用户名: 密码: 验证码:
卸荷环境下高边坡的变形特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以白鹤滩水电站坝址区右岸坡为研究对象,在大量现场调研与室内分析基础上,结合研究区工程地质条件、水文地质条件以及复杂高边坡实际变形破坏模式,采用理论分析和数值模拟等手段,得出的主要结论和研究成果如下:
     1、研究区地貌发育主要表现为长期风化以及流水下切作用下的中山峡谷地貌景观,发育典型的左缓右陡、上宽下窄的典型“V”形河谷。强烈的下切作用为岸坡孕育小范围崩塌提供了必要的势能累积与临空面,另外,侧蚀作用进一步加剧了岸坡崩塌作用。高陡地貌为右岸坡崩塌奠定了基础。
     2、右岸岸坡变形破坏模式的主要是渐进性的局部崩塌;崩塌失稳受到玄武岩层状构造、共轭剪切断裂、卸荷裂隙及柱状节理等多种结构面的协同约束作用。
     3、通过对坝区岸坡在陡倾角断层带F18、缓倾角层间错动带的联合影响下的模拟分析中发现边坡的稳定性受结构面控制作用很明显。边坡岩体的总位移形式表现为沿缓倾角凝灰岩质层间错动带的滑移和沿陡倾角断层破碎带的拉裂,是较为典型的主滑移-次拉裂模式。
     4、坡体三维数值模拟计算的稳定性分析结果表明:x方向位移量层间错动带相对密集的地方高于相对层数较少的地方,且存在一个临界深度,当垂直埋深超过这一临界深度相同位移量界限面不再平行于卸荷带界限面;y反方向位移主要受其高程控制,位移主要来自层间错动带上覆岩体;总位移主要以沿层间错动带倾向的位移为主;白鹤滩水电站中坝区右岸坡坡面靠近北侧边界区域应力相对集中,在南侧边界以及坡脚部位有应力集中现象。
     5、白鹤滩水电站坝区岸坡变形破坏方式主要表现为表层的卸荷松动以及缓倾角层间错动带以及陡倾角断层破碎带相组合控制的滑移—拉裂;具有时效变形特点以局部崩塌、分块滑移、解体为主,整体稳定性良好。
The thesis takes bank slope on the dam area of Baihetan Hydroelectric Power Station as an illustration. Based on extensive field investigation and interior analysis, combining with Hydrogeology and Engineering Geology condition and the field deformation of high slope,the author uses theoretic and numerical analysis and so on tests to assist his research. The main results of this paper can be summed up as follows:
     1.The main landform characteristics of research area is medium-hill valley landscapes by long-term weathering and cutting of flowing water, which low left-steep right, wider at the top of the typical "V" valley. Cutting