用户名: 密码: 验证码:
WT1在乳腺癌进展中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳腺癌是女性最常见和死亡率最高的恶性肿瘤。侵袭转移是恶性肿瘤重要的生物学特征,也是导致乳腺癌患者死亡的主要原因,但具体过程和机理至今尚不明确。因此,进一步研究乳腺癌侵袭转移机制并探索有效的防控措施,对提高患者的生存率和生存质量具有重要意义。恶性肿瘤的发生和侵袭转移过程受多层次、多因素调控,癌基因与抑癌基因作用的失衡是其中的关键环节之一。因此,寻找新的或进一步揭示已有癌基因或抑癌基因的功能,对阐明恶性肿瘤发生和演进机理、研发潜在治疗靶点具有重要意义。
     Wilms瘤基因1(Wilms’ tumor gene1,WT1)首先在肾母细胞瘤(又称Wilms瘤)中作为抑癌基因被克隆鉴定,定位于11p13。WT1编码产物是一种具有转录激活和抑制双重功能的锌指转录因子。在发育过程中,WT1通过调控多种靶基因和信号通路参与心脏、肾脏和脾脏等器官的形成。研究表明WT1在成体组织中的异常表达与多种恶性肿瘤的发生密切相关,但根据细胞特征不同,其可发挥癌基因或抑癌基因作用。一方面,在Wilms瘤等儿童恶性肿瘤中,WT1通过干扰细胞增殖信号等途径抑制细胞生长,发挥抑癌基因作用;另一方面,WT1可增强肿瘤细胞得抗凋亡能力,并通过调控原癌基因K-ras促进细胞增殖,提示WT1也能发挥癌基因作用。
     根据目前关于WT1与乳腺癌的临床研究结果,多数学者倾向于认为WT1在乳腺癌中发挥癌基因作用,但该结论并未得到所有研究团队的证实、仍存一定争议。系统回顾WT1在乳腺癌领域的研究成果,我们发现:WT1的表达情况与乳腺癌患者临床病理特征及预后的关系至今尚无明确结论,尤其是其在乳腺癌不同分子亚型中的表达是否存在差异未见文献报道。同时,WT1在乳腺癌进展中的具体作用和机制至今尚不清楚,其促进还是抑制细胞增殖尚存争议,而其是否参与乳腺癌的侵袭转移过程、具体作用及分子机制如何,未见文献报道。此外,虽然已知WT1可调控下游多种生长因子发挥生物学作用,但对其上游调控机制的研究和认识甚少。
     针对上述问题,本研究通过生物信息学方法挖掘、分析已公布的基因芯片数据,阐明WT1mRNA与乳腺癌分子亚型及患者预后的关系;通过免疫组织化学(immunohistochemistry,IHC)的方法检测乳腺癌组织WT1蛋白表达情况,并分析其与患者临床病理特征的关系。采用RNA干扰(RNAinterfering,RNAi)技术下调WT1表达,采用RNA激活(RNA activating, RNAa)技术上调WT1表达,借此分析WT1在乳腺癌细胞增殖、凋亡、周期、侵袭及迁移中的作用,并以细胞增殖及转移关键分子—抑制分化抑制因子1(inhibitor of differentiation1)为切入点初步探讨WT1发挥生物学功能的分子机制。同时,通过建立转化生长因子β1(transforming growth factorβ1,TGF-β1)诱导的上皮间质转化(epithelial-mesenchymal transition, EMT)细胞模型,探索TGF-β1对WT1的调控作用及效应;通过对TGF-β1单核甘酸多态性(single nucleotide polymorphisms,SNPs)与乳腺癌发病风险的关系进行meta分析,进一步揭示其与乳腺癌发生的关系。通过上述研究以期初步探讨WT1在乳腺癌进展中的作用及分子机制,为进一步揭示WT1在恶性肿瘤中生物学行为提供实验依据,为恶性肿瘤的分子靶点的研发提供新的思路。
     实验方法和主要结果
     1. WT1与乳腺癌原发肿瘤特征及预后的关系
     方法:利用生物信息学的方法挖掘包含266例乳腺癌患者的GSE21653基因芯片数据,分析WT1mRNA表达水平与乳腺癌分子亚型及预后的关系;免疫组织化学法检测46例乳腺癌组织WT1蛋白表达情况,分析其与患者临床病理特征的关系。
     结果:在GSE21653中,WT1mRNA在组织学分级高(G2vs. G1, P=0.0260; G3vs.G1, P=8.04e-5)、ER阴性(ER阴性vs. ER阳性, P=0.0500)、Basal-like型及ERBB2/HER-2过表达型(Basal-like型vs. Luminal A型, P=0.0049; Basal-like型vs. Luminal型,P=0.0350; ERBB2/HER-2过表达型vs. Luminal型, P=0.0350)的乳腺癌患者中表达水平明显升高。单变量分析显示WT1mRNA高表达患者的无病生存率显著低于低表达患者(风险比[HR]=3.294,95%可信区间[CI]=1.198-9.055, P=0.014),多变量分析显示WT1是乳腺癌患者的独立预后不良因素(HR=3.4539,95%CI=1.2029-9.918, P=0.0213;WT1mRNA高表达患者vs. WT1mRNA低表达患者)。在46例乳腺癌患者中,WT1蛋白阳性表达率为84.8%(39/46)。WT1表达与患者年龄、肿瘤部位、肿瘤大小、淋巴结分期、TNM分期、ER、PR、HER-2状态及分子亚型均无明显关系(P>0.05)。
     2. WT1在乳腺癌中的生物学作用及下游信号分子机制初步探讨
     方法:qRT-PCR、Western blotting(WB)和免疫细胞化学法检测WT1在人乳腺癌MCF-7、Bcap-37、SKBR-3及MDA-MB-321细胞中的表达情况,筛选WT1高表达和低表达细胞。以国外学者提供的三条序列为靶点构建WT1小干扰RNA(siRNA)以沉默表达WT1,以文献公布的、已证实可上调表达WT1的序列构建双链RNA(dsRNA)以过表达WT1,通过脂质体法分别转染MDA-MB-321和MCF-7细胞,通过qRT-PCR和WB筛选作用效果最明显的siRNA和dsRNA。利用CCK8、Annexin V/PI及transwell法观测干扰WT1表达后对乳腺癌细胞增殖、凋亡、周期、侵袭及迁移能力的影响。同时通过qRT-PCR和WB检测干扰WT1后对细胞Id1蛋白表达水平的影响。
     结果:WT1在MDA-MB-321中的表达水平明显高于其在MCF-7、Bcap-37和SKBR-3中的表达水平,确定以MDA-MB-231作为RNAi细胞模型、以MCF-7作为RNAa细胞模型。成功构建三个WT1siRNA并转染到MDA-MB-231细胞中,均能够有效抑制WT1mRNA和蛋白的表达,以转染48h时WT1siRNA-1029的效果最为显著。使用WT1siRNA-1029转染MDA-MB-231细胞、干扰其WT1表达后,细胞的增殖能力下降,同时早期、晚期凋亡细胞和G1期细胞比例增加,S期和G2期细胞比例降低,细胞的侵袭及迁移能力降低;干扰WT1可下调Id1蛋白的表达水平并使细胞的侵袭迁移能力下降。成功将WT1dsRNA-319转染到MCF-7细胞中,在50μmol/L、转染96h时WT1dsRNA-319对MCF-7细胞WT1的过表达作用最为显著,且这一过程伴随MCF-7细胞增殖、侵袭及迁移能力的增高。
     3. TGF-β1调控WT1表达的效应观察研究及TGF-β1单核甘酸多态性与乳腺癌发病风险关系的meta分析
     方法:使用TGF-β1(浓度:10ng/ml,作用时间:48h)诱导MCF-7细胞,观察细胞形态变化、WT1mRNA、蛋白水平改变情况以及细胞侵袭迁移能力变化。利用计算机检索截止2010年3月MEDLINE、PubMed、Web of Science、EMBASE、CNKI、万方、VIP和中国生物医学服务系统(SinoMed)等数据库中有关TGF-β1T869C和C-509T多态性与乳腺癌发病风险关系的研究,根据纳入标准提取有效数据后,采用STATA软件进行meta分析。
     结果:加入TGF-β1可使乳腺癌MCF-7细胞由上皮细胞样形态转变为间质细胞样形态,这一过程伴随WT1mRNA和蛋白表达水平的显著升高,同时还可使MCF-7细胞的侵袭及迁移能力明显增高。Meta分析结果显示,TGF-β1基因T869C多态性的C等位基因与总体人群乳腺癌发病风险无关(C vs. T: OR=1.033,95%CI=0.996–1.072),但亚群分析显示其与高加索人乳腺癌发病风险增高有关(C vs. T: OR=1.051,95%CI=1.018–1.085; CC vs. TT+TC: OR=1.083,95%CI=1.019–1.151);TGF-β1基因C-509T多态性的T等位基因与总体人群乳腺癌发病风险无关(T vs. C: OR=0.986,95%CI=0.936–1.039)。
     结论
     1、WT1在乳腺癌中发挥癌基因样功能,可增强乳腺癌细胞的增殖、侵袭及迁移能力,导致乳腺癌恶性程度增加。依据有:①WT1在组织学分级高、ER阴性的Basal-like型、HER-2过表达型的乳腺癌中表达水平显著增高,WT1高表达可能是乳腺癌患者的独立预后不良因素;②干扰WT1表达可使MDA-MB-231细胞的增殖、侵袭及迁移能力降低,而过表达WT1可使MCF-7细胞的增殖、侵袭及迁移能力升高。
     2、TGF-β1可能是WT1的上游调控分子,而Id1可能是WT1的下游靶分子。依据有:①TGF-β1可上调MCF-7的WT1表达水平,并增强细胞的侵袭迁移能力;②干扰MDA-MB-231细胞的WT1表达,可导致Id1表达水平降低以及细胞侵袭迁移能力的下降。
     3、TGF-β1基因T869C多态性的C等位基因与高加索人群乳腺癌发病风险升高有关,提示:检测TGF-β1基因T869C多态性有助于从遗传角度评估乳腺癌发病风险。
Breast cancer is the most common malignant tumor in women, with the highestmortality. There are1.3million people newly diagnosed as breast cancer and450,000diedof it each year worldwide. Invasion and metastasis is a major biological characteristic ofmalignant tumors, and the leading cause of death, but its process and mechanism is notclear so far. Therefore, it is necessary to further study breast cancer invasion and metastasismechanism and to explore effective regimen of disease prevention and control, which ishelpful to improve the survival and quality of life for breast cancer patients.
