in the cortex of root of pumpkin and grafted plants were higher, but the relative Na+content in the stele of root of pumpkin and grafted plants was lower than those of cucumber. The cortex of root of pumpkin and grafted plants had higher ability to restrict excess Na+loading in the xylem, resulting in a less accumulation of Na+in the shoot.
     2. Cucumber and pumpkin were used to investigate the Na+concentration in different parts of plants. This study showed that more Na+was stored in pumpkin roots compared with cucumber roots under200mM NaCl stress, resulting in the less accumulation of Na+in the shoot. The non-invasive micro-test technique (NMT) showed that the stem below cotyledon of pumpkin exhibited a smaller efflux of Na+from roots to shoots but a higher efflux of Na+from shoot to root, and pumpkin roots showed a higher capacity to extrude Na+, and a correspondingly increased H+influx. However, the200mM NaCl induced Na+/H+exchange in the root was inhibited by amiloride (a Na+/H+antiporter inhibitor) or vanadate (a plasma membrane H+-ATPase inhibitor). This result indicated that the Na+exclusion in salt stressed pumpkin and cucumber roots was the result of an active Na+/H+antiporter across the plasma membrane. These results provide direct evidence of contrasting Na+transport ability from root to shoot in salt-sensitive cucumber and salt-tolerant pumpkin under NaCl stress.
     3. To assess the effects of salt-tolerant rootstock on plant growth, Na+concentration, the plasma membrane (PM) and vacuolar H+-ATPases and vacuolar H+-PPase systems and the expression of the encoding genes of these enzymes of grafted cucumber, cucumber were grafted onto itself and pumpkin rootstocks, respectively. Grafted plants were grown hydroponically and were exposed to0and90mM NaCl for5days. The results showed that NaCl induced significant decrease in growth parameters, increased Na+concentrations in roots and shoots of both types of plants, whereas smaller changes were observed in rootstock-grafted plants. NaCl distinctly stimulated the activities of plasma membrane H+-ATPase, vacuolar H+-ATPase and vacuolar H+-PPase, the expressions of plasma membrane H+-ATPase(PMA), vacuolar H+-ATPase (VHA) and vacuolar H+-PPase (VPP) encoding genes were also changed, but the rootstock-grafted plants maintained higher activity of these three enzymes in the roots. Results suggested that the higher salt tolerance of the rootstock-grafted cucumber seedlings could be partially attributed to the higher activities of PM H+-ATPase, vacuolar H+-ATPase and vacuolar H+-PPase under NaCl stress, and the regulation of the encoding PM H+-ATPase, vacuolar H+-ATPase genes may ocuured at post-transcriptional level, and the regulation of the encoding vacuolar H+-PPase may ocuured at transcriptional level.
     4. Self-grafted and pumpkin rootstock-grafted cucumber plants were subjected to the following four treatments:(1) CK (Control):nutrient solution alone;(2) Ca:10mM Ca(NO3)2+nutrient solution;(3) NaCl:90mM NaCl+nutrient solution; and (4) NaCl+Ca:90mM NaCl+10mM Ca(NO3)2+nutrient solution, to assess the effects of Ca2+on plant growth, ion concentration and the activity of plasma membrane H+-ATPases and the expression of the encoding genes. The results showed that, supplementary Ca(NO3)2ameliorated the negative effects of NaCl on plant dry mass, relative growth rate (RGR), as well as Ca+, K+, and Na+concentration, especially for pumpkin rootstock-grafted plants. The pumpkin rootstock-grafted plants had higher PM H+-ATPase activity as well as higher PMA and SOS1expression, higher ability to regulate the transport of Na+、K+, and Ca2+than the self-grafted plants under NaCl+Ca treatment through the highly sensitive Ca2+signal. Therefore, pumpkin rootstock grafting had higher ability to maintain ion balance, and showed higher salt tolerance.
     5. Self-grafted and pumpkin rootstock-grafted cucumber plants were subjected to the following four treatments:(1) CK (Control):nutrient solution alone;(2) K:10mM KNO3+nutrient solution;(3) NaCl:90mM NaCl+nutrient solution; and (4) NaCl+K:90mM NaCl+10mM KNO3+nutrient solution, to assess the effects of K+on plant growth, ion concentration. The results showed that, supplementary KNO3ameliorated the negative effects of NaCt on plant dry mass,as well as Ca2+, K+, and Na+concentration, increased K+/Na+and Ca2+/Na+, induced increased salt tolerance. Rootstock-grafted plants had higher K+/Na+selectivity and higher ability to maintain ion balance, showed higher salt tolerance than self-grafted plants.
