用户名: 密码: 验证码:
毛白杨4CL基因启动子及APX的结构与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛白杨(populus tomentosa Carr.)是我国北方地区广泛种植的本土树种,具有分布广、速生、丰产、材质优良及抗逆性强等特点,被广泛用于造纸等行业。毛白杨木质索和类黄酮的合成调节以及抗氧化系统的精确控制方面的研究比较薄弱。
     4-香豆酸:辅酶A连接酶(4-coumarate:Coenzyme A ligase,4CL)位于苯丙烷类衍生物合成途径的分支点上,在植物中通常出基因家族编码。本论文以毛白杨作为植物材料,克隆分离了4个4CL基因家族成员启动子区,构建了GUS表达载体,并在转基因烟草中分析了4个启动子的组织特异性表达模式。在运用生物信息学软件对启动子中包含的顺式调控元件进行预测的基础上,采用5′缺失分析与EMSA结合的方法鉴定了Pto4CL2启动子重要调控域和关键顺式作用元件。
     抗坏血酸过氧化氢酶(ascorbate peroxidase, APX)是植物体内重要的H2O2清除系统——抗坏血酸-谷胱甘肽(AsA-GSH)循环的关键酶。本文对毛白杨PtoAPX多个同工酶进行重组蛋白表达和分离纯化,并对其进行了酶活性测定和动力学分析;预测PtoAPX同工酶家族成员蛋白抗原表位,设计并合成抗原多肽制备多克隆抗体,结合胶体金免疫电镜技术研究其细胞器定位,并在转基因烟草中表达PtoAPX-GFP融合蛋白,结合激光共聚焦显微技术确认其亚细胞定位;构建PtoAPX基因正义双元表达载体转化烟草,检测转基因植株抗盐能力。
     基于上述研究,得到如下主要结果:
     1.首次克隆得到4个4CL家族成员基因启动子,生物信息学分析预测启动子区潜在的顺式调控元件发现,4个启动子中共包含了26种组织特异性表达元件和逆境响应顺式调控元件。
     2.分别构建了4个启动子与GUS报告基因串联的植物表达载体并转化烟草。GUS活性分析表明,4个启动子驱动GUS的表达部位和表达模式有差异,其中Pto4CL4p和Pto4CL5p调控的表达模式比较接近。Pto4CL2p和Pto4CL3p驱动的组织特异性表达同时具有发育阶段特异性
     3.通过比较Pto4CL2全长启动子与5′缺失动子-GUS融合载体转基因烟草的GUS活性,鉴定了调控该启动子表达的关键区域。结果发现-317~-292区域与表皮和花瓣的表达相关,而删除-266~-252区域则导致组织特异性表达的丧失和GUS活性的急剧下降。
     4.凝胶阻滞实验检测发现Pto4CL2启动子中位于-264~-255区域的富含腺嘌呤和胞嘧啶的AC元件在其复杂的特异性表达模式的调控中起到关键作用。位于-252~-239区域中的脱落酸应答元件(ABRE)在该启动子的丛础表达中起正调控作用。这是首次在高等植物中研究Ⅱ类4CL的启动子调控元件
     5.原核表达并纯化了PtoAPX2、PtoAPX6和PtoAPX7重组蛋白,酶动力学分析发现:三者对H2O2的Km。值较接近但PtoAPX6和PtoAPX7的Vmax值都在PtoAPX2的10倍以上,说明PtoAPX6和PtoAPX7对H2O2的清除效率明显高于PtoAPX2。 PtoAPX7对AsA的Km值和Vmax值都是三者中最高的,说明其适于迅速利用较高浓度的AsA。PtoAPX6和PtoAPX7都是在20℃和弱碱性环境中具有最高活性,但PtoAPX6能在较宽的酸碱性环境中保持高活性。
     6.利用特异性抗原多肽免疫兔子,获得了分别与4个PtoAPX司工酶特异性结合的多克隆抗体,免疫电镜检测到PtoAPX6定位于杨树叶绿体,PtoAPX7定位于杨树线粒体。PtoAPX6和PtoAPX7与GFP融合蛋白在转基因烟草中的定位与免疫电镜结果一致。PtoAPX7是木本植物中发现的首个线粒体定位的APX
     7. PtoAPX7正义转基因烟草与野生型烟草抗盐性比较显示,在盐胁迫条件下PtoAPX7转基因烟草体内水分的丧失量、H2O2水平、MDA含量均显著低于野生型烟草。说明PtoAPX7在转基因烟草中的过量表达能够有效提高植株的抗盐性。
     本研究对Ⅱ类4CL启动子结构的分析初步揭示了其调控组织特异性表达的机理,为毛白杨次生代谢物质合成途径调控机制的研究提供了理论依据。PtoAPX酶学性质、亚细胞定位和提高植物抗盐性的研究为木本植物抗氧化系统的精确调控研究奠定了基础。
Chinese white poplar(Populus tomentosa Carr.) is a kind of native tree widely planted in northern China. With the characteristics of wide distribution, fast-growing speed, strong environmental stress resistance, high wood yield and excellent material quality, they are widely used in paper and other industries. The knowledge of the regulation of lignin and flavonoid synthesis and the precise control of antioxidant system in Populus tomentosa are limited.
     4-coumarate:Coenzyme A ligase (4CL) is located on the branch point of phenylpropanoid biosynthesis pathway.4CLs are encoded by an array of gene family members in plants. In this thesis, the promoters of four4CL gene family members were cloned from Populus tomentosa genome and the promoter-GUS fusion constructs were generated and transformed into tobacco. The tissue-specific expression patterns directed by the promoters were analyzed.5'deletion analysis were carried based on the bioinformatic prediction of cis-regulatory elements, and EMSA of synthetic probe were used to identify the key regulatory domains and cis-acting elements of Pto4CL2promoter.
     Ascorbate peroxidase (APX) is a key enzyme of the ascorbic acid-glutathione (AsA-GSH) cycle, which is an important H2O2scavenging system. Three recombinant PtoAPX isoenzymes were expressed and purified. The enzyme activity and kinetic parameters were measured. Antigen peptides representing APX enzyme epitopes were synthesized and used to raise multi-clonal rabbit antibodies. The subcellular localization of PtoAPX isoenzymes was detected by immunogold electron microscopy. The PtoAPX-GFP fusion proteins were expressed in transgenic tobacco and used for confirming the subcellular localization by laser-scanning confocal microscopy. The PtoAPX gene over-expression vector was constructed and transformed into tobacco. Salt tolerance of the transgenic plants was measured.