     The occurrence, invasion and metastasis of malignant tumors are multi-level,multi-factor mediated, and the imbalance of oncogenes and tumor suppressor gene plays akey role in the process. So searching for new genes or further revealing the functions ofexisting oncogene or tumor suppressor gene is important to demonstrate the developmentmechanism of malignancy and investigate the potential therapeutic targets.
     Wilms' tumor gene1, WT1, first identified as a tumor suppressor gene innephroblastoma, located at11p13. WT1encoding product is a zinc finger transcriptionfactor with double functions of transcription activation and inhibition. During the physicaldevelopment of human body, WT1regulates multiple target genes and signaling pathways,so as to be involved in the formation of the heart, kidneys, spleen and other organs. Theprevious study shows that the abnormal expression of WT1in adult tissues is closelyrelated to many kinds of malignant tumors, but it may act as oncogene or tumor suppressorgene depending on the different cellular characteristics. On one hand, in the childhoodmalignancies such as Wilms' tumor, WT1can inhibit cell growth by interfering cellproliferation signals, which can be regarded as tumor suppressor genes; on the other hand, WT1can enhance tumor cell resistance to apoptosis, and promote cell proliferation throughregulation of proto-oncogene K-ras, suggesting that WT1can also play an oncogenic role.
     It is previously reported that WT1is highly expressed in breast cancer tissue, but notexpressed in adjacent tissues, indicating that WT1acts as an oncogene in breast cancer, butits mechanism remains unclear, especially on the issues whether it is involved in breastcancer invasion and metastasis, as well as the specific role and molecular mechanisms. Upto now, there is no definite conclusion yet on the relation of WT1expression with theclinical and pathological features and prognosis of breast cancer patients, especially on thedifference of WT1expression in different molecular subtypes of breast cancer. In addition,up-stream mechanism of WT1expression regulation is largely unknown.
     This study performed bioinformatics analysis of the microarray data, which have beenpublished, to clarify the relationship between WT1mRNA and breast cancer molecularsubtypes and patients’ prognosis; detected WT1protein expression in breast cancer tissueby immunohistochemistry (IHC) method and analyzed its relationship with clinicalpathological features. Then we applied RNA interfering (RNAi) technology todown-regulate WT1expression, RNA activating (RNAa) technology to up-regulate WT1expression, and accordingly analyzed the role of WT1in proliferation, apoptosis, cell cycle,invasion and migration of breast cancer cells. We also explored the molecular mechanismsof WT1’s biological function, with the key molecule of the cell proliferation and metastasis–inhibitor of differentiation1(Id1) as target gene. In addition, we established aepithelial-mesenchymal transition (EMT) cell model to study the regulation of WT1bytransforming growth factor β1(TGF-β1), and a meta-analysis on the relationship betweenTGF-β1single nucleotide polymorphisms (SNPs) and onset risk of breast cancer wasconducted. By a series of experiments, this study explored the role of WT1in thedevelopment of breast cancer and its mechanism, providing experimental references forfurther study on biological behavior of WT1in malignant tumors, and new perspective onthe research and development of molecular targets in malignant tumors.
     Methods&Results
     1. Relationship between WT1and clinical and pathological features and prognosis of breast cancer
     METHODS: The GSE21653microarray data involved in266breast cancer patientswere processed using bioinformatics method to analyze the relationship of WT1mRNAexpression with molecular subtypes and prognosis of breast cancer. Immunohistochemicalstaining was used to detect WT1protein expression in46cases of breast cancer tissues, andits relationship with clinical pathological features was analyzed.
     Results: In GSE21653, WT1mRNA expression was significantly increased in breastcancer patients with higher histological grading (G2vs. G1, P=0.0260; G3, vs. G1, P=8.04e-5), ER-negative (ER-negative vs. ER-positive, P=0.0500), Basal-like type andERBB2/HER-2overexpression type (Basal-like type vs. Luminal type A, P=0.0049;Basal-like vs. luminal-type B, P=0.0350; ERBB/HER-2overexpression type vs.luminal-type, P=0.0350). Univariate analysis showed that the disease-free survival wassignificantly lower in patients with WT1mRNA high expression than in patients with WT1mRNA low expression (hazard ratio [HR]=3.294,95%confidence interval [CI]=1.198-9.055, P=0.014). The multivariate analysis showed that WT1is an independent poorprognostic factors for breast cancer patients (HR=3.4539,95%CI=1.2029-9.918, P=0.0213; the patients with WT1mRNA high expression vs. the patients with WT1mRNAlow expression). In46cases of breast cancer, the WT1protein expression level wasdetected by immunohistochemistry. The positive expression rate of WT1protein in breastcancer was84.8%(39/46). There are no significant differences among WT1proteinexpression and other clinicopathological parameters of breast cancer (P>0.05).
     2. Role of WT1in the proliferation, apoptosis, invasion and migration of breastcancer cells and its possible mechanism
     Methods: qRT-PCR, western blotting (WB) and immunocytochemical methods wereused to detect the expression of WT1in human breast cancer MCF-7, Bcap-37, SKBR-3and MDA-MB-321cells. The cells with WT1high expression and low expression werescreened. Three sequences established by foreign scholars were adopted to construct WT1small interfering RNA (siRNA); one sequence domenstrated to be able to up-regulate WT1expression was adopted to construct WT1double strands RNA (dsRNA). Cells were liposome-mediated transfected; qRT-PCR and western blotting were performed to selectsiRNA and dsRNA with obvious evidence of impacts on WT1expression. Using CCK8,Annexin V/PI and transwell methods, the proliferation, apoptosis, cycle, invasion andmigration of breast cancer cells after interfering WT1expression were observed. The effectof interfering WT1on Id1expression in cells was determined by WB.
     Results: The WT1expression in MDA-MB-321cells was significantly higher thanthat in MCF-7, Bcap-37and SKBR-3cells, so MDA-MB-231cell was taken as RNAimodel and MCF-7was taken as RNAa model. Three WT1siRNAs were successfullyconstructed and transfected into MDA-MB-231cells, which can effectively inhibit theexpression of WT1mRNA and protein in48h after transfection. Interfering WT1expression can decrease MDA-MB-231cell proliferation, so the proportion of apoptoticcells,cells in G1phase increased and cells in S and G2phase decreased, and the invasionand migration ability of the cells reduced, which may be attributed to the down-regulatedexpression of Id1. WT1dsRNA could increase the expression of WT1in MCF-7cell andpromoted the proliferation, invasion and migration of MCF-7cell.
     3. Functions of TGF-β1up-regulating WT1in breast cancer, and meta-analysison the relationship between TGF-β1single nucleotide polymorphisms and onset risk ofbreast cancer
     Methods: TGF-β1was used to induce WT1expression in MCF-7cell with10ng/mlfor48h, which was detected by qRT-PCR and WB. Using transwell methods to assessinvasion and migration of MCF-7cell after treatment of TGF-β1. The literature inMEDLINE, PubMed, Web of Science, EMBASE, CNKI and Articles, VIP and biomedicalservice system (SinoMed) database up to March2010was retrieved on the relationshipbetween TGF-β1T869C as well as TGF-β1C-509T and breast cancer risk. According tothe inclusion criteria, the effective data were extracted and then meta-analysis wasconducted using STATA software.
     Results: TGF-β1could result in the morphologic change of MCF-7cell, chaning fromepithelial-like to mesenchymanl-like. In addition, TGF-β1could up-regulate the expressionof WT1in MCF-7cell after treatment, and enhance the ability of invasion and migration. TGF-β1T869C is independent of the overall risk of breast cancer in general population (Cvs. T: OR=1.033,95%CI=0.996-1.072), but subgroup analysis showed that TGF-β1T869C is related to the risk of breast cancer in Caucasians (C vs. T: OR=1.051,95%CI=1.018-1.085; CC vs. TT+TC: OR=1.083,95%CI=1.019-1.151); TGF-β1C-509T hasnothing to do with the risk of breast cancer in general population (T vs. C: OR=0.986,95%CI=0.936-1.039).