     In conclusion, the present study suggests that, compared with the salt sensitive cucumber, pumpkin roots showed higher capacity to restrict the transport of Na+to steler and loading of Na+to xylem, the roots of the salt-tolerant rootstock also had higher ability to exclude Na+, which resulted in the lower Na+of the shoot and the higher salt tolerance of grafted plants. Na+efflux was regulated by the Na+/H+antiport of the plasma membrane, higher activity of proton pump and Na+/H+antiport on the plasma membrane could be attributed to the higher salt tolerance of grafted plants.
引文
1.陈敏,王宝山.植物质膜H+-ATPase响应盐胁迫的分子机制.植物生理学通讯,2006,42:805-811
    2.姜卫兵,高光林,戴美松,韩浩章,汪良驹.盐胁迫对不同砧穗组合梨幼树光合日变化的影响.园艺学报,2003,30:653-657
    3.李合生.现代植物生理学.北京:高等教育出版社,2002,206-261
    4.李平华,陈敏,王宝.K+营养对NaCl胁迫下盐地碱蓬生长及叶片液泡膜V-H+-ATP和V-H+-PPase活性的影响.植物学报,44:433-440
    5.刘秀芬,李美茹,薛玉花.廊坊永清蔬菜大棚土壤盐分状况分析.北方园艺,2010,9:71-72
    6. 吕慧颖,李银心,杨庆凯.植物Na+/H+逆向转运蛋白研究进展.植物学通报2003,20:363-369
    7.邱全胜.植物细胞质膜H+-ATPase的结构与功能.植物学通报,1999,16:122-126
    8.任仲海,马秀灵,赵彦修,张慧.Na+/H+逆向转运蛋白和植物耐盐性.生物工程学报,2002,18:16-19
    9.史庆华,朱祝军,Khalida.等渗Ca(N03)2和NaCl胁迫对番茄光合作用的影响.植物营养与肥料学报,2004,10:188-191
    10.孙令强,耿广东,王倩,张素勤.设施蔬菜土壤次生盐渍化原因及解决途径.西北园艺,2005,1:4-6
    11.王宝山,琦邹,赵可夫.NaCl胁迫对高粱不同器官离子含量的影响.作物学报,2000,26:845-850
    12.王宝山,赵可夫.胁迫下玉米黄化苗质外体和共质体与浓度的变化.作物学报,1997,23:27-33
    13.王佳丽,黄贤金,钟太洋,陈志刚.盐碱地可持续利用研究综述.地理学报,2011,66:673-684
    14.王景艳,刘兆普,玲刘,冲刘.NaCl胁迫对长春花幼苗离子分布和光合作用的影响.生态学杂志,2008,27:1680-1168
    15.王丽萍,崔美香,孟艳玲.NaCl胁迫对黄瓜幼苗生长及抗氧化系统的影响.西北农业学报,2007,16:170-173
    16.王冉,陈贵林,宋炜,吕桂云,梁静,李卫欣.NaCl胁迫对两种南瓜幼苗离子含量的影响.植物生理与分子生物学学报,2006,32:94-98
    17.王素平,郭世荣,周国贤,贾永霞.NaCl胁迫下黄瓜幼苗体内K+、Na+和Cl-分布及吸收特性的研究.西北植物学报,2006,26:2281-2288
    18.吴雪霞,朱为民,朱月林,陈建林,朱龙英.NaCl胁迫对不同品种番茄幼苗生长和叶绿素荧光特性的影响.西南农业学报,2007,20:379-382
    19.印莉萍,上官宇,许越.非损伤性扫描离子选择电极技术及其在高等植物研究中的应用.自然科学进展,2006,16:262-266
    20.余海英,李廷轩,周健民.设施土壤次生盐渍化及其对土壤性质的影响.土壤,2005,37:581-586
    21.章文华,刘友良.钙对小麦幼苗盐分胁迫的缓解作用.植物生理学通讯,1992,28:176-179
    22.张云起,刘世琦,王海波.耐盐砧木嫁接对西瓜生长、产量及品质的影响.山东农业科学,2004,4:30-31
    23.赵可夫,王韶唐.作物抗性生理,北京:中国农业科学出版社,1990
    24.朱进,别之龙,李娅娜.黄瓜种子萌芽期及嫁接砧木幼苗期耐盐力评价.中国农业科学,2006,39:668-671
    25.朱进.嫁接提高黄瓜幼苗耐盐性的生理机制研究.[博士学位论文].武汉:华中农业大学图书馆,2007
    26. Alam S, Huq SMI, Kawai S, Islam A. Effects of applying calcium salts to coastal saline soils on growth and mineral nutrition of rice varieties. J Plant Nutr,2002,25: 561-576
    27. Alpaslan M, Gunes A. Interactive effects of boron and salinity stress on the growth, membrane permeability and mineral composition of tomato and cucumber plants. Plant Soil,2001,236:423-128
    28. Apse MP, Aharon GS, Snedden WA, Blumwald E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science,1999,285: 1256-1258
    29. Arshi A, Abdin MZ, Iqbal M. Ameliorative effects of CaCl2 on growth, ionic relations, and proline content of senna under salinity stress. J Plant Nutr,2005,28: 101-125
    30. Ashraf M, Akhtar N. Influence of salt stress on growth, ion accumulation and seed oil content in sweet fennel. Biol Plantarum,2004,48:461-464
    31. Bar-Tal A, Feigenbaum S, Sparks DL. Potassium-salinity interactions in irrigated corn. Irrigation Sci,1991,12:27-35
    32. Berthomieu P, Conejero G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah PA, Tester M, Very AA, Sentenac H, Casse F. Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. Embo J, 2003,22:2004-2014