     Based on the above mentioned experiments, the following results were obtained:
     1. The promoter regions of four4CL gene family members were cloned. A series of tissue-specific expression and stress response regulatory cis-elements were predicted in these promoters by bioinformatics analysis.
     2. The plant expression vectors of the four promoter-GUS reporter gene were constructed and transformed into tobacco, respectively. Activity analysis showed that the GUS expression sites and expression patterns driven by four promoters are different. The expression patterns regulated by Pto4CL4p and Pto4CL5p were similar. The tissue-specific expression patterns directed by Pto4CL2p and Pto4CL3p were also developmental stage specific.
     3. The expression patterns and activity of GUS directed by full-length and5'-delete Pto4CL2promoters were compared in transgenic tobacco to identify the regulatory regions of the promoter. The results showed that the-317to-292region associated with the expression in the epidermis and petals, and the deletion of the-266to-252nt region resulted in the loss of tissue specificity and a dramatic reduction in GUS activity.
     4. Electrophoretic mobility shift assays (EMSA) validated that an adenine and cytosine-rich (AC) element (-264to-255nt) and an abscisic acid-responsive element (ABRE)(-242to-235nt) in the Pto4CL2promoter would have functions for the complex expression profile and efficient basal expression, respectively. These results characterized the key elements regulating the expression of class II4CL promoters in higher plants for the first time.
     5. The recombinant PtoAPX2, PtoAPX6and PtoAPX7proteins were expressed and purified. Enzymatic kinetic analysis found that their Km values to H2O2are close but the Vmax values of PtoAPX6and PtoAPX7to H2O2are10times higher than that of PtoAPX2, indicating that the clearance of H2O2by PtoAPX6and PtoAPX7was more efficient than that by PtoAPX2. The Km and Vmax values of PtoAPX7to ascorbate (AsA) are higher than others, which suggests that PtoAPX7could be responsible for the removal of AsA in high concentration. PtoAPX6and PtoAPX7have the highest activity at20℃and weak alkaline environment, while PtoAPX6is able to maintain a high activity in a wide pH range.
     6. Polypeptides were designed and synthesized to obtain the PtoAPX isozyme targeting polyclonal antibodies. With the help of these antibodies, PtoAPX6was located to chloroplast and PtoAPX7was located to mitochondria in poplar cells by immunogold electron microscopy. The subcellular location was consistent with that of PtoAPX6and PtoAPX7-GFP fusion protein detected in transgenic tobacco cells. PtoAPX7was the first mitochondria targeting APX found in woody plant.
     7. The loss of water content, H2O2and MDA level of transgenic tobacco harboring sense PtoAPX7were significantly higher than those of the wild-type plants, which indicates that the salt tolerance of sense PtoAPX7transgenic tobacco was much higher. It suggests that PtoAPX7over-expression can effectively improve the salt resistance of plants.
     Structural characterization of the promoter belonging to class II4CL would lay a foundation for revealing the machinery of the regulational spatial and temporal expression. And it will provide a theoretical basis for the regulation of the secondary metabolites biosynthesis in Populus tomentosa.The study of PtoAPX enzymatic properties, subcellular localization and salt resistence of transgenic plants laid an important foundation for the machinery of antioxidant system precise regulation in woody plants.
引文
1. 白斌,张金文,郭志鸿等.rd29A启动子克隆及对低温响应的研究[J].甘肃农业大学学报,2004,39(3):249-254.
    2. 陈章良,瞿礼嘉.高等植物基因表达的调控[J].Journal of Integrative Plant Biology,1991,(05):390-405.
    3. 金小倩.丹参4-香豆酸辅酶A连接酶(4CL)基因的表达调控研究[D]:上海中医药大学,2008.
    4. 林植芳,终少微,彭长连等.植物生理生化实验中常用生化试剂的消光系数[J].植物生理学通讯,2001,37(1):59-62.
    5. 刘慧丽,李玲.脱落酸(ABA)诱导基因表达的调控元件[J].植物学通报,2001,18(3):276-282.
    6. 马长乐,王萍萍,曹子谊等.盐地碱蓬(Suaeda salsa)APX基因的克隆及盐胁迫下的表达[J].植物生理与分子生物学学报,2002,28(4):261-266.
    7. 孙卫红,陈相燕,杜斌等.过量表达番茄类囊体膜抗坏血酸过氧化物酶基因(StAPX)提高了烟草种苗的抗氧化能力[J].植物生理学报,2011,47(6):613.618.
    8. 吴雪峰,赵开军,陈毓荃.植物启动子的诱导模序[J].中国生物工程杂志,2004,24(12):14-21.
    9. 夏江东:,程在全,吴渝生等.高等植物启动子功能利结构研究进展[J].云南农业大学学报,2006,(01):7.14.
    10.叶梁,李枞,宋艳茹.双价、三价种子特异性表达载体的构建及表达PHB合成相关基因的转基因菜的获得[J].科学通报,2000,45(5):1206.1210.
    11. Allina S M, Pri-Hadash A, Theilmann D A, et al.4-Coumarate:coenzyme A ligase in hybrid poplar [J]. Plant Physiology,1998,116(2):743-754.
    12. Amther J S. Efficiency of lignin biosynthesis:a quantitative analysis [J]. Annals of Botany, 2003,91(6):673-695.
    13. Baucher M, Halpin C, Petit-Conil M, et al. Lignin:genetic engineering and impact on pulping [J]. Critical Reviews in Biochemistry and Molecular Biology,2003,38(4):305-350.
    14. Baucher M, Monties B, Van Montagu M, et al. Biosynthesis and genetic engineering of lignin [J]. Critical Reviews in Plant Sciences,1998,17(2):125-197.
    15. Benfey P N, Chua N H. The cauliflower mosaic virus 35S promoter:combinatorial regulation of transcription in plants [J]. Science,1990,250(4983):959-966.
    16. Blanchette R A, Biggs A R. Defense mechanisms of woody plants against fungi[M],1992: 41-61.
    17. Blum T, Briesemeister S, Kohlbacher O. MultiLoc2:integrating phylogeny and Gene Ontology terms improves subcellular protein localization prediction [J]. BMC bioinformatics, 2009,10(1):274-285.