     Conclusions
     1. WT1play an oncogenic-like role in the progression of breast cancer, promoting theproliferation, invasion and migration and increasing the degree of malignancy of breastcancer cells, which are based on the following evidences:①The WT1mRNA expression issignificantly increased in the breast cancer with higher histological grade, ER-negative andBasal-like type, and HER-2overexpression and WT1is an independent factor for poorprognosis of breast cancer patients.②Interfering WT1expression can decrease theproliferation, invasion and migration of MDA-MB-231cell, while up-regulating WT1expression can increase the proliferation, invasion and migration of MCF-7cell.
     2. TGF-β1might be the up-stream molecular for WT1because it could up-regulatethe expression of WT1MCF-7cell and promote its invasion and migration. Id1might thedown-stream molecular of WT1because WT1RNA interfering could down-regulate theexpression of WT1MDA-MB-231cell and inhibit its invasion and migration.
     3. TGF-β1T869C SNP is related to the high risk of breast cancer in Caucasians,which indicated that detection of TGF-β1SNP might contribute to the screening andprevention of breast cancer.
引文
1. Jemal A, Bray F, Center MM, et al. Global Cancer Statistics. CA Cancer J Clin,2011,61(2):69-90.
    2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell,2011,144(5):646-674.
    3. Gumireddy K, Li A, Gimotty PA, et al. KLF17is a negative regulator ofepithelial-mesenchymal transition and metastasis in breast cancer. Nat Cell Biol,2009,11(11):1297-1304.
    4. Haber DA, Buckler AJ, Glaser T, et al. An internal deletion within an11p13zinc fingergene contributes to the development of Wilms' tumor. Cell,1990,61(7):1257-1269.
    5. Stoll R, Lee BM, Debler EW, et al. Structure of the Wilms tumor suppressor proteinzinc finger domain bound to DNA. J Mol Biol,2007,372(5):1227-1245.
    6. Loeb DM, Sukumar S. The role of WT1in oncogenesis: tumor suppressor or oncogene?Int J Hematol,2002,76(2):117-126.
    7. Hohenstein P, Hastie ND. The many facets of the Wilms' tumour gene, WT1. Hum MolGenet,2006,15(Spec No2):R196-201.
    8. Yang L, Han Y, Suarez Saiz F, et al. A tumor suppressor and oncogene: the WT1story.Leukemia,2007,21(5):868-876.
    9. Sugiyama H. WT1(Wilms' tumor gene1): biology and cancer immunotherapy. Jpn JClin Oncol,2010,40(5):377-387.
    10. Huff V. Wilms' tumours: about tumour suppressor genes, an oncogene and a chameleongene. Nat Rev Cancer,2011,11(2):111-121.
    11. Martínez-Estrada OM, Lettice LA, Essafi A, et a. Wt1is required for cardiovascularprogenitor cell formation through transcriptional control of Snail and E-cadherin. NatGenet,2010,42(1):89-93.
    12. Kirschner KM, Sciesielski LK, Scholz H. Wilms' tumor protein Wt1stimulatestranscription of the gene encoding vascular endothelial cadherin. Pflügers Arch,2010,460(6):1051-1061.
    13. Huang B, Pi L, Chen C, et al. WT1and Pax2re-expression is required forepithelial-mesenchymal transition in5/6nephrectomized rats and cultured kidneytubular epithelial cells. Cells Tissues Organs,2012,195(4):296-312.
    14. Scharnhorts V, van der Eb A, Jochemsen AG. WT1proteins: functions in growth anddifferentiation. Gene,2001,273(2):141-161.
    15. Hylander B, Repasky E, Shrikant P, et al. Expression of Wilms tumor gene (WT1) inepithelial ovarian cancer. Gynecol Oncol,2006,101(1):12-17
    16. Essafi A, Hastie ND. WT1the oncogene: a tale of death and HtrA. Mol Cell,2010,37(2):153-155.
    17. Vicent S, Chen R, Sayles LC, et al. Wilms tumor1(WT1) regulates KRAS-drivenoncogenesis and senescence in mouse and human models. J Clin Invest,2010,120(11):3940-3952.
    18. Silberstein GB, Van Horn K, Strickland P, et al. Altered expression of the WT1wilmstumor suppressor gene in human breast cancer. Proc Natl Acad Sci U S A,1997,94(15):8132-8137.
    19. Loeb DM, Evron E, Patel CB, et al. Wilms' tumor suppressor gene (WT1) is expressedin primary breast tumors despite tumor-specific promoter methylation. Cancer Res,2001,61(3):921-925.
    20. Miyoshi Y, Ando A, Egawa C, et al. High expression of Wilms' tumor suppressor genepredicts poor prognosis in breast cancer patients. Clin Cancer Res,2002,8(5):1167-1171.
    21. Oji Y, Miyoshi Y, Kiyotoh E, et al. Absence of mutations in the Wilms' tumor geneWT1in primary breast cancer. Jpn J Clin Oncol,2004,34(2):74-77.
    22. Camc C, Kalender ME, Payda S, et al. Prognostic significance of Wilms Tumor1(WT1) protein expression in breast cancer. Gaziantep Med J,2011,17(2):67-72.
    23. Zhang TF, Yu SQ, Guan LS, et al. Inhibition of breast cancer cell growth by the Wilms'tumor suppressor WT1is associated with a destabilization of beta-catenin. AnticancerRes,2003,23(5A):3575-3584.
    24. Reizner N, Maor S, Sarfstein R, et al. The WT1Wilms' tumor suppressor gene productinteracts with estrogen receptor-alpha and regulates IGF-I receptor gene transcription inbreast cancer cells. J Mol Endocrinol,2005,35(1):135-144.
    25. Wang L, Wang ZY. The Wilms' tumor suppressor WT1inhibits malignant progressionof neoplastigenic mammary epithelial cells. Anticancer Res,2008,28(4B):2155-2160.
    1. Sabatier R, Finetti P, Cervera N, et al. A gene expression signature identifies twoprognostic subgroups of basal breast cancer. Breast Cancer Res Treat,2011,126(2):407-420.
    2. Finetti P, Cervera N, Charafe-Jauffret E, et al. Sixteen-kinase gene expression identifiesluminal breast cancers with poor prognosis. Cancer Res,2008,68(3):767-776.
    3. Irizarry RA, Hobbs B, Collin F, et al. Exploration, normalization, and summaries ofhigh density oligonucleotide array probe level data." Biostatistics,2003,4(2):249-264.
    4. Nie H, Neerincx PB, van der Poel J, et al. Microarray data mining using Bioconductorpackages. BMC Proc,2009,3(Suppl4): S9.
    5. Crawford JR, Garthwaite PH. Single-case research in neuropsychology: A comparisonof five forms of t-test for comparing a case to controls. Cortex,2011Jul23.[Epubahead of print]
    6. Diboun I, Wernisch L, Orengo CA, et al. Microarray analysis after RNA amplificationcan detect pronounced differences in gene expression using limma. BMC Genomics,2006,7:252.
    7. Harvey JM, Clark GM, Osborne CK, et al. Estrogen receptor status byimmunohistochemistry is superior to the ligand-binding assay for predicting responseto adjuvant endocrine therapy in breast cancer.J Clin Oncol,1999,17(5):1474-1481.
    8. Hammond ME, Hayes DF, Dowsett M, et al. American Society of ClinicalOncology/College Of American Pathologists guideline recommendations forimmunohistochemical testing of estrogen and progesterone receptors in breast cancer. JClin Oncol,2010,28(16):2784-2795.
    9. Hammond ME, Hayes DF, Wolff AC, et al. American society of clinicaloncology/college of american pathologists guideline recommendations forimmunohistochemical testing of estrogen and progesterone receptors in breast cancer. JOncol Pract,2010,6(4):195-197.
    10.《乳腺癌HER2检测指南(2009版)》编写组.乳腺癌HER2检测指南(2009版).中华病理学杂志,2009,38(12):836-840.
    11. Wolff AC, Hammond ME, Schwartz JN, et al. American Society of ClinicalOncology/College of American Pathologists guideline recommendations for humanepidermal growth factor receptor2testing in breast cancer. J Clin Oncol,2007,25(1):118-145.
    12. Carey LA, Dees EC, Sawyer L, et al. The triple negative paradox: primary tumorchemosensitivity of breast cancer subtypes. Clin Cancer Res,2007,13(8):2329-2334.
    13. Perou CM, S rlie T, Eisen MB, et al. Molecular portraits of human breast tumours.Nature,2000,406(6797):747-752.
    14. S rlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomasdistinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A,200198(19):10869-10874.
    15. Haber DA, Buckler AJ, Glaser T, et al. An internal deletion within an11p13zinc fingergene contributes to the development of Wilms' tumor. Cell,1990,61(7):1257-1269.
    16. Little M, Wells C. A clinical overview of WT1gene mutations. Hum Mutat1997,9(3):209-225.
    17. Stoll R, Lee BM, Debler EW, et al. Structure of the Wilms tumor suppressor proteinzinc finger domain bound to DNA. J Mol Biol,2007,372(5):1227-1245.