    33. Binzel ML. NaCl-induced accumulation of tonoplast and plasma membrane H+-ATPase message in tomato. Physiol Plantarum,1995,94:722-728
    34. Blom-Zandstra M, Vogelzang SA, Veen BW. Sodium fluxes in sweet pepper exposed to varying sodium concentrations. J Exp Bot,1998,49:1863-1868
    35. Blumwald E. Sodium transport and salt tolerance in plants. Curr Opin Cell Biol, 2000,12:431-434
    36. Bolat I, Kaya C, Almaca A, Timucin S. Calcium Sulfate improves salinity tolerance in rootstocks of plum. J Plant Nutr,2006,29:553-64
    37. Borsani O, Valpuesta V, Botella MA. Developing salt tolerant plants in a new century:a molecular biology approach. Plant Cell Tiss Org,2003,73:101-115
    38. Caines AM, Shennan C. Interactive effects of Ca2+ and NaCl salinity on the growth of two tomato genotypes differing in Ca2+ use efficiency. Plant Physiol Bioch,1999, 37:569-576
    39. Carden DE, Walker DJ, Flowers TJ, Miller AJ. Single-cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance. Plant Physiology,2003,131: 676-683
    40. Cerda A, Martinez V. Nitrogen fertilization under saline conditions in tomato and cucumber plants. JHortic Sci,1988,63:451-458
    41. Chen S, Li J, Fritz E, Wang S, Huttermann A. Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress. Forest Ecol Manag,2002,168:217-230
    42. Chen Z, Newman I, Zhou M, Mendham N, Zhang G, Shabala S. Screening plants for salt tolerance by measuring K+ flux, a case study for barley. Plant Cell Environ, 2005,28:1230-1246
    43. Chen Z, Zhou M, Newman I A, Mendham NJ, Zhang G, Shabala S. Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance. Funct Plant Biol,2007a,34:150-162
    44. Chen Z, Pottosin II, Cuin TA, Fuglsang AT, Tester M, Jha D. Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiol,2007b,145:1714-1725
    45. Colla G, Rouphael Y, Cardarelli M, Massa D, Salerno A, Rea E. Yield, fruit quality and mineral composition of grafted melon plants grown under saline conditions. J Hortic Sci Biotech,2006.81:146-152
    46. Cramer GR, Spurr AR. Responses of lettuce to salinity. I. Effects of NaCl and Na2SO4 on growth. J Plant Nutr,1986,9:115-130
    47. Cramer GR, Lauchli A, Politic VS. Displacement of Ca2+ by Na+ from the plasmalemma of root cells:A primary response to salt stress. Plant Physiol,1985, 79:207-211
    48. Cuin TA, Miller AJ, Laurie SA, Leigh RA. Potassium activities in cell compartments of salt-grown barley leaves. JExp Bot,2003,54:657-661
    49. Cuin TA, Betts SA, Chalmandrier R, Shabala S. A root's ability to retain K+ correlates with salt tolerance in wheat. JExp Bot,2008,59:2697-2706
    50. Cuin TA, Bose J, Stefano G, Jha D, Tester M, Mancuso S, Shabala S. Assessing the role of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat:in planta quantification methods. Plant Cell Environ,2011,34:947-961
    51. Davenport R. Control of Sodium Transport in Durum Wheat. Plant Physiol,2005, 137:807-818
    52. Davenport RJ, Tester M. A weakly voltage-dependent, nonselective cation channel mediates toxic sodium influx in wheat. Plant Physiology (Rockville),2000,122: 823-834
    53. Davenport RJ, Reid RJ, Smith FA. Sodium-calcium interactions in two wheat species differing in salinity tolerance. Physiol Plantarum,1997,99:323-327
    54. Demidchik V, Davenport RJ, Tester M. Nonselective cation channels in plants. Annu Rev Plant Biol,2002,53:67-107