    18. Boerjan W, Ralph J, Baucher M. Lignin biosynthesis [J]. Annual Review of Plant Biology, 2003,54(1):519-546.
    19. Bowie J U, Luthy R, Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure [J]. Science,1991,253(5016):164-170.
    20. Boyl P P, Di Nardo A, Mulle C, et al. Profilin2 contributes to synaptic vesicle exocytosis, neuronal excitability, and novelty-seeking behavior [J]. The EMBO journal,2007,26(12): 2991-3002.
    21. Bradford M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry,1976,72(1-2): 248-254.
    22. Campbell M M, Sederoff R R. Variation in lignin content and composition (mechanisms of control and implications for the genetic improvement of plants). [J]. Plant Physiology,1996, 110(1):3-13.
    23. Carabelli M, Morelli G, Whitelam G, et al. Twilight-zone and canopy shade induction of the Athb-2 homeobox gene in green plants [J]. Proceedings of the National Academy of Sciences, 1996,93(8):3530-3535.
    24. Castresana C, Garcia-Luque Ⅰ, Alonso E, et al. Both positive and negative regulatory elements mediate expression of a photoregulated CAB gene from Nicotiana plumbaginifolia [J]. The EMBO journal,1988,7(7):1929-1936.
    25. Chabannes M, Ruel K, Yoshinaga A, et al. In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels [J]. The Plant Journal,2001,28(3):271-282.
    26. Chen C, Chen Z. Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor [J]. Plant Physiology,2002, 129(2):706-716.
    27. Chen H U, Huang N I, Sun Z. SubLoc:a server/client suite for protein subcellular location based on SOAP [J]. Bioinformatics,2006,22(3):376-377.
    28. Chew O, Whelan J. Just read the message:a model for sorting of proteins between mitochondria and chloroplasts [J]. Trends in Plant Science,2004,9(7):318-319.
    29. Chew O, Whelan J, Millar A H. Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants [J]. Journal of Biological Chemistry,2003,278(47):46869-46877.
    30. Chilton M D, Drummond M H, Merlo D J, et al. Stable incorporation of plasmid DNA into higher plant cells:the molecular basis of crown gall tumorigenesis [J]. Cell,1977,11(2):263-271.
    31. Choo K, Snoeijs P, Pedersen M. Oxidative stress tolerance in the filamentous green algae Cladophora glomerate and Enteromorpha ahlneriana [J]. Journal of Experimental Marine Biology and Ecology,2004,298(1):111-123.
    32. Chou P Y, Fasman G D. Empirical predictions of protein conformation [J]. Annual Review of Biochemistry,1978,47(1):251-276.
    33. Christensen A H, Sharrock R A, Quail P H. Maize polyubiquitin genes:structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation [J]. Plant Molecular Biology,1992,18(4):675-689.
    34. Clarke H R G, Davis J M, Wilbert S M, et al. Wound-induced and developmental activation of a poplar tree chitinase gene promoter in transgenic tobacco [J]. Plant Molecular Biology,1994, 25(5):799-815.
    35. Cukovica D, Ehlting J, Ziffle J A V, et al. Structure and evolution of 4-coumarate:coenzyme A ligase (4CL) gene families [J]. Biological Chemistry,2001,382(4):645-654.
    36. Dat J, Vandenabeele S, Vranova E, et al. Dual action of the active oxygen species during plant stress responses [J]. Cellular and Molecular Life Sciences CMLS,2000,57(5):779-795.
    37. Davletova S, Rizhsky L, Liang H, et al. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis [J]. The Plant Cell,2005,17(1): 268-281.
    38. Douglas C J, Hauffe K D, Ites-Morales M E, et al. Exonic sequences are required for elicitor and light activation of a plant defense gene, but promoter sequences are sufficient for tissue specific expression [J]. The EMBO journal,1991,10(7):1767-1775.
    39. Douglas C, Hoffmann H, Schulz W, et al. Structure and elicitor or u.v.-light-stimulated expression of two 4-coumarate:CoA ligase genes in parsley [J]. The EMBO journal,1987,6(5): 1189-1195.
    40. Duan M, Feng H, Wang L, et al. Overexpression of thylakoidal ascorbate peroxidase shows enhanced resistance to chilling stress in tomato [J]. Journal of Plant Physiology,2012,169(9): 867-877.
    41. Ehlting J, Buttner D, Wang Q, et al. Three 4-coumarate:coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms [J]. The Plant Journal, 1999,19(1):9-20.
    42. Ehlting J, Shin J J K, Douglas C J. Identification of 4-coumarate:coenzyme A ligase (4CL) substrate recognition domains [J]. The Plant Journal,2001,27(5):455-465.
    43. Elke Logemann M P A K. Modes of expression and common structural features of the complete phenylalanine ammonia-lyase gene family in parsley [J]. Proceedings of the National Academy of Sciences,1995,92 (13):5905-5909.
    44. Emanuelsson O, Nielsen H, Brunak S, et al. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence [J]. Journal of Molecular Biology,2000,300(4): 1005-1016.
    45. Emini E A, Hughes J V, Perlow D S, et al. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. [J]. Journal of Virology,1985,55(3):836-839.
    46. Endler A, Martens S, Wellmann F, et al. Unusually divergent 4-coumarate:CoA-ligases from Ruta graveolens L. [J]. Plant Molecular Biology,2008,67(4):335-346.
    47. Fehlberg V, Vieweg M F, Dohmann E M N, et al. The promoter of the leghaemoglobin gene VfLb29:functional analysis and identification of modules necessary for its activation in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots [J]. Journal of Experimental Botany,2005,56(413):799-806.
    48. Feuillet C, Lauvergeat V, Deswarte C, et al. Tissue-and cell-specific expression of a cinnamyl alcohol dehydrogenase promoter in transgenic poplar plants [J]. Plant Molecular Biology,1995,27(4):651-667.
    49. Forkmann G. Flavonoids as flower pigments:the formation of the natural spectrum and its extension by genetic engineering [J]. Plant Breeding,1991,106(1):1-26.
    50. Foyer C H, Halliwell B. Purification and properties of dehydroascorbate reductase from spinach leaves [J]. Phytochemistry,1977,16(9):1347-1350.
    51. Foyer C H, Shigeoka S. Understanding oxidative stress and antioxidant functions to enhance photosynthesis [J]. Plant Physiology,2011,155(1):93-100.
    52. Fukasawa-Akada T, Kung S, Watson J C. Phenylalanine ammonia-lyase gene structure, expression, and evolution in Nicotiana [J]. Plant Molecular Biology,1996,30(4):711-722.