    18. Loeb DM, Sukumar S. The role of WT1in oncogenesis: tumor suppressor or oncogene?Int J Hematol,2002,76(2):117-126.
    19. Hohenstein P, Hastie ND. The many facets of the Wilms' tumour gene, WT1. Hum MolGenet,2006,15(Spec No2):R196-201.
    20. Yang L, Han Y, Suarez Saiz F, et al. A tumor suppressor and oncogene: the WT1story.Leukemia,2007,21(5):868-876.
    21. Sugiyama H. WT1(Wilms' tumor gene1): biology and cancer immunotherapy. Jpn JClin Oncol,2010,40(5):377-387.
    22. Huff V. Wilms' tumours: about tumour suppressor genes, an oncogene and a chameleongene. Nat Rev Cancer,2011,11(2):111-121.
    23. Oji Y, Ogawa H, Tamaki H, et al. Expression of the Wilms' tumor gene WT1in solidtumors and its involvement in tumor cell growth. Jpn. J Cancer Res,1999,90(2):194-204.
    24. Oji Y, Miyoshi Y, Koga S, et al. Overexpression of the Wilms’ tumor gene WT1inprimary thyroid cancer. J Cancer Science,2003,94(7):606–611.
    25. Oji Y, Yano N, Nakano Y, et al. Overexpression of the Wilms’ tumor gene WT1inesophageal cancer. Anticancer Res.2004,24(5B):3103-8.
    26. Netinatsunthorn W, Hanprasertpong J, Dechsukhum C, et al. WT1gene expression as aprognostic marker in advanced serous epithelial ovarian carcinoma: animmunohistochemical study. BMC Cancer,2006,6:90.
    27. Sera T, Hiasa Y, Mashiba T, et al. Wilms' tumour1gene expression is increased inhepatocellular carcinoma and associated with poor prognosis. Eur J Cancer,2008,44(4):600-608.
    28. Bejrananda T, Phukaoloun M, Boonpipattanapong T, et al. WT1expression as anindependent marker of poor prognosis in colorectal cancers. Cancer Biomark,2010-2011;8(1):35-42.
    29. Silberstein GB, Van Horn K, Strickland P, et al. Altered expression of the WT1wilmstumor suppressor gene in human breast cancer. Proc Natl Acad Sci U S A,1997,94(15):8132-8137.
    30. Loeb DM, Evron E, Patel CB, et al. Wilms' tumor suppressor gene (WT1) is expressedin primary breast tumors despite tumor-specific promoter methylation. Cancer Res,2001,61(3):921-925.
    31. Miyoshi Y, Ando A, Egawa C, et al. High expression of Wilms' tumor suppressor genepredicts poor prognosis in breast cancer patients. Clin Cancer Res,2002,8(5):1167-1171.
    32. Tuna M, Chavez-Reyes A, Tari AM. HER2/neu increases the expression of Wilms'Tumor1(WT1) protein to stimulate S-phase proliferation and inhibit apoptosis inbreast cancer cells. Oncogene,2005,24(9):1648-1652.
    33. Han Y, Yang L, Suarez-Saiz F, et al. Wilms' tumor1suppressor gene mediatesantiestrogen resistance via down-regulation of estrogen receptor-alpha expression inbreast cancer cells. Mol Cancer Res,2008,6(8):1347-1355.
    34. Sorlie T. Molecular portraits of breast cancer: Tumor subtypes as distinct diseaseentities. Eur J Cancer,2004,40(18):2667-2675.
    35. Dent R, Trudeau M, Pritchard KI, et al. Triple-negative breast cancer: clinical featuresand patterns of recurrence. Clin Cancer Res,2007,13(15Pt1):4429-4434.
    36.连臻强,何洁华,王曦,等.乳腺癌不同分子亚型的临床特点和生存分析.中华乳腺病杂志:电子版,2009,3(2):139-146.
    37. Rodriguez-Pinilla SM, Sarrio D, Honrado E, et al. Prognostic significance of basal-likephenotype and fascin expression in node negative invasive breast carcinomas. ClinCancer Res2006,12(3):1533-1539.
    38. Tsuda H, Takarabe T, Hasegawa F, et al. Large, central acellular zones indicatingmyoepithelial tumor differentiation in high-grade invasive ductal carcinomas asmarkers of predisposition to lung and brain metastases. Am J Surg Pathol,2000,24(2):197-202.
    39. HicksD G, Short SM, Prescott N L, et al. Breast cancers with brain metastases are morelikely to be estrogen receptor negative, express the basal cytokeratin CK5/6, andoverexpress HER2or EGFR. Am J Surg Pathol,2006,30(9):1097-1104.
    40. Nakatsuka S, Oji Y, Horiuchi T, et al. Immunohistochemical detection of WT1proteinin a variety of cancer cells. Mod Pathol,2006,19(6):804-814.
    1. Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin,2011,61(2):69-90.
    2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell,2011,144(5):646-674.
    3. Huff V. Wilms' tumours: about tumour suppressor genes, an oncogene and a chameleongene. Nat Rev Cancer,2011,11(2):111-121.
    4. Hartkamp J, Carpenter B, Roberts SG. The Wilms' tumor suppressor protein WT1isprocessed by the serine protease HtrA2/Omi. Mol Cell,2010,37(2):159-171.
    5. Vicent S, Chen R, Sayles LC, et al. Wilms tumor1(WT1) regulates KRAS-drivenoncogenesis and senescence in mouse and human models. J Clin Invest,2010,120(11):3940-3952.
    6. Silberstein GB, Van Horn K, Strickland P, et al. Altered expression of the WT1wilmstumor suppressor gene in human breast cancer. Proc Natl Acad Sci U S A,1997,94(15):8132-8137.
    7. Loeb DM, Evron E, Patel CB, et al. Wilms' tumor suppressor gene (WT1) is expressedin primary breast tumors despite tumor-specific promoter methylation. Cancer Res,2001,61(3):921-925.
    8. Miyoshi Y, Ando A, Egawa C, et al. High expression of Wilms' tumor suppressor genepredicts poor prognosis in breast cancer patients. Clin Cancer Res,2002,8(5):1167-1171.
    9. Zapata-Benavides P, Tuna M, Lopez-Berestein G, et al. Downregulation of Wilms'tumor1protein inhibits breast cancer proliferation. Biochem Biophys Res Commun,2002,295(4):784-790.
    10. Tuna M, Chavez-Reyes A, Tari AM. HER2/neu increases the expression of Wilms'Tumor1(WT1) protein to stimulate S-phase proliferation and inhibit apoptosis inbreast cancer cells. Oncogene,2005,24(9):1648-1652.
    11. Caldon CE, Lee CS, Sutherland RL, et al. Wilms’ tumor protein1: an early target ofprogestin regulation in T-47D breast cancer cells that modulates proliferation anddifferentiation. Oncogene,2008,27(1):126-138.
    12. Zhang TF, Yu SQ, Guan LS, et al. Inhibition of breast cancer cell growth by the Wilms'tumor suppressor WT1is associated with a destabilization of beta-catenin. AnticancerRes,2003,23(5A):3575-3584.
    13. Reizner N, Maor S, Sarfstein R, et al. The WT1Wilms' tumor suppressor gene productinteracts with estrogen receptor-alpha and regulates IGF-I receptor gene transcription inbreast cancer cells. J Mol Endocrinol,2005,35(1):135-144.
    14. Wang L, Wang ZY. The Wilms' tumor suppressor WT1inhibits malignant progressionof neoplastigenic mammary epithelial cells. Anticancer Res,2008,28(4B):2155-2160.
    15. Perugorria MJ, Castillo J, Latasa MU, et al. Wilms' tumor1gene expression inhepatocellular carcinoma promotes cell dedifferentiation and resistance tochemotherapy. Cancer Res,2009,69(4):1358-1367.
    16. Kim YN, Koo KH, Sung JY, et al. Anoikis resistance: an essential prerequisite fortumor metastasis. Int J Cell Biol,2012,2012:306879.
    17. Jomgeow T, Oji Y, Tsuji N, et al. Wilms' tumor gene WT117AA(-)/KTS(-) isoforminduces morphological changes and promotes cell migration and invasion in vitro.Cancer Sci,2006,97(4):259-270.
    18. Dudnakova T, Spraggon L, Slight J, et al. Actin: a novel interaction partner of WT1influencing its cell dynamic properties. Oncogene,2010,29(7):1085-1092.
    19. McCarty G, Awad O, Loeb DM. WT1protein directly regulates expression of vascularendothelial growth factor and is a mediator of tumor response to hypoxia. J Biol Chem,201,286(51):43634-43643.
    20. Chen L, Qiu J, Yang C, et al. Identification of a novel estrogen receptor beta1bindingpartner, inhibitor of differentiation-1, and role of ERbeta1in human breast cancer cells.Cancer Lett,2009,278(2):210-219.
    21. Chiang AC, Massagué J. Molecular basis of metastasis. N Engl J Med,2008,359(26):2814-2823.
    22. Edwards LA, Fine HA. The Ids have it. Cancer Cell,2010,18(6):543-545.
    23. Fong S, Itahana Y, Sumida T, et al. Id-1as a molecular target in therapy for breastcancer cell invasion and metastasis. Proc Natl Acad Sci U S A,2003,100(23):13543-13548.
    24. Cheung PY, Yip YL, Tsao SW, et al. Id-1induces cell invasiveness in immortalizedepithelial cells by regulating cadherin switching and Rho GTPases. J Cell Biochem,2011,112(1):157-168.