    55. Demidchik V, Maathuis FJM. Physiological roles of nonselective cation channels in plants:from salt stress to signalling and development.2007, New Phytol,175: 387-404
    56. Edelstein M, Plaut Z, Ben-Hur M. Sodium and chloride exclusion and retention by non-grafted and grafted melon and Cucurbita plants. J Exp Bot,2011,62:177-184
    57. Edelstein M, Ben-Hur M, Cohen R, Burger Y, Ravina I. Boron and salinity effects on grafted and non-grafted melon plants. Plant Soil,2005,269:273-284
    58. Ehret DL, Redmman RE, Harvey BL, Cipywnyk A. Salinity-induced calcium deficiencies in wheat and barley. Plant and siol,1990,128:143-151,
    59. Estan MT, Martinez-Rodriguez MM, Perez-Alfocea F, Flowers TJ, Bolarin MC. Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. J Exp Bot,2005,56:703-712
    60. Feigin A, Pressman E, Imas P, Miltau O. Combined effects of KNO3 and salinity on yield and chemical composition of lettuce and Chinese cabbage. Irrigation Sci,1991, 12:223-230
    61. Flexas J, Bota J, Loreto F, Comic G, Sharkey TD. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol. 2004,6:269-279
    62. Flowers TJ, Troke PF, Yeo AR. The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol,1977,28:89-121
    63. Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL. Drought-and salt-tolerant plants result from overexpression of the A VP1 H+-pump. Proc Natl Acad Sci USA,2001,98:11444-11449
    64. Gouia H, Chorbal MH, Touraine B. Effects of NaCl on flows of N and mineral ions and on NO3-reduction rate within whole plants of salt-sensitive bean and salt-tolerant cotton. Plant Physiol,1994,105:1409-1418
    65. Grattan SR, Grieve CM. Salinity-mineral nutrient relations in horticultural crops. Sci. Hort,1999,78:127-157
    66. Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol,1980,31:149-190
    67. Grieve 1 CM, Shannon MC. Ion accumulation and distribution in shoot components of salf-stressed ecucalyptus clones. J. Amer. Soc. Hort. Sci,1999,124:559-563
    68. Guo KM, Babourina O, Rengel Z. Na+/H+ antiporter activity of the SOS1 gene: lifetime imaging analysis and electrophysiological studies on Arabidopsis seedlings. Physiol Plantarum,2009,137:155-165
    69. Halfter U, Ishitani M, Zhu JK. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci USA,2000,97:3735-3740
    70. Hoagland DR, Arnon DS. The water culture method for growing plants without soil. Calif. Agric. Exp. Stat. Circ,1950,347:1-32
    71. Hasegawa PM, Bressan PA, Zhu JK, Bohnert HJ. Plant cellular and molecular response to high salinity. Annu Rev Plant Physiol Mol Biol,2000,51:463-499
    72. Horie T, Schroeder JI. Sodium transporters in plants. Diverse genes and physiological functions. Plant Physiol,2004,136:2457-2462
    73. Horie T, Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A. Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant J,2001,27:129-238
    74. Huang Y, Bie ZL, He SP, Hua B, Zhen A, Liu ZX. Improving cucumber tolerance to major nutrients induced salinity by grafting onto Cucurbita ficifolia. Environ Exp Bot,2010,69:32-38
    75. Huang Y, Bie ZL, Liu PY, Niu ML, Zhen A, Liu ZX. Reciprocal grafting between cucumber and pumpkin demonstrates the roles of the rootstock in the determination of cucumber salt tolerance and sodium accumulation. Sci Hort,2013,149:47-54
    76. Huang Y, Bie ZL, Liu ZX, Zhen A, Jiao X. Improving cucumber photosynthetic capacity under NaCl stress by grafting onto two salt-tolerant pumpkin rootstocks. Biol Plantarum,2011,55:285-290