    53. Galis 1, simek P, Narisawa T, et al. A novel R2R3 MYB transcription factor NtMYBJSl is a methyl jasmonate-dependent regulator of phenylpropanoid-conjugate biosynthesis in tobacco [J]. The Plant Journal,2006,46(4):573-592.
    54. Gamier J, Osguthorpe D J, Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins [J]. Journal of Molecular Biology,1978,120(1):97-120.
    55. Gasteiger E, Hoogland C, Gattiker A, et al. Protein identification and analysis tools on the ExPASy server [J]. The Proteomics Protocols Handbook,2005:571-607.
    56. Gomez J M, Jimenez A, Olmos E, et al. Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv. Puget) chloroplasts [J]. Journal of Experimental Botany,2004,55(394):119-130.
    57. Gomez M D, Beltran J P, Canas L A. The pea END1 promoter drives anther-specific gene expression in different plant species [J]. Planta,2004,219(6):967-981.
    58. Gomez-Maldonado J, Avila C, de la Torre F, et al. Functional interactions between a glutamine synthetase promoter and MYB proteins [J]. The Plant Journal,2004,39(4):513-526.
    59. Green P J, Yong M H, Cuozzo M, et al. Binding site requirements for pea nuclear protein factor GT-1 correlate with sequences required for light-dependent transcriptional activation of the rbcS-3A gene [J]. The EMBO journal,1988,7(13):4035-4044.
    60. Grimmig B, Matern U. Structure of the parsley caffeoyl-CoA O-methyltransferase gene, harbouring a novel elicitor responsive cis-acting element [J]. Plant Molecular Biology,1997, 33(2):323-341.
    61. Gui J, Shen J, Li L. Functional characterization of evolutionarily divergent 4-coumarate:coenzyme A ligases in rice [J]. Plant Physiology,2011,157:574-586.
    62. Guo H, Chen X, Zhang H, et al. Characterization and activity enhancement of the phloem-specific pumpkin PP2 gene promoter [J]. Transgenic Research,2004,13(6):559-566.
    63. Hagen G, Kleinschmidt A, Guilfoyle T. Auxin-regulated gene expression in intact soybean hypocotyl and excised hypocotyl sections [J]. Planta,1984,162(2):147-153.
    64. Hamada K, Nishida T, Yamauchi K, et al.4-Coumarate:coenzyme A ligase in black locust (Robinia pseudoacacia) catalyses the conversion of sinapate to sinapoyl-CoA [J]. Journal of Plant Research,2004,117(4):303-310.
    65. Hamberger B, Hahlbrock K. The 4-coumarate:CoA ligase gene family in Arabidopsis thaliana comprises one rare, sinapate-activating and three commonly occurring isoenzymes [J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(7): 2209-2214.
    66. Hano C, Addi M, Bensaddek L, et al. Differential accumulation of monolignol-derived compounds in elicited flax (Linum usitatissimum) cell suspension cultures [J]. Planta,2006, 223(5):975-989.
    67. Harborne J B. The comparative biochemistry of phytoalexin induction in plants [J]. Biochemical Systematics and Ecology,1999,27(4):335-367.
    68. Harding S A, Leshkevich J, Chiang V L, et al. Differential substrate inhibition couples kinetically distinct 4-coumarate:coenzyme A ligases with spatially distinct metabolic roles in quaking aspen [J]. Plant Physiology,2002,128(2):428-438.
    69. Hartmann U, Sagasser M, Mehrtens F, et al. Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes [J]. Plant Molecular Biology, 2005,57(2):155-171.
    70. Hatton D, Sablowski R, Yung M H, et al. Two classes of cis sequences contribute to tissue-specific expression of a PAL2 promoter in transgenic tobacco [J]. The Plant Journal,1995, 7(6):859-876.
    71. Hatton D, Smith C, Bevan M. Tissue-specific expression of the PAL3 promoter requires the interaction of two conserved cis sequences [J]. Plant Molecular Biology,1996,31(2):393-397.
    72. Hauffe K D, Paszkowski U, Schulze-Lefert P, et al. A parsley 4CL-1 promoter fragment specifies complex expression patterns in transgenic tobacco [J]. The Plant Cell,1991,3(5): 435-443.
    73. He L, Terashima N. Formation and structure of lignin in monocotyledons IV. Deposition process and structural diversity of the lignin in the cell Wall of sugarcane and rice plant studied by ultraviolet microscopic spectroscopy [J]. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood,1991,45(3):191-198.
    74. He X, Futterer J, Hohn T. Sequence-specific and methylation-dependent and-independent binding of rice nuclear proteins to a rice tungro bacilliform virus vascular bundle expression element [J]. Journal of Biological Chemistry,2001,276(4):2644-2651.
    75. Higo K, Ugawa Y, Iwamoto M, et al. Plant cis-acting regulatory DNA elements (PLACE) database:1999 [J]. Nucleic Acids Research,1999,27(1):297-300.
    76. Horton P, Park K, Obayashi T, et al. WoLF PSORT:protein localization predictor [J]. Nucleic Acids Research,2007,35(suppl 2):W585-W587.
    77. Hu W, Kawaoka A, Tsai C, et al. Compartmentalized expression of two structurally and functionally distinct 4-coumarate:CoA ligase genes in aspen (Populus tremuloides) [J]. Proceedings of the National Academy of Sciences,1998,95(9):5407-5412.
    78. Ishikawa T, Shigeoka S. Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms [J]. Bioscience, biotechnology, and biochemistry,2008,72(5):1143-1154.
    79. Jakoby M, Weisshaar B, Droge-Laser W, et al. bZIP transcription factors in Arabidopsis [J]. Trends in Plant Science,2002,7(3):106-111.
    80. Jameson B A, Wolf H. The antigenic index:a novel algorithm for predicting antigenic determinants [J]. Computer applications in the biosciences:CABIOS,1988,4(1):181-186.
    81. Joshi C P. Putative polyadenylation signals in nuclear genes of higher plants:a compilation and analysis [J]. Nucleic Acids Research,1987,15(23):9627-9640.
    82. Kajita S, Hishiyama S, Tomimura Y, et al. Structural characterization of modified lignin in transgenic tobacco plants in which the activity of 4-coumarate:coenzyme A ligase is depressed [J]. Plant Physiology,1997,114(3):871-879.