    25. Gumireddy K, Li A, Gimotty PA, et al. KLF17is a negative regulator ofepithelial-mesenchymal transition and metastasis in breast cancer. Nat Cell Biol,2009,11(11):1297-1304.
    26. Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states:acquisition of malignant and stem cell traits. Nat Rev Cancer,2009,9(4):265-273.
    27. Gupta GP, Perk J, Acharyya S, et al. ID genes mediate tumor reinitiation during breastcancer lung metastasis. Proc Natl Acad Sci U S A,2007,104(49):19506-19511.
    1. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data fromretrospective studies of disease. J Natl Cancer Inst22:719-748
    2. DerSimonian R, Kacker R (2007) Random-effects model for meta-analysis of clinicaltrials: an update. Contemp Clin Trials28:105-114
    3. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials7:177-188
    4. González-Zuloeta Ladd AM, Arias-Vásquez A, Siemes C, Coebergh JW, Hofman A,Witteman J, Uitterlinden A, Stricker BH, van Duijn CM (2007) Transforming-growthfactor beta1Leu10Pro polymorphism and breast cancer morbidity. Eur J Cancer43:371-374
    5. Ziv E, Cauley J, Morin PA, Saiz R, Browner WS (2001) Association between theT29→C polymorphism in the transforming growth factor beta1gene and breast canceramong elderly white women: the study of osteoporotic fractures. JAMA285:2859-2863
    6. Sigurdson AJ, Hauptmann M, Chatterjee N, Alexander BH, Doody MM, Rutter JL,Struewing JP (2004) Kin-cohort estimates for familial breast cancer risk in relation tovariants in DNA base excision repair, BRCA1interacting and growth factor genes.BMC Cancer4:9. doi:10.1186/1471-2407-4-9
    7. Skerrett DL, Moore EM, Bernstein DS (2005) Cytokine genotype polymorphisms inbreast carcinoma: associations of TGF-β1with relapse. Cancer Invest23:208-214
    8. Rebbeck TR, Antoniou AC, Llopis TC, Nevanlinna H, Aittom ki K, Simard J, SpurdleAB, KConFab, Couch FJ, Pereira LH, et al (2009) No association of TGFB1L10Pgenotypes and breast cancer risk in BRCA1and BRCA2mutation carriers: amulti-center cohort study. Breast Cancer Res Treat115:185-192
    9. Dunning AM, Ellis PD, McBride S, Kirschenlohr HL, Healey CS, Kemp PR, Luben RN,Chang-Claude J, Mannermaa A, Kataja V, Pharoah PD, Easton DF, Ponder BA,Metcalfe JC (2003) A transforming growth factor beta1signal peptide variant increasessecretion in vitro and is associated with increased incidence of invasive breast cancer.Cancer Res63:2610-2615
    10. Cox A, Dunning AM, Garcia-Closas M, Balasubramanian S, Reed MW, Pooley KA,Scollen S, Baynes C, Ponder BA, Chanock S, et al (2007) A common coding variant inCASP8is associated with breast cancer risk. Nat Genet39:352-358
    11. Pharoah PD, Tyrer J, Dunning AM, Easton DF, Ponder BA; SEARCH Investigators(2007) Association between common variation in120candidate genes and breastcancer risk. PLoS Genet3:e42. doi:10.1371/journal.pgen.0030042
    12. Gonullu G, Basturk B, Evrensel T, Oral B, Gozkaman A, Manavoglu O(2007)Association of breast cancer and cytokine gene polymorphism in Turkish women.Saudi Med J28:1728-1733
    13. Rajkumar T, Samson M, Rama R, Sridevi V, Mahji U, Swaminathan R, K. Nancy N(2008) TGFb1(Leu10Pro), p53(Arg72Pro) can predict for increased risk for breastcancer in south Indian women and TGFb1Pro (Leu10Pro) allele predicts response toneo-adjuvant chemo-radiotherapy. Breast Cancer Res Treat112:81-87
    14. Hishida A, Iwata H, Hamajima N, Matsuo K, Mizutani M, Iwase T, Miura S, Emi N,Hirose K, Tajima K (2003) Transforming growth factor B1T29C polymorphism andbreast cancer risk in Japanese women. Breast Cancer10:63-69
    15. Krippl P, Langsenlehner U, Renner W, Yazdani-Biuki B, Wolf G, Wascher TC,Paulweber B, Bahadori B, Samonigg H (2003) The L10P polymorphism of thetransforming growth factor-beta1gene is not associated with breast cancer risk. CancerLett201:181-184
    16. Jin Q, Hemminki K, Grzybowska E, Klaes R, Soderberg M, Zientek H,Rogozinska-Szczepka J, Utracka-Hutka B, Pamula J, Pekala W, Forsti A.(2004)Polymorphisms and haplotype structures in genes for transforming growth factor beta1and its receptors in familial and unselected breast cancers. Int J Cancer112,94-99
    17. Le Marchand L, Haiman CA, van den Berg D, Wilkens LR, Kolonel LN, HendersonBE (2004) T29C polymorphism in the transforming growth factorβ1gene andpostmenopausal breast cancer risk: the Multiethnic Cohort Study. Cancer EpidemiolBiomarkers Prev13:412-415
    18. Saha A, Gupta V, Bairwa NK, Malhotra D, Bamezai R (2004) Transforming growthfactor-β1genotype in sporadic breast cancer patients from India: status of enhancer,promoter,5′-untranslated-region and exon-1polymorphisms. Eur J Immunogenet31:37-42
    19. Kaklamani VG, Baddi L, Liu J, Rosman D, Phukan S, Bradley C, Hegarty C,McDan-iel B, Rademaker A, Oddoux C, Ostrer H, Michel LS, Huang H, Chen Y,Ahsan H, Offit K, Pasche B (2005) Combined genetic assessment of transforminggrowth factor-β signaling pathway variants may predict breast cancer risk. Cancer Res65:3454-3461
    20. Lee KM, Park SK, Hamajima N, Tajima K, Yoo KY, Shin A, Noh DY, Ahn SH,Hir-vonen A, Kang D (2005) Genetic polymorphisms of TGF-β1&TNF-β and breastcancer risk. Breast Cancer Res Treat90:149-155
    21. Shin A, Shu XO, Cai Q, Gao YT, Zheng W (2005) Genetic polymorphisms of theTransforming Growth Factor-β1gene and breast cancer risk: A possible dual role atdifferent cancer stages. Cancer Epidemiol Biomarkers Prev14:1567-1570
    22. Feigelson HS, Patel AV, Diver WR, Stevens VL, Thun MJ, Calle EE (2006)Transforming growth factorβ receptor type I and transforming growth factorβ1polymorphisms are not associated with postmenopausal breast cancer. CancerEpidemiol Biomarkers Prev15:1236-1237
    23. Scola L, Vaglica M, Crivello A, Palmeri L, Forte GI, Macaluso MC, Giacalone A, DiNoto L, Bongiovanni A, Raimondi C, Accardo A, Verna R, Candore G, Caruso C, Lio D,Palmeri S (2006) Cytokine gene polymorphisms and breast cancer susceptibility. AnnN Y Acad Sci1089:104-109
    24. Cox D, Penney K, Guo Q, Hankinson S, Hunter D (2007) TGFB1and TGFBR1polymorphisms and breast cancer risk in the nurses’ health study. BMC Cancer7:175.
    25. Jakubowska A, Jaworska K, Cybulski C, Janicka A, Szymańska-Pasternak J, Lener M,Narod SA, Lubiński J; IHCC-Breast Cancer Study Group (2009) Do BRCA1modifiersalso affect the risk of breast cancer in non-carriers? Eur J Cancer45:837-842
    26. The MARIE-GENICA Consortium on Genetic Susceptibility for Menopausal HormoneTherapy Related Breast Cancer Risk (2009) Polymorphisms in the BRCA1and ABCB1genes modulate menopausal hormone therapy associated breast cancer risk inpostmenopausal women. Breast Cancer Res Treat.
    27. McCarty G, Awad O, Loeb DM. WT1protein directly regulates expression of vascularendothelial growth factor and is a mediator of tumor response to hypoxia. J Biol Chem,2011,286(51):43634-43643.
    28. Berasain C, Herrero JI, García-Trevijano ER, et al. Expression of Wilms' tumorsuppressor in the liver with cirrhosis: relation to hepatocyte nuclear factor4andhepatocellular function. Hepatology,2003,38(1):148-157.