    77. Janicka-Russak M, Klobus G. Modification of plasma membrane and vacuolar H+-ATPases in response to NaCl and ABA. J Plant Physiol,2007,164:295-302
    78. Kabala K, Janicka-Russak M. Na+/H+ antiport activity in plasma membrane and tonoplast vesicles isolated from NaCl-treated cucumber roots. Biol Plantarum,2012, 56:377-382
    79. Kabala K, Klobus G. Characterization of the tonoplast proton pumps in Cucumis sativus L. root cells. Acta Physiol Plant,2001,23:55-63
    80. Kaddour R, Mahmoudi H, Baatour O, Tarchoun I, Nasri N, Saleh I, Berthomieu P, Gruber M, Lachaai M. Physiological and molecular responses of two Arabidopsis accessions to calcium amendment and salt constraint. Acta Physiol Plant,2012,34: 439-450
    81. Kaya C, Ak BE, Higgs D. Response of salt-stressed strawberry plants to supplementary calcium nitrate and/or potassium nitrate. J Plant Nutr,2003,26: 543-560
    82. Kent LM, Lauchli A. Germination and seedling growth of cotton:salinity-calcium interactions. Plant Cell Environ,1985,8:155-159
    83. Klobus G, Janicka-Russak M. Modulation by cytosolic components of proton pump activities in plasma membrane and tonoplast from Cucumis sativus roots during salt stress. Physiol Plantarum,2004,121:84-92
    84. Klobus G, Buczek J. The role of plasma membrane oxidoreductase activity in proton transport. J Plant Physiol,1995,146:103-107
    85. Kochian LV, Shaff JE, Kuhtreiber WM, Jaffe LF, Lucas WJ. Use of an extracellular, ion-selective, vibrating microelectrode system for the quantification of K+, H+ and Ca2+ fluxes in maize roots and maize suspension cells. Planta,1992,188:601-610
    86. Kong X, Luo Z, Dong H, Eneji AE, Li W. Effects of non-uniform root zone salinity on water use, Na+ recirculation, and Na+ and H+ flux in cotton. J Exp Bot,2012,63: 2105-2116
    87. Lauchli A, James RA, Huang CX, McCully M, Munns R. Cell-specific localization of Na+ in roots of durum wheat and possible control points for salt exclusion. Plant Cell Environ,2008,31:1565-1574
    88. Lauchli A, Epstein, E. Transport of potassium and rubidium in plant roots:The significance of calcium. Plant Physiol,1970,45:639-641
    89. Lacan D, Durand M. Na+--K+ exchange at the xylem/lsymplast boundary. Plant Physiol,1996,110:705-711
    90. Lauchli A, James RA, Huang CX, McCully M, Munns R. Cell-specific localization of Na+in roots of durum wheat and possible control points for salt exclusion. Plant Cell Environ,2008,31:1565-1574
    91. Lee JM. Cultivation of grafted vegetables I. current status, grafting methods, and benefits. Hortscience,1994,29:235-259
    92. Leigh RA, Jones WRG. A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytologist, 1984,97:1-13
    93. Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci U S A, 2000,97:3730-3734
    94. Liu JP, Zhu JK. An Arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance. Proc. Natl. Acad Sci. USA,1997,94: 14960-14964
    95. Lohaus G, Hussmann M, Pennewiss K, Schneider H, Zhu JJ, Sattelmacher B. Solute balance of a maize (Zea mays L.) source leaf as affected by salt treatment with special emphasis on phloem retranslocation and ion leaching. J Exp Bot,2000,51: 1721-1732
    96. Lopez MV, Satti SME. Calcium and potassium-enhanced growth and yield of tomato under sodium chloride stress. Plant Sci,1996,114:19-27