    83. Kaothien P, Shimokawatoko Y, Kawaoka A, et al. A cis-element containing PAL-box functions in the expression of the wound-inducible peroxidase gene of horseradish [J]. Plant Cell Reports,2000,19(6):558-562.
    84. Karplus P A, Schulz G E. Prediction of chain flexibility in proteins [J]. Naturwissenschaften, 1985,72(4):212-213.
    85. Kavitha K, Venkataraman G, Parida A. An oxidative and salinity stress induced peroxisomal ascorbate peroxidase from Avicennia marina:Molecular and functional characterization [J]. Plant Physiology and Biochemistry,2008,46(8-9):794-804.
    86. Keller B, Heierli D. Vascular expression of the grpl.8 promoter is controlled by three specific regulatory elements and one unspecific activating sequence [J]. Plant Molecular Biology, 1994,26(2):747-756.
    87. Key J L. Modulation of gene expression by auxin [J]. Bioessays,1989,11(2-3):52-58.
    88. Khanna-Chopra R, Jajoo A, Semwal V K. Chloroplasts and mitochondria have multiple heat tolerant isozymes of SOD and APX in leaf and inflorescence in Chenopodium album [J]. Biochemical and Biophysical Research Communications,2011,412(4):522-525.
    89. Kiefer F, Arnold K, Kunzli M, et al. The SWISS-MODEL Repository and associated resources [J]. Nucleic Acids Research,2009,37(suppl 1):D387-D392.
    90. Kim H, Kim Y, Park J, et al. Light signalling mediated by phytochrome plays an important role in cold-induced gene expression through the C-repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana [J]. The Plant Journal,2002,29(6):693-704.
    91. Kizis D, Pages M. Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway [J]. The Plant Journal,2002,30(6):679-689.
    92. Knaggs A R. The biosynthesis of shikimate metabolites [J]. Natural Product Reports,2003, 20(1):119-136.
    93. Koltunow A M, Truettner J, Cox K H, et al. Different temporal and spatial gene expression patterns occur during anther development [J]. The Plant Cell,1990:1201-1224.
    94. Kost B, Mathur J, Chua N. Cytoskeleton in plant development [J]. Current Opinion in Plant Biology,1999,2(6):462-470.
    95. Koussevitzky S, Suzuki N, Huntington S, et al. Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination [J]. Journal of Biological Chemistry,2008, 283(49):34197-34203.
    96. Kropat J, Tottey S, Birkenbihl R P, et al. A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(51):18730-18735.
    97. Kubitzki K. Phenylpropanoid metabolism in relation to land plant origin and diversification [J]. Journal of Plant Physiology,1987,131(1):17-24.
    98. Kuhlemeier C, Cuozzo M, Green P J, et al. Localization and conditional redundancy of regulatory elements in rbcS-3A, a pea gene encoding the small subunit of ribulose-bisphosphate carboxylase [J]. Proceedings of the National Academy of Sciences,1988,85(13):4662-4666.
    99. Kumar A, Ellis B E.4-Coumarate:CoA ligase gene family in Rubus idaeus:cDNA structures, evolution, and expression [J]. Plant Molecular Biology,2003,51(3):327-340.
    100. Kyte J, Doolittle R F. A simple method for displaying the hydropathic character of a protein [J]. Journal of Molecular Biology,1982,157(1):105-132.
    101. Lee D, Douglas C J. Two Divergent Members of a Tobacco 4-Coumarate:Coenzyme A Ligase (4CL) Gene Family (cDNA Structure, Gene Inheritance and Expression, and Properties of Recombinant Proteins) [J]. Plant Physiology,1996,112(1):193-205.
    102. Lee D, Meyer K, Chapple C, et al. Antisense suppression of 4-coumarate:coenzyme A ligase activity in Arabidopsis leads to altered lignin subunit composition. [J]. The Plant Cell,1997,9(11): 1985-1998.
    103. Lescot M, Dehais P, Thijs G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences [J]. Nucleic Acids Research,2002,30(1):325-327.
    104. Lindermayr C, Mollers B, Fliegmann J, et al. Divergent members of a soybean(Glycine max L.) 4-coumarate:coenzyme A ligase gene family [J]. European Journal of Biochemistry,2002, 269(4):1304-1315.
    105. Logemann E, Parniske M, Hahlbrock K. Modes of expression and common structural features of the complete phenylalanine ammonia-lyase gene family in parsley [J]. Proceedings of the National Academy of Sciences,1995,92(13):5905.
    106. Lopez-Molina L, Chua N H. A null mutation in a bZIP factor confers ABA-insensitivity in Arabidopsis thaliana [J]. Plant and Cell Physiology,2000,41(5):541-547.
    107.Lozoya E, Hoffmann H, Douglas C, et al. Primary structures and catalytic properties of isoenzymes encoded by the two 4-coumarate:CoA ligase genes in parsley [J]. European Journal of Biochemistry,1988,176(3):661-667.
    108. Lu H, Han R, Jiang X. Heterologous expression and characterization of a proxidomal ascorbate peroxidase from Populus tomentosa [J]. Molecular Biology Reports,2009,36(1):21-27.
    109. Lu H, Zeng Q, Zhao Y L, et al. Xylem-specific expression of a GRP1.8 promoter::4CL gene construct in transgenic tobacco [J]. Plant Growth Regulation,2003,41(3):279-286.
    110. Lu H, Zhao Y, Jiang X. Stable and specific expression of 4-coumarate:Coenzyme A ligase gene (4CLI) driven by the xylem-specific Pto4CLl promoter in the transgenic tobacco [J]. Biotechnology Letters,2004,26(14):1147-1152.
    111. Lu Y Y, Deng X P, Kwak S S. Over expression of CuZn superoxide dismutase (CuZn SOD) and ascorbate peroxidase (APX) in transgenic sweet potato enhances tolerance and recovery from drought stress [J]. African Journal of Biotechnology,2010,9(49):8378-8391.
    112. Luderitz T, Schatz G, Grisebach H. Enzymic synthesis of lignin precursors. Purification and properties of 4-coumarate:CoA ligase from cambial sap of spruce (Picea abies L.) [J]. European journal of biochemistry/FEBS,1982,123(3):583-586.
    113. Luis A, Sandalio L M, Corpas F J, et al. Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling [J]. Plant Physiology, 2006,141(2):330-335.