    29. Lichtenstein P, Holm NV, Verkasalo PK (2000) Environmental and heritable factors inthe causation of cancer. N Engl J Med343:78-85
    30. Derynck R, Akhurst RJ, Balmain A (2001) TGF-beta signaling in tumor suppressionand cancer progression. Nat Genet29:117-129
    31. Benson JR (2004) Role of transforming growth factor β in breast carcinogenesis.Lancet Oncol5:229-239
    32. Bierie B, Moses HL (2006) Tumour microenvironment: TGFbeta: the molecular Jekylland Hyde of cancer. Nat Rev Cancer6:506-520
    33. Massagué J (2008) TGFbeta in Cancer. Cell134:215-230
    34. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitionsin development and disease.Cell139:871-890
    35. Desruisseau S, Palmari J, Giusti C, Romain S, Martin P-M, Berthois Y (2006)Determination of TGFbeta1protein level in human primary breast cancers and itsrelationship with survival. Br J Cancer94:239-246
    36. Grau AM, Wen W, Ramroopsignh D, Gao YT, Zi J, Cai Q, Shu XO, Zheng W (2008)Circulating transforming growth factor-beta1and breast cancer prognosis: results fromthe Shanghai Breast Cancer Study. Breast Cancer Res Treat112:335-341
    37. Zheng W (2009) Genetic polymorphisms in the transforming growth factor-betasignaling pathways and breast cancer risk and survival. Methods Mol Biol472:265-277
    38. Fujii D, Brissenden JE, Derynck R, Francke U (1986) Transforming growth factor betagene maps to human chromosome19long arm and to mouse chromosome7. SomatCell Mol Genet.12:281-218
    39. Chang SJ, Chen CJ, Tsai FC, Lai HM, Tsai PC, Tsai MH, Ko YC (2008) Associationsbetween gout tophus and polymorphisms869T/C and-509C/T in transforming growthfactor beta1gene. Rheumatology (Oxford).47:617-621
    40. Yuan X, Liao Z, Liu Z, Wang LE, Tucker SL, Mao L, Wang XS, Martel M, Komaki R,Cox JD, Milas L, Wei Q (2009) Single nucleotide polymorphism at rs1982073:T869Cof the TGFbeta1gene is associated with the risk of radiation pneumonitis in patientswith non-small-cell lung cancer treated with definitive radiotherapy. J Clin Oncol27:3370-3378
    41. Grainger DJ, Heathcote K, Chiano M, Snieder H, Kemp PR, Metcalfe JC, Carter ND,Spector TD (1999) Genetic control of the circulating concentration of transforminggrowth factor type beta1. Hum Mol Genet8:93-97
    42. Dunning AM, Ellis PD, McBride S, Kirschenlohr HL, Healey CS, Kemp PR, Luben RN,Chang-Claude J, Mannermaa A, Kataja V, Pharoah PD, Easton DF, Ponder BA,Metcalfe JC (2003) A transforming growth factor beta1signal peptide variant increasessecretion in vitro and is associated with increased incidence of invasive breast cancer.Cancer Res63:2610-2615
    1. Jemal A, Bray F, Center MM, et al. Global Cancer Statistics. CA Cancer J Clin,2011,61(2):69-90.
    2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell,2011,144(5):646-674.
    3. Gumireddy K, Li A, Gimotty PA, et al. KLF17is a negative regulator ofepithelial-mesenchymal transition and metastasis in breast cancer. Nat Cell Biol,2009,11(11):1297-1304.
    4. Haber DA, Buckler AJ, Glaser T, et al. An internal deletion within an11p13zinc fingergene contributes to the development of Wilms' tumor. Cell,1990,61(7):1257-1269.
    5. Little M, Wells C. A clinical overview of WT1gene mutations. Hum Mutat1997,9(3):209-225.
    6. Stoll R, Lee BM, Debler EW, et al. Structure of the Wilms tumor suppressor proteinzinc finger domain bound to DNA. J Mol Biol,2007,372(5):1227-1245.
    7. Loeb DM, Sukumar S. The role of WT1in oncogenesis: tumor suppressor or oncogene?Int J Hematol,2002,76(2):117-126.
    8. Hohenstein P, Hastie ND. The many facets of the Wilms' tumour gene, WT1. Hum MolGenet,2006,15(Spec No2):R196-201.
    9. Yang L, Han Y, Suarez Saiz F, et al. A tumor suppressor and oncogene: the WT1story.Leukemia,2007,21(5):868-876.
    10. Sugiyama H. WT1(Wilms' tumor gene1): biology and cancer immunotherapy. Jpn JClin Oncol,2010,40(5):377-387.
    11. Huff V. Wilms' tumours: about tumour suppressor genes, an oncogene and a chameleongene. Nat Rev Cancer,2011,11(2):111-121.
    12. Oji Y, Ogawa H, Tamaki H, et al. Expression of the Wilms' tumor gene WT1in solidtumors and its involvement in tumor cell growth. Jpn J Cancer Res,1999,90(2):194-204.
    13. http://www.ncbi.nlm.nih.gov/gene/7490
    14. Scharnhorts V, van der Eb A, Jochemsen AG. WT1proteins: functions in growth anddifferentiation. Gene,2001,273(2):141-161.
    15. Hylander B, Repasky E, Shrikant P, et al. Expression of Wilms tumor gene (WT1) inepithelial ovarian cancer. Gynecol Oncol,2006,101(1):12-17
    16. Martínez-Estrada OM, Lettice LA, Essafi A, et al. Wt1is required for cardiovascularprogenitor cell formation through transcriptional control of Snail and E-cadherin. NatGenet,2010,42(1):89-93.
    17. Chiang AC, Massagué J. Molecular basis of metastasis. N Engl J Med,2008,359(26):2814-2823.
    18. Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states:acquisition of malignant and stem cell traits. Nat Rev Cancer,2009,9(4):265-273.
    19. Kirschner KM, Sciesielski LK, Scholz H. Wilms' tumor protein Wt1stimulatestranscriptionof the gene encoding vascular endothelial cadherin. Pflügers Arch,2010,460(6):1051-1061.
    20.姜傥,袁飞,刘云启,等.Wilms瘤1基因在肾小管上皮细胞转分化中的表达及作用.中华肾脏病杂志,2005,21(8):448-452.
    21.姜傥,皮蕾,袁飞,等.胚胎分化/发育基因Pax2与WT1的序列启动在肾小管上皮细胞逆向分化中的意义[J].中国病理生理杂志,2009,25(9):1775-1781
    22.黄彬,姜傥,皮蕾,等. RNAi干扰WT1和Pax2表达对逆转肾小管上皮间充质转化的作用.中山大学学报(医学科学版),2011,32(4):442-448转510
    23. Huang B, Pi L, Chen C, Yuan F, et al. WT1and Pax2re-expression is required forepithelial-mesenchymal transition in5/6nephrectomized rats and cultured kidneytubular epithelial cells. Cells Tissues Organs,2012,195(4):296-312.
    24. Essafi A, Hastie ND. WT1the oncogene: a tale of death and HtrA. Mol Cell,2010,37(2):153-155.
    25. Vicent S, Chen R, Sayles LC, et al. Wilms tumor1(WT1) regulates KRAS-drivenoncogenesis and senescence in mouse and human models. J Clin Invest,2010,120(11):3940-3952.
    26. Dudnakova T, Spraggon L, Slight J, et al. Actin: a novel interaction partner of WT1influencing its cell dynamic properties. Oncogene,2010,29(7):1085-1092.
    27. Oji Y, Ogawa H, Tamaki H, et al. Expression of the Wilms' tumor gene WT1in solidtumors and its involvement in tumor cell growth. Jpn. J Cancer Res,1999,90(2):194-204.
    28. Nakatsuka S, Oji Y, Horiuchi T, et al. Immunohistochemical detection of WT1proteinin a variety of cancer cells. Mod Pathol,2006,19(6):804-814.
    29. Oji Y, Miyoshi Y, Koga S, et al. Overexpression of the Wilms’ tumor gene WT1inprimary thyroid cancer. J Cancer Science,2003,94(7):606–611.
    30. Oji Y, Nakamori S, Fujikawa M, et al. Overexpression of the Wilms’ tumor gene WT1in pancreatic ductal adenocarcinoma. Cancer Science,2004,95(7):583–587.
    31. Oji Y, Yano N, Nakano Y, et al. Overexpression of the Wilms’ tumor gene WT1inesophageal cancer. Anticancer Res.2004,24(5B):3103-8.
    32. Netinatsunthorn W, Hanprasertpong J, Dechsukhum C, et al. WT1gene expression as aprognostic marker in advanced serous epithelial ovarian carcinoma: animmunohistochemical study. BMC Cancer,2006,6:90.
    33. Sera T, Hiasa Y, Mashiba T, et al. Wilms' tumour1gene expression is increased inhepatocellular carcinoma and associated with poor prognosis. Eur J Cancer,2008,44(4):600-608.
    34. Bejrananda T, Phukaoloun M, Boonpipattanapong T, et al. WT1expression as anindependent marker of poor prognosis in colorectal cancers. Cancer Biomark,2010-2011,8(1):35-42.
    35. Tatsumi N, Oji Y, Tsuji N, et al. Wilms' tumor gene WT1-shRNA as a potentapoptosis-inducing agent for solid tumors. Int J Oncol,2008,32(3):701-711.
    36.霍晓溪,任丽娜,肖英,等. WT1反义寡核苷酸对卵巢癌细胞的抑制作用.中国优生与遗传杂志,2011,19(6):22-24.
    37. Kim YN, Koo KH, Sung JY, et al. Anoikis resistance: an essential prerequisite fortumor metastasis. Int J Cell Biol,2012,2012:306879. Epub2012Feb23.
    38. Smit MA, Peeper DS. Zeb1is required for TrkB-induced epithelial-mesenchymaltransition, anoikis resistance and metastasis. Oncogene,2011,30(35):3735-3744.