    97. Lynch J, Cramer G, Lauchli A. Salinity reduces membrane-associated calcium in corn root protoplasts. Plant Physiol,1987,83:390-394
    98. Maser P, Gierth M, Schroeder J. Molecular mechanisms of potassium and sodium uptake in plants. Plant Soil,2002,247:43-54
    99. Maathuis FJM, Amtmann A. K+ nutrition and Na+ toxicity:the basis of cellular K+/Na+ ratios. Ann Bot,1999,84:123-133
    100.Maeda Y, Nakazawa R. Effects of the timing of calcium application on the alleviation of salt stress in the maize, tall fescue, and reed canarygrass seedlings. Biol Plantarum,2008,52:153-156
    101.Martinez-Ballesta MD, Bastias E, Zhu C, Schaffner AR, Gonzalez-Moro B, Gonzalez-Murua C, et al. Boric acid and salinity effects on maize roots. Response of aquaporins Zm PIP1 and Zm PIP2, and plasma membrane H+-ATPase, in relation to water and nutrient uptake. Physiol Plantarum,2008,132:479-490
    102.Matsumoto H, Chung GC. Increase in proton-transport activity of tonoplast vesicles as an adaptive response of barley roots to NaCl stress. Plant Cell Physiol,1988,29: 1133-1140
    103.Moller IS, Gilliham M, Jha D, Mayo GM, Roy SJ, Coates JC, et al. Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. Plant Cell,2009,21:2163-2178
    104.Morsomme P, Boutry M. The plant plasma membrane H+-ATPase:structure, function and regulation. Biochim Biophys Acta,2000,1465:1-16
    105.Munns R. Comparative physiology of salt and water stress. Plant Cell Environ,2002, 25:239-250
    106.Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol,2008, 59:651-681
    107.Munns R, Fisher D, Tonnet M. Na+ and Cl- Transport in the phloem from leaves of NaCl-treated barley. Funct Plant Biol,1986,13:757-766
    108.Munns R, Hare RA, James RA, Rebetzke GJ. Genetic variation for improving the salt tolerance of durum wheat. Aust JAgr Res,2000,51:69-74
    109.Munns R, Rebetzke GJ, Husain S, James RA, Hare RA. Genetic control of sodium exclusion in durum wheat. Aust JAgr Res,2003,54:627-635
    110.Nakamura Y, Kasamo K, Sakata M, Ohta E. Stimulation of the extrusion of protons and H+-ATPase activities with the decline in pyrophosphatase activity of the tonoplast in intact mung bean roots under high-NaCl stress and its relation to external levels of Ca2+ ions. Plant Cell Physiol,1992,33:139-149
    111.Navarro JM, Martinez V, Carvajal M. Ammonium, bicarbonate and calcium effects on tomato plants grown under saline conditions. Plant Sci,2000,157:89-96
    112.Niu X, Narasimhan ML, Salzman RA, Bressan RA, Hasegawa PM. NaCl regulation od plasma membrane H+-ATPase gene expression in a glycophyte and a halophyte. Plant Physiol,1993,103:713-718
    113.Norrish K, Hutton JT. Plant analyses by X-ray spectrometry I-Low atomic number elements, sodium to calcium. X-Ray Spectrometry,1977,6:6-11
    114.0h DH, Lee SY, Bressan RA, Yun DJ, Bohnert HJ. Intracellular consequences of SOS1 deficiency during salt stress. J Exp Bot,2010,61:1205-1213
    115.Oh DH, Leidi E, Zhang Q, Hwang SM, Li Y, Quintero FJ,Jiang XY, Durzo MP, Lee SY, Zhao YX, Bahk JD, Bressan RA, Yun DJ, Pardo JM, Bornert HJ. Loss of halophytism by interference with SOS1 expression. Plant Physiology,2009,151: 210-222
    116.Omielan JA, Epstein E, Dvora J.1991. Salt tolerance and ionic relations of wheat as affected by individual chromosomes of salt tolerant Lophopyrum elongation. Genome,34,961-974.