    114. Ma Q H, Wang C, Zhu H H. TaMYB4 cloned from wheat regulates lignin biosynthesis through negatively controlling the transcripts of both cinnamyl alcohol dehydrogenase and cinnamoyl-CoA reductase genes [J]. Biochimie,2011,93(7):1179-1186.
    115. Madhusudhan R, Ishikawa T, Sawa Y, et al. Characterization of an ascorbate peroxidase in plastids of tobacco BY-2 cells [J]. Physiologia Plantarum,2003,117(4):550-557.
    116. Maeda K, Kimura S, Demura T, et al. DcMYB1 acts as a transcriptional activator of the carrot phenylalanine ammonia-lyase gene (DcPAL1) in response to elicitor treatment, UV-B irradiation and the dilution effect [J]. Plant Molecular Biology,2005,59(5):739-752.
    117. Maruta T, Tanouchi A, Tamoi M, et al. Arabidopsis chloroplastic ascorbate peroxidase isoenzymes play a dual role in photoprotection and gene regulation under photooxidative stress [J]. Plant and Cell Physiology,2010,51(2):190-200.
    118. Maruyama Nakashita A, Nakamura Y, Watanabe Takahashi A, et al. Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots [J]. The Plant Journal,2005,42(3):305-314.
    119. Mcelroy D, Zhang W, Cao J, et al. Isolation of an efficient actin promoter for use in rice transformation [J]. The Plant Cell,1990,2(2):163-171.
    120. Mena M, Cejudo F J, Isabel-Lamoneda I, et al. A role for the DOF transcription factor BPBF in the regulation of gibberellin-responsive genes in barley aleurone [J]. Plant Physiology,2002, 130(1):111-119.
    121. Menossi M, Martinez-Izquierdo J A, Puigdomenech P. Promoter tissue specific activity and ethylene control of the gene coding for the maize hydroxyproline-rich glycoprotein in maize cells transformed by particle bombardment [J]. Plant Science,1997,125(2):189-200.
    122. Millar A H, Leaver C J. The cytotoxic lipid peroxidation product,4-hydroxy-2-nonenal, specifically inhibits decarboxylating dehydrogenases in the matrix of plant mitochondria [J]. Febs Letters,2000,481(2):117-121.
    123. Mishra N P, Mishra R K, Singhal G S. Changes in the activities of anti-oxidant enzymes during exposure of intact wheat leaves to strong visible light at different temperatures in the presence of protein synthesis inhibitors [J]. Plant Physiology,1993,102(3):903-910.
    124. Mittler R. Oxidative stress, antioxidants and stress tolerance [J]. Trends in Plant Science, 2002,7(9):405-410.
    125. Mittler R, Zilinskas B A. Molecular cloning and nucleotide sequence analysis of a cDNA encoding pea cytosolic ascorbate peroxidase [J]. Febs Letters,1991,289(2):257-259.
    126. Mittova V, Theodoulou F L, Kiddle G, et al. Comparison of mitochondrial ascorbate peroxidase in the cultivated tomato, Lycopersicon esculentum, and its wild, salt-tolerant relative, L. pennellii-a role for matrix isoforms in protection against oxidative damage [J]. Plant, Cell & Environment,2004,27(2):237-250.
    127. Miyake C, Cao W, Asada K. Purification and molecular properties of the thylakoid-bound ascorbate peroxidase in spinach chloroplasts [J]. Plant and Cell Physiology,1993,34(6):881-889.
    128. Mohr P G, Cahill D M. Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. tomato [J]. Functional & Integrative Genomics,2007,7(3):181-191.
    129. Mullen R T, Trelease R N. The sorting signals for peroxisomal membrane-bound ascorbate peroxidase are within its C-terminal tail [J]. Journal of Biological Chemistry,2000,275(21): 16337-16344.
    130. Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures [J]. Physiologia Plantarum,1962,15(3):473-497.
    131.Najami N, Janda T, Barriah W, et al. Ascorbate peroxidase gene family in tomato:its identification and characterization [J]. Molecular Genetics and Genomics,2008,279(2):171-182.
    132. Nakamura M, Tsunoda T, Obokata J. Photosynthesis nuclear genes generally lack TATA-boxes:a tobacco photosystem I gene responds to light through an initiator [J]. The Plant Journal,2002,29(1):1-10.
    133. Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts [J]. Plant and Cell Physiology,1981,22(5):867-880.
    134. Narendra S, Venkataramani S, Shen G, et al. The Arabidopsis ascorbate peroxidase 3 is a peroxisomal membrane-bound antioxidant enzyme and is dispensable for Arabidopsis growth and development [J]. Journal of Experimental Botany,2006,57(12):3033-3042.
    135. Narusaka Y, Nakashima K, Shinwari Z K, et al. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses [J]. The Plant Journal,2003,34(2):137-148.
    136. Neustaedter D A, Lee S P, Douglas C J. A novel parsley 4CL1 cis-element is required for developmentally regulated expression and protein-DNA complex formation [J]. The Plant Journal, 1999,18(1):77-88.
    137. Nishiuchi T, Shinshi H, Suzuki K. Rapid and Transient Activation of Transcription of the ERF3 Gene by Wounding in Tobacco Leaves. POSSIBLE INVOLVEMENT OF NtWRKYs AND AUTOREPRESSION [J]. Journal of Biological Chemistry,2004,279(53):55355-55361.
    138. Odell J T, Nagy F, Chua N. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter [J],1985,313:810-812.
    139. Oh S, Song S I, Kim Y S, et al. Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth [J]. Plant Physiology,2005,138(1): 341-351.
    140. Oliveira I C, Brenner E, Chiu J, et al. Metabolite and light regulation of metabolism in plants: lessons from the study of a single biochemical pathway [J]. Brazilian Journal of Medical and Biological Research,2001,34(5):567-575.
    141.Onnrod D P, Landry L G, Conklin P L. Short-term UV-B radiation and ozone exposure effects on aromatic secondary metabolite accumulation and shoot growth of flavonoid-deficient Arabidopsis mutants [J]. Physiologia Plantarum,1995,93(4):602-610.
    142. Osakabe Y, Osakabe K, Chiang V L. Isolation of 4-coumarate Co-A ligase gene promoter from loblolly pine (Pinus taeda) and characterization of tissue-specific activity in transgenic tobacco [J]. Plant Physiology and Biochemistry,2009a,47(11-12):1031-1036.
    143. Osakabe Y, Osakabe K, Chiang V L. Characterization of the tissue-specific expression of phenylalanine ammonia-lyase gene promoter from loblolly pine (Pinus taeda) in Nicotiana tabacum [J]. Plant Cell Reports,2009b,28(9):1309-1317.