    39. Simpson CD, Anyiwe K, Schimmer AD. Anoikis resistance and tumor metastasis.Cancer Lett,2008,272(2):177-185
    40. Geiger TR, Peeper DS. The neurotrophic receptor TrkB in anoikis resistance andmetastasis: a perspective. Cancer Res,2005,65(16):7033-7036.
    41. Douma S, Van Laar T, Zevenhoven J, et al. Suppression of anoikis and induction ofmetastasis by the neurotrophic receptor TrkB. Nature,2004,430(7003):1034-1039.
    42. Berasain C, Herrero JI, García-Trevijano ER, et al. Expression of Wilms' tumorsuppressor in the liver with cirrhosis: relation to hepatocyte nuclear factor4andhepatocellular function. Hepatology,2003,38(1):148-157.
    43. Perugorria MJ, Castillo J, Latasa MU, et al. Wilms' tumor1gene expression inhepatocellular carcinoma promotes cell dedifferentiation and resistance tochemotherapy. Cancer Res,2009,69(4):1358-1367.
    44. Jomgeow T, Oji Y, Tsuji N, et al. Wilms' tumor gene WT117AA(-)/KTS(-) isoforminduces morphological changes and promotes cell migration and invasion in vitro.Cancer Sci,2006,97(4):259-270.
    45. Ritchie MF, Zhou Y, Soboloff J. WT1/EGR1-mediated control of STIM1expressionand function in cancer cells. Front Biosci,2011,17:2402-2015.
    46. Ritchie MF, Yue C, Zhou Y, et al. Wilms tumor suppressor1(WT1) and early growthresponse1(EGR1) are regulators of STIM1expression. J Biol Chem,2010,285(14):10591-10596.
    47. Qin Q, Lin YW, Zheng XY, et al. RNAa-mediated overexpression of WT1inducesapoptosis in HepG2cells. World J Surg Oncol,2012,10:11.
    48. Jiang J, Tang YL, Liang XH. EMT: a new vision of hypoxia promoting cancerprogression. Cancer Biol Ther,2011,11(8):714-723.
    49. Hill RP, Marie-Egyptienne DT, Hedley DW. Cancer stem cells, hypoxia and metastasis.Semin Radiat Oncol,2009,19(2):106-111
    50. Heddleston JM, Li Z, Lathia JD, et al. Hypoxia inducible factors in cancer stem cells.Br J Cancer,2010,102(5):789-795.
    51. Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer. Cell,2007,129(3):465-472.
    52. McCarty G, Awad O, Loeb DM. WT1protein directly regulates expression of vascularendothelial growth factor and is a mediator of tumor response to hypoxia. J Biol Chem,201,286(51):43634-43643.
    53. Amin EM, Oltean S, Hua J, et al. WT1mutants reveal SRPK1to be a downstreamangiogenesis target by altering VEGF splicing. Cancer Cell,2011,20(6):768-780.
    54. Seton-Rogers S. Angiogenesis: What's the alternative? Nat Rev Cancer,2012,12(2):80-81.
    55. Silberstein GB, Van Horn K, Strickland P, et al. Altered expression of the WT1wilmstumor suppressor gene in human breast cancer. Proc Natl Acad Sci U S A,1997,94(15):8132-8137.
    56. Loeb DM, Evron E, Patel CB, et al. Wilms' tumor suppressor gene (WT1) is expressedin primary breast tumors despite tumor-specific promoter methylation. Cancer Res,2001,61(3):921-925.
    57. Miyoshi Y, Ando A, Egawa C, et al. High expression of Wilms' tumor suppressor genepredicts poor prognosis in breast cancer patients. Clin Cancer Res,2002,8(5):1167-1171.
    58. Oji Y, Miyoshi Y, Kiyotoh E, et al. Absence of mutations in the Wilms' tumor geneWT1in primary breast cancer. Jpn J Clin Oncol,2004,34(2):74-77.
    59. Camc C, Kalender ME, Payda S, et al. Prognostic significance of Wilms Tumor1(WT1) protein expression in breast cancer. Gaziantep Med J,2011,17(2):67-72.
    60. Zapata-Benavides P, Tuna M, Lopez-Berestein G, et al. Downregulation of Wilms'tumor1protein inhibits breast cancer proliferation. Biochem Biophys Res Commun,2002,295(4):784-790.
    61. Tuna M, Chavez-Reyes A, Tari AM. HER2/neu increases the expression of Wilms'Tumor1(WT1) protein to stimulate S-phase proliferation and inhibit apoptosis inbreast cancer cells. Oncogene,2005,24(9):1648-1652.
    62. Caldon CE, Lee CS, Sutherland RL, et al. Wilms’ tumor protein1: an early target ofprogestin regulation in T-47D breast cancer cells that modulates proliferation anddifferentiation. Oncogene,2008,27(1):126-138.
    63. Han Y, Yang L, Suarez-Saiz F, et al. Wilms' tumor1suppressor gene mediatesantiestrogen resistance via down-regulation of estrogen receptor-alpha expression inbreast cancer cells. Mol Cancer Res,2008,6(8):1347-1355.
    64. Wang L, Zhang X, Wang ZY. The Wilms' tumor suppressor WT1regulates expressionof members of the epidermal growth factor receptor (EGFR) and estrogen receptor inacquired tamoxifen resistance. Anticancer Res,2010,30(9):3637-3642.
    65. Zang XP, Pento JT, Tari AM. Wilms' tumor1protein and mediate keratinocyte growthfactor signaling in breast cancer cells. Anticancer Res,2008,28(1A):133-137.
    66. Zhang TF, Yu SQ, Guan LS, et al. Inhibition of breast cancer cell growth by the Wilms'tumor suppressor WT1is associated with a destabilization of beta-catenin. AnticancerRes,2003,23(5A):3575-3584.
    67. Reizner N, Maor S, Sarfstein R, et al. The WT1Wilms' tumor suppressor gene productinteracts with estrogen receptor-alpha and regulates IGF-I receptor gene transcription inbreast cancer cells. J Mol Endocrinol,2005,35(1):135-144.
    68. Wang L, Wang ZY. The Wilms' tumor suppressor WT1inhibits malignant progressionof neoplastigenic mammary epithelial cells. Anticancer Res,2008,28(4B):2155-2160.
    69. Burwell EA, McCarty GP, Simpson LA, et al. Isoforms of Wilms' tumor suppressorgene (WT1) have distinct effects on mammary epithelial cells. Oncogene,2007,26(23):3423-3430.
    1. Portnoy V, Huang V, Place RF, et al. Small RNA and transcriptional upregulation.Wiley Interdiscip Rev RNA,2011,2(5):748-760.
    2. Pushparaj PN, Aarthi JJ, Kumar SD, et al. RNAi and RNAa--the yin and yang ofRNAome. Bioinformation,2008,2(6):235-237.
    3.张立堂,王毅刚,刘新垣. RNAa:一种新型的反标准ncRNA调控基因表达模式《.细胞生物学杂志》,2008,30(3):281-286.
    4.陈忠,李龙承. RNAa与肿瘤.《现代泌尿生殖肿瘤杂志》,2009,1(1):1-3.
    5.李子龙,陈亮,杨涛,等. RNA激活效应研究.《生命的化学》,2011,31(3):385-388.
    6.张萍,王伟. RNAa基因表达调控模式.《华中科技大学学报(医学版)》,2012,41(1):117-121.
    7. Britten RJ, Davidson EH. Gene regulation for higher cells: a theory. Science,1969,165(3891):349-357.
    8. Kuwabara T, Hsieh J, Nakashima K, Taira K, et al. A small modulatory dsRNAspecifies the fate of adult neural stem cells. Cell,2004,116(6):779-793.
    9. Jopling CL, Yi M, Lancaster AM, et al. Modulation of hepatitis C virus RNAabundance by a liver-specific MicroRNA. Science,2005,309(5740):1577-1581.
    10. Li LC, Okino ST, Zhao H, et al. Small dsRNAs induce transcriptional activation inhuman cells. Proc Natl Acad Sci U S A,2006,103(46):17337-17342.
    11. Janowski BA, Younger ST, Hardy DB, et al. Activating gene expression in mammaliancells with promoter-targeted duplex RNAs. Nat Chem Biol,2007,3(3):166-173.
    12. Huang V, Qin Y, Wang J, et al. RNAa is conserved in mammalian cells. PLoS One,2010,5(1):e8848.
    13.李晓,周足力,杨帆,等. dsRNA介导的PTEN基因表达上调及其与启动子区甲基化的关系.《中华实验外科杂志》,2011,28(7):1163-1165.
    14. Huang V, Place RF, Portnoy V, et al. Upregulation of Cyclin B1by miRNA and itsimplications in cancer. Nucleic Acids Res,2012,40(4):1695-1707.
    15. Morris KV, Santoso S, Turner AM, et al. Bidirectional transcription directs bothtranscriptional gene activation and suppression in human cells. PLoS Genet,2008,4(11):e1000258.
    16. Schwartz JC, Younger ST, Nguyen NB, et al. Antisense transcripts are targets foractivating small RNAs. Nat Struct Mol Biol,2008,15(8):842-848.
    17. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAscan up-regulate translation. Science,2007,318(5858):1931-1934.
    18. Yu J, Ryan DG, Getsios S, et al. MicroRNA-184antagonizes microRNA-205tomaintain SHIP2levels in epithelia. Proc Natl Acad Sci U S A,2008,105(49):19300-19305.