    117.Otoch MLO, Sobreira ACM, de Aragao MEF, Orellano EG, Lima MGS, de Melo DF. Salt modulation of vacuolar H+-ATPase and H+-pyrophosphatase activities in Vigna unguiculata. J Plant Physiol,2001,158:545-551
    118.Peng YH, Zhu YF, Mao YQ, Wang SM, Su WA, Tang ZC. Alkali grass resists salt stress through high K+ and an endodermis barrier to Na+. J Exp Bot,2004,55: 939-949
    119.Portillo F. Regulation of plasma membrane H+-ATPase in fungi and plants. Biochim Biophys Acta,2000,1469:31-42
    120.Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci U S A,2002,99:8436-8441
    121.Qiu QS, Barkla BJ, VeraEstrella R, Zhu JK, Schumaker K S. Na+/H+ exchange activity in the plasma membrane of Arabidopsis. Plant Physiol,2003,132: 1041-1052
    122.Queiros F, Fontes N, Silva P, Almeida D, Maeshima M, Geros H, Fidalgo F. Activity of tonoplast proton pumps and Na+/H+ exchange in potato cell cultures is modulated by salt. JExp Bot,2009,60:1363-1374
    123.Quintero FJ, Ohta M, Shi H, Zhu J K, Pardo JM. Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc Natl Acad Sci U S A, 2002,99:9061-9066
    124.Rains D, Epstein E. Sodium absorption by barley roots, its mediation by mechanism of alkali cation transport. Plant Physiol,1967,42:319-323
    125.Rascio A, Russo M, Mazzucco L, Platani C, Nicastro G, Di Fonzo N. Enhanced osmotolerance of a wheat mutant selected for potassium accumulation. Plant Science, 2001,160,441-448
    126.Ratajczak R. Structure, function and regulation of the plant vacuolar H+-translocating ATPase. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2000,1465:17-36
    127.Ren ZH, Gao JP, Li LG, Cai X L, Huang W, Chao D Y, Zhu MZ, Wang ZY, Luan S, Lin HX. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet,2005,37:1141-1146
    128.Renault S. Response of red-osier dogwood(Cornus stolonifera) seedlings to sodium sulphate salinity:effects of supplemental calcium. Physiol Plantarum,2005,123: 75-81
    129.Rouphael Y, Cardarelli M, Rea E, Colla G. Improving melon and cucumber photosynthetic activity, mineral composition, and growth performance under salinity stress by grafting onto Cucurbita hybrid rootstocks. Photosynthetica,2012,50: 180-188
    130.Rubio F, Gassmann W, Schroeder JI. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science (New York, N.Y.),1995,270:1660-1663
    131. Santa-Cruz A, Martinez-Rodriguez M M, Perez-Alfocea F, Remedios-Aranda R, Bolarin MC. The rootstock effect on the tomato salinity response depends on the shoot genotype. Plant Sci,2002,162:825-831
    132.Santa-Mari, EG, Epstein E. Potassiumsodium selectivity in wheat and the amphiploid cross wheat X Lophopyrum elongatum. Plant Sci,2001,160:523-534
    133.Satti SME, Lopez M. Effect of increasing potassium levels for alleviating sodium chloride stress on the growth and yield of tomato. Comm Soil Sci Plant Anal,1994, 25:2807-2823
    134.Shabala L, Cuin TA, Newman IA, Shabala S. Salinity-induced ion flux patterns from the excised roots of Arabidopsis sos mutants. Planta,2005,222:1041-1150
    135.Shabala L, Ross T, McMeekin T, Shabala S. Non-invasive microelectrode ion flux measurements to study adaptive responses of microorganisms to the environment. Fems Microbiol Rev,2006a,30:472-486
    136.Shabala S. Ionic and osmotic components of salt stress specifically modulate netion fluxes from bean leaf mesophyll. Plant Cell Environ,2000,23:825-837
    137.Shabala S, Cuin TA. Potassium transport and plant salt tolerance. Physiol Plantarum, 2008,133:651-669
    138.Shabala S, Shabala L, Volkenburgh EV. Effect of calcium on root development and root ion fluxes in salinised barley seedlings. Funct Plant Biol,2003,30:507-514
    139.Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Newman IA. Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol,2006b, 141:1653-1665
    140.Shabala S, Cuin TA, Pang J, Percey W, Chen Z, Conn S, Eing C, Wegner LH. Xylem ionic relations and salinity tolerance in barley. Plant J,2010,61:839-853
    141.Shi H, Zhu JK. Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHXl by salt stress and abscisic acid. Plant Mol Biol,2002,50:543-550
    142. Shi H, Ishitani M, Kim C, Zhu JK. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci U S A,2000,97: 6896-6901
    143.Shi H, Lee BH, Wu SJ, Zhu JK. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotech,2003, 21:81-85
    144.Shi HZ, Quintero FJ, Pardo JM, Zhu JK. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell,2002,14: 465-477
    145.Shi HZ, Zhu JK. Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Molecular Biology,2002,50:543-550
    146.Stepien P, Klbus G. Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biol Plantarum,2006,50:610-616.