    144. Park H C, Kim M L, Kang Y H, et al. Pathogen-and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor [J]. Plant Physiology,2004,135(4):2150-2161.
    145. Pattanaik S, Kong Q, Zaitlin D, et al. Isolation and functional characterization of a floral tissue-specific R2R3 MYB regulator from tobacco [J]. Planta,2010,231(5):1061-1076.
    146. Patzlaff A, Mcinnis S, Courtenay A, et al. Characterisation of a pine MYB that regulates lignification [J]. The Plant Journal,2003,36(6):743-754.
    147. Pellequer J L, Westhof E, Van Regenmortel M H V. Correlation between the location of antigenic sites and the prediction of turns in proteins [J]. Immunology Letters,1993,36(1):83-99.
    148. Piechulla B, Merforth N, Rudolph B. Identification of tomato Lhc promoter regions necessary for circadian expression [J]. Plant Molecular Biology,1998,38(4):655-662.
    149. Qin X, Zeevaart J A D. Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance [J]. Plant Physiology,2002,128(2):544-551.
    150. Raha S, Robinson B H. Mitochondria, oxygen free radicals, disease and ageing [J]. Trends in Biochemical Sciences,2000,25(10):502-508.
    151. Rahantamalala A, Rech P, Martinez Y, et al. Coordinated transcriptional regulation of two key genes in the lignin branch pathway-CAD and CCR-is mediated through MYB-binding sites [J]. BMC plant biology,2010,10(1):130.
    152. Rani A, Singh K, Sood P, et al. p-Coumarate:CoA ligase as a key gene in the yield of catechins in tea [Camellia sinensis (L.) O. Kuntze] [J]. Functional & Integrative Genomics,2009, 9(2):271-275.
    153. Redman J, Whitcraft J, Johnson C, et al. Abiotic and biotic stress differentially stimulate as-1 element activity in Arabidopsis [J]. Plant Cell Reports,2002,21(2):180-185.
    154. Rose A, Meier Ⅰ, Wienand U. The tomato I-box binding factor LeMYBI is a member of a novel class of Myb-like proteins [J]. The Plant Journal,1999,20(6):641-652.
    155. Rubio-Somoza I, Martinez M, Abraham Z, et al. Ternary complex formation between HvMYBS3 and other factors involved in transcriptional control in barley seeds [J]. The Plant Journal,2006,47(2):269-281.
    156. Rushton P J, Reinstadler A, Lipka V, et al. Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen-and wound-induced signaling [J]. The Plant Cell,2002,14(4):749-762.
    157. Schledzewski K, Mendel R. Quantitative transient gene expression:Comparison of the promoters for maize polyubiquitinl, rice actinl, maize-derived Emu and CaMV 35S in cells of barley, maize and tobacco [J]. Transgenic Research,1994,3(4):249-255.
    158. Schneidereit A. Scholz-Starke J. Buttner M. Functional characterization and expression analyses of the glucose-specific AtSTP9 monosaccharide transporter in pollen of Arabidopsis [J]. Plant Physiology,2003,133(1):182-190.
    159. Schutzendubel A, Schwanz P, Teichmann T, et al. Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots [J]. Plant Physiology,2001,127(3):887-898.
    160. Sederoff R R, Mackay J J, Ralph J, et al. Unexpected variation in lignin [J]. Current Opinion in Plant Biology,1999,2(2):145-152.
    161. Seguin A, Laible G, Leyva A, et al. Characterization of a gene encoding a DNA-binding protein that interacts in vitro with vascular specific cis elements of the phenylalanine ammonia-lyase promoter [J]. Plant Molecular Biology,1997,35(3):281-291.
    162. Sharp K H, Mewies M, Moody P C, et al. Crystal structure of the ascorbate peroxidase-ascorbate complex [J]. Nature Structural Biology,2003,10(4):303-307.
    163. Sharp K H, Moody P C E, Brown K A, et al. Crystal structure of the ascorbate peroxidase-salicylhydroxamic acid complex [J]. Biochemistry,2004,43(27):8644-8651.
    164. Shen Q, Chen C N, Brands A, et al. The stress-and abscisic acid-induced barley gene HVA22: developmental regulation and homologues in diverse organisms [J]. Plant Molecular Biology, 2001,45(3):327-340.
    165. Shen Q, Gomez-Cadenas A, Zhang P, et al. Dissection of abscisic acid signal transduction pathways in barley aleurone layers [J]. Plant Molecular Biology,2001,47(3):437-448.
    166. Shigeoka S, Ishikawa T, Tamoi M, et al. Regulation and function of ascorbate peroxidase isoenzymes [J]. Journal of Experimental Botany,2002,53(372):1305-1319.
    167. Silva-Filho M C. One ticket for multiple destinations:dual targeting of proteins to distinct subcellular locations [J]. Current Opinion in Plant Biology,2003,6(6):589-595.
    168. Sivanandan C, Sujatha T P, Prasad A M, et al. T-DNA tagging and characterization of a cryptic root-specific promoter in Arabidopsis [J]. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression,2005,1731(3):202-208.
    169. Solano R, Nieto C, Avila J, et al. Dual DNA binding specificity of a petal epidermis-specific MYB transcription factor (MYB. Ph3) from Petunia hybrida [J]. The EMBO journal,1995,14(8): 1773-1784.
    170. Soltani B M, Ehlting J, Hamberger B, et al. Multiple cis-regulatory elements regulate distinct and complex patterns of developmental and wound-induced expression of Arabidopsis thaliana 4CL gene family members [J]. Planta,2006,224(5):1226-1238.
    171. Stone J R, Yang S. Hydrogen peroxide:a signaling messenger [J]. Antioxidants & Redox Signaling,2006,8(3-4):243-270.
    172. Sugimoto K, Takeda S, Hirochika H. Transcriptional activation mediated by binding of a plant GATA-type zinc finger protein AGP1 to the AG-motif (AGATCCAA) of the wound-inducible Myb gene NtMyb2 [J]. The Plant Journal,2003,36(4):550-564.
    173. Suzuki H, Fowler T J, Tierney M L. Deletion analysis and localization of SbPRP1, a soybean cell wall protein gene, in roots of transgenic tobacco and cowpea [J]. Plant Molecular Biology, 1993,21(1):109-119.