    19. Chiang AC, Massagué J. Molecular basis of metastasis. N Engl J Med,2008,359(26):2814-2823.
    20. Mao Q, Li Y, Zheng X, et al. Up-regulation of E-cadherin by small activating RNAinhibits cell invasion and migration in5637human bladder cancer cells. BiochemBiophys Res Commun,2008,375(4):566-570.
    21. Junxia W, Ping G, Yuan H, et al. Double strand RNA-guided endogeneous E-cadherinup-regulation induces the apoptosis and inhibits proliferation of breast carcinoma cellsin vitro and in vivo. Cancer Sci,2010,101(8):1790-1796.
    22. Chen Z, Place RF, Jia ZJ, et al. Antitumor effect of dsRNA-induced p21(WAF1/CIP1)gene activation in human bladder cancer cells. Mol Cancer Ther,2008,7(3):698-703.
    23. Wei J, Zhao J, Long M, et al. p21WAF1/CIP1gene transcriptional activation exerts cellgrowth inhibition and enhances chemosensitivity to cisplatin in lung carcinoma cell.BMC Cancer,2011,10:632.
    24. Whitson JM, Noonan EJ, Pookot D, et al. Double stranded-RNA-mediated activation ofP21gene induced apoptosis and cell cycle arrest in renal cell carcinoma. Int J Cancer,2009,125(2):446-452.
    25. Wang J, Place RF, Huang V, et al. Prognostic value and function of KLF4in prostatecancer: RNAa and vector-mediated overexpression identify KLF4as an inhibitor oftumor cell growth and migration. Cancer Res,2010,70(24):10182-10191.
    26. Little M, Wells C. A clinical overview of WT1gene mutations. Hum Mutat1997,9(3):209-225.
    27. Loeb DM, Sukumar S. The role of WT1in oncogenesis: tumor suppressor or oncogene?Int J Hematol,2002,76(2):117-126.
    28. Hohenstein P, Hastie ND. The many facets of the Wilms' tumour gene, WT1. Hum MolGenet,2006,15(Spec No2):R196-201.
    29. Yang L, Han Y, Suarez Saiz F, et al. A tumor suppressor and oncogene: the WT1story.Leukemia,2007,21(5):868-876.
    30. Sugiyama H. WT1(Wilms' tumor gene1): biology and cancer immunotherapy. Jpn JClin Oncol,2010,40(5):377-387.
    31. Huff V. Wilms' tumours: about tumour suppressor genes, an oncogene and a chameleongene. Nat Rev Cancer,2011,11(2):111-121.
    32. Qin Q, Lin YW, Zheng XY, et al. RNAa-mediated overexpression of WT1inducesapoptosis in HepG2cells. World J Surg Oncol,2012,10:11.
    1. Ohene-Abuakwa Y, Pignatelli M. Adhesion molecules as diagnostic tools in tumorpathology. Int J Surg Pathol,2000,8(3):191–200.
    2. Hirohashi S, Kanai Y. Cell adhesion system and human cancer morphogenesis. CancerSci,2003,94(7):575–581.
    3. Makrilia N, Kollias A,Manolpoulos L. Cell adhesion molecules: role and clinicalsignificance in cancer. Cancer invest,2009,27(10):1023-1037
    4. Li DM, Feng YM. Signaling mechanism of cell adhesion molecules in breast cancermetastasis: potential therapeutic targets. Breast Cancer Res Treat,2011,128(1):7-21.
    5. Ino Y, Gotoh M, Sakamoto M, et al. Dysadherin, a cancer-associated cell membraneglycoprotein, down-regulates E-cadherin and promotes metastasis. Proc Natl Acad SciU S A,2002,99(1):365-370.
    6. Lubarski I, Pihakaski-Maunsbach K, Karlish SJ, Maunsbach AB, et al. Interaction withthe Na,K-ATPase and tissue distribution of FXYD5(related to ion channel). J BiolChem,2005,280(45):37717-37724.
    7. Rajasekaran SA, Rajasekaran AK. Na,K-ATPase and epithelial tight junctions. FrontBiosci,2009,14:2130-2148.
    8. http://www.ncbi.nlm.nih.gov/gene/53827
    9. Shimamura T, Yasuda J, Ino Y, et al. Dysadherin expression facilitates cell motility andmetastatic potential of human pancreatic cancer cells. Cancer Res,2004,64(19):6989-6995.
    10. Gabrielli NM, Veiga MF, Matos ML, et al. Expression of dysadherin in the humanmale reproductive tract and in spermatozoa. Fertil Steril,2011,96(3):554-561.
    11. Fu X, Kamps MP. E2a-Pbx1induces aberrant expression of tissue-specific anddevelopmentally regulated genes when expressed in NIH3T3fibroblasts. Mol CellBiol,1997,17(3):1503-1512.
    12. Yanagihara K, Tanaka H, Takigahira M, et al. Establishment of two cell lines fromhuman gastric scirrhous carcinoma that possess the potential to metastasizespontaneously in nude mice. Cancer Sci,2004,95(7):575-582.
    13. Nam JS, Kang MJ, Suchar AM, et al. Chemokine (C-C motif) ligand2mediates theprometastatic effect of dysadherin in human breast cancer cells. Cancer Res,2006,66(14):7176-7184.
    14. Lapyckyj L, Castillo LF, Matos ML, et al. Expression analysis of epithelial cadherinand related proteins in IBH-6and IBH-4human breast cancer cell lines. J Cell Physiol,2010,222(3):596-605.
    15. Chiang AC, Massagué J. Molecular basis of metastasis. N Engl J Med,2008,359(26):2814-2823.
    16. Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cellswith properties of stem cells. Cell,2008,133(4):704-715.
    17. Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis ofevil in the war on cancer. Oncogene,2010,29(34):4741-4751.
    18. Zhang QH, Ye M, Wu XY, et al. Cloning and functional analysis of cDNAs with openreading frames for300previously undefined genes expressed in CD34+hematopoieticstem/progenitor cells. Genome Res,2000,10(10):1546-1560.
    19. Park JR, Kim RJ, Lee YK, et al. Dysadherin can enhance tumorigenesis by conferringproperties of stem-like cells to hepatocellular carcinoma cells. J Hepatol,2011,54(1):122-31.
    20. Conti I, Rollins BJ. CCL2(monocyte chemoattractant protein-1) and cancer. SeminCancer Biol,2004,14(3):149-154.
    21. Craig MJ, Loberg RD. CCL2(Monocyte Chemoattractant Protein-1) in cancer bonemetastases. Cancer Metastasis Rev,2006,25(4):611-619.
    22. Tsuyada A, Chow A, Wu J, et al. CCL2mediates crosstalk between cancer cells andstromal fibroblasts that regulates breast cancer stem cells. Cancer Res.2012Apr3.[Epub ahead of print]
    23. Schüler Y, Lee-Thedieck C, Geiger K, et al. Osteoblast-secreted factors enhance theexpression of dysadherin and CCL2-dependent migration of renal carcinoma cells. Int JCancer,2012,130(2):288-299.
    24. Nam JS, Hirohashi S, Wakefield LM. Dysadherin: a new player in cancer progression.Cancer Lett,2007,255(2):161-169.
    25. Batistatou A, Peschos D, Tsanou H, et al. In breast carcinoma dysadherin expression iscorrelated with invasiveness but not with E-cadherin. Br J Cancer,2007,96(9):1404-1408.
    26. Batistatou A, Scopa CD, Ravazoula P, et al. Involvement of dysadherin and E-cadherinin the development of testicular tumours. Br J Cancer,2005,93(12):1382-1387.
    27. Izumi T, Oda Y, Hasegawa T, et al. Dysadherin expression as a significant prognosticfactor and as a determinant of histologic features in synovial sarcoma: special referenceto its inverse relationship with E-cadherin expression. Am J Surg Pathol,2007,31(1):85-94.
    28. Nakanishi Y, Akimoto S, Sato Y, et al. Prognostic significance of dysadherinexpression in tongue cancer: immunohistochemical analysis of91cases. ApplImmunohistochem Mol Morphol,2004,12(4):323-328.
    29. van 't Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predictsclinical outcome of breast cancer. Nature,2002,415(6871):530-536.
    30. Wang Y, Klijn JG, Zhang Y, et al. Gene-expression profiles to predict distantmetastasis of lymph-node-negative primary breast cancer. Lancet,2005,365(9460):671-679.
    31. Shimamura T, Sakamoto M, Ino Y, et al. Dysadherin overexpression in pancreaticductal adenocarcinoma reflects tumor aggressiveness: relationship to e-cadherinexpression. J Clin Oncol,2003,21(4):659-666
    32. Sato H, Ino Y, Miura A, et al. Dysadherin: expression and clinical significance inthyroid carcinoma. J Clin Endocrinol Metab,2003,88(9):4407-3312.
    33. Shimada Y, Yamasaki S, Hashimoto Y, et al. Clinical significance of dysadherinexpression in gastric cancer patients. Clin Cancer Res,2004,10(8):2818-2823.
    34. Tamura M, Ohta Y, Tsunezuka Y, et al. Prognostic significance of dysadherinexpression in patients with non-small cell lung cancer.J Thorac Cardiovasc Surg,2005,130(3):740-745.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700