    147.Suarez DL, Grieve CM. Predicting cation ratios in corn from saline solution composition. JExp Bot,1988,39:605-612
    148.Sun J, Chen S, Dai S, Wang R, Li N, Shen X, Zhou XY, Lu CF, Zheng XJ, Hu ZM, Zhang ZK, Song J, Xu Y. NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiol,2009a,149: 1141-1153
    149.Sun J, Dai S, Wang R, Chen S, Li N, Zhou X, Lu CF, Zheng XJ, Hu ZM, Zhang ZK, Song J, Xu Y. Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance. Tree Physiol,2009b,29:1175-1186
    150.Sun J, Wang MJ, Ding MQ, Deng SR, Liu MQ, Lu CF, Zheng XJ, Zhou XY, Shen X, Zheng XJ, Zhang ZK, Song J, Hu ZM, Xu Y, Chen SL. H2O2 and cytosolic Ca2+ signals triggered by the PM H+-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells. Plant Cell Environ,2010,33: 943-958
    151.Sunarpi, Horie T, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K, Konom M, Osumi M, Yamagami M, Schroeder JI, Nobuyuki U1. Enhanced salt tolerance mediated by AtHKTl transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J,2005,44:928-938
    152.Tester M, Leigh R A. Partitioning of nutrient transport processes in roots. J Exp Bot, 2001; 52:445-457.
    153.Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants. Ann Bot, 2003,91:503-527
    154.Wang H, Wang H, Zhang W, Fuller GN. Tissue Microarrays:Applications in Neuropathology Research, Diagnosis, and Education. Brain Pathol,2002,12: 95-107
    155.Wegner LH, Stefano G, Shabala L, Rossi M, Mancuso S, Shabala S. Sequential depolarization of root cortical and stelar cells induced by an acute salt shock-implications for Na+ and K+ transport into xylem vessels. Plant Cell Environ,2011, 34:859-869
    156. Wilson C, Shannon MC. Salt-induced Na+/H+ antiport in root plasma membrane of a glycophytic and halophytic species of tomato. Plant Sci,1995,107:147-157
    157.Xu Y, Sun T, Yin LP. Application of non-invasive microsensing system to simultaneously measure both H+ and O2 fluxes around the pollen tube. Journal of Integrative Plant Biology,2006,48:823-831
    158.Xue ZY, Zhi DY, Xue GP, Zhang H, Zhao YX, Xia GM. Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci,2004,167:849-859
    159.Yang Q, Chen ZZ, Zhou XF, Yin HB, Li X, Xin XF, Hong XH, Zhu JK, Gong ZZ. Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol Plant,2009,2:22-31
    160.Yao X, Horie T, Xue S, Leung HY, Katsuhara M, Brodsky DE, Schroeder JI. Differential sodium and potassium transport selectivities of the rice OsHKT2;l and OsHKT2;2 transporters in plant cells. Plant Physiol,2010,152:341-355
    161.Zhang GW, Liu ZL, Zhou JG, Zhu YL. Effects of Ca(NO3)2 stress on oxidative damage, antioxidant enzymes activities and polyamine contents in roots of grafted and non-grafted tomato plants. Plant Growth Regul,2008,56:7-19
    162.Zhen A, Bie Z, Huang Y, Liu Z, Li Q. Effects of scion and rootstock genotypes on the anti-oxidant defense systems of grafted cucumber seedlings under NaCl stress. Soil Sci Plant Nutr,2010,56:263-271
    163.Zhou QY, Wang L, Cai X, Wang D, Hua XJ, Qu LQ, Lin JX, Chen T. Net sodium fluxes change significantly at anatomically distinct root zones of rice (Oryza sativa L.) seedlings. J Plant Physiol,2011,168:1249-1255
    164,Zhu H, Ding GH, Fang K, Zhao FG, Qin P. New perspective on the mechanism of alleviating salt stress by spermidine in barley seedlings. Plant Growth Regul,2006, 49:147-156
    165.Zhu JK. Plant salt tolerance. Trends Plant Sci,2001,6:66-71
    166.Zhu JK. Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol,2003, 6:441-445
    167.Zhu J, Bie ZL, Huang Y, Han XY. Effect of grafting on the growth and ion concentrations of cucumber seedlings under NaCl stress. Soil Sci Plant Nutr,2008, 54:895-902

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700