    174. Svensson J T, Crosatti C, Campoli C, et al. Transcriptome analysis of cold acclimation in barley Albina and Xantha mutants [J]. Plant Physiology,2006,141(1):257-270.
    175. Takeda S, Sugimoto K, Otsuki H, et al. A 13-bp cis-regulatory element in the LTR promoter of the tobacco retrotransposon Ttol is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors [J]. The Plant Journal,1999,18(4):383-393.
    176. Tapia G, Verdugo I, Yanez M, et al. Involvement of ethylene in stress-induced expression of the TLC1.1 retrotransposon from Lycopersicon chilense Dun. [J]. Plant Physiology,2005,138(4): 2075-2086.
    177. Tatematsu K, Ward S, Leyser O, et al. Identification of cis-elements that regulate gene expression during initiation of axillary bud outgrowth in Arabidopsis [J]. Plant Physiology,2005, 138(2):757-766.
    178. Taylor J E, Renwick K F, Webb A A R, et al. ABA-regulated promoter activity in stomatal guard cells [J]. The Plant Journal,1995,7(1):129-134.
    179. Teixeira F K, Menezes-Benavente L, Galvao V C, et al. Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments [J]. Planta,2006,224(2):300-314.
    180. Teixeira F K, Menezes-Benavente L, Margis R, et al. Analysis of the molecular evolutionary history of the ascorbate peroxidase gene family:inferences from the rice genome [J]. Journal of Molecular Evolution,2004,59(6):761-770.
    181. Torel J, Cillard J, Cillard P. Antioxidant activity of flavonoids and reactivity with peroxy radical [J]. Phytochemistry,1986,25(2):383-385.
    182. Tsuchiya T, Toriyama K, Ejiri S, et al. Molecular characterization of rice genes specifically expressed in the anther tapetum [J]. Plant Molecular Biology,1994,26(6):1737-1746.
    183. Uhlmann A, Ebel J. Molecular cloning and expression of 4-coumarate:coenzyme A ligase, an enzyme involved in the resistance response of soybean (Glycine max L.) against pathogen attack [J]. Plant Physiology,1993,102(4):1147-1156.
    184. Vance C P, Kirk T K, Sherwood R T. Lignification as a mechanism of disease resistance [J]. Annual Review of Phytopathology,1980,18(1):259-288.
    185. Vickers C E, Xue G, Gresshoff P M. A novel cis-acting element, ESP, contributes to high-level endosperm-specific expression in an oat globulin promoter [J]. Plant Molecular Biology, 2006,62(1):195-214.
    186. Voo K S, Whetten R W, O'Malley D M, et al.4-Coumarate:coenzyme A ligase from loblolly pine xylem (isolation, characterization, and complementary DNA cloning) [J]. Plant Physiology, 1995,108(1):85-97.
    187. Wei X, Wang X. Evolution of 4-coumarate:coenzyme A ligase (4CL) gene and divergence of Larix (Pinaceae) [J]. Molecular Phylogenetics and Evolution,2004,31(2):542-553.
    188. Whetten R, Sederoff R. Lignin biosynthesis [J]. The Plant Cell,1995,7(7):1001-1013.
    189. Wilkins M R, Gasteiger E, Tonella L, et al. Protein identification with N and C-terminal sequence tags in proteome projects [J]. Journal of Molecular Biology,1998,278(3):599-608.
    190. Wu S C, Hahlbrock K. In situ localization of phenylpropanoid-related gene expression in different tissues of light-and dark-grown parsley seedlings [J]. Zeitschrift fuer Naturforschung, Section C, Biosciences,1992,47(7-8):591-600.
    191. Xu N, Hagen G, Guilfoyle T. Multiple auxin response modules in the soybean SAUR 15A promoter [J]. Plant Science,1997,126(2):193-201.
    192. Yadav V, Kundu S, Chattopadhyay D, et al. Light regulated modulation of Z-box containing promoters by photoreceptors and downstream regulatory components, COP1 and HY5, in Arabidopsis [J]. The Plant Journal,2002,31(6):741-753.
    193. Yamagata H, Yonesu K, Hirata A, et al. TGTCACA motif is a novel cis-regulatory enhancer element involved in fruit-specific expression of the cucumisin gene [J]. Journal of Biological Chemistry,2002,277(13):11582-11590.
    194. Yamauchi D, Zentella R, Ho T. Molecular analysis of the barley (Hordeum vulgare L.) gene encoding the protein kinase PKABA1 capable of suppressing gibberellin action in aleurone layers [J]. Planta,2002,215(2):319-326.
    195.Zaenen Ⅰ, Van Larebeke N, Teuchy H, et al. Supercoiled circular DNA in crown-gall inducing Agrobacterium strains [J]. Journal of Molecular Biology,1974,86(1):109-127.
    196. Zhang J, Li L, Song Y. Identification of seed-specific promoter nap300 and its comparison with 7S promoter [J]. Progress in Natural Science,2002,12(10):737-741.
    197. Zhang X H, Chiang V L. Molecular cloning of 4-coumarate:coenzyme A ligase in loblolly pine and the roles of this enzyme in the biosynthesis of lignin in compression wood [J]. Plant Physiology,1997,113(1):65-74.
    198. Zhang Y, Li H, Shu W, et al. RNA interference of a mitochondrial APX gene improves vitamin C accumulation in tomato fruit [J]. Scientia Horticulturae,2011,129(2):220-226.
    199. Zhang Z L, Shin M, Zou X, et al. A negative regulator encoded by a rice WRKY gene represses both abscisic acid and gibberellins signaling in aleurone cells [J]. Plant Molecular Biology,2009,70(1):139-151.
    200. Zhao Q, Dixon R A. Transcriptional networks for lignin biosynthesis:more complex than we thought? [J]. Trends in Plant Science,2011,16(4):227-233.
    201. Zhao Y, Kung S D, Dube S K. Nucleotide sequence of rice 4-coumarate:CoA ligase gene, 4-CL.1 [J]. Nucleic Acids Research,1990,18(20):6144.
    202. Zhou J, Lee C, Zhong R, et al. MYB58 and MYB63 Are Transcriptional Activators of the Lignin Biosynthetic Pathway during Secondary Cell Wall Formation in Arabidopsis [J]. The Plant Cell,2009,21(1):248-266.
    203. Zhou M, Diwu Z, Panchuk-Voloshina N, et al. A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide:applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. [J]. Analytical Biochemistry,1997, 253(2):162-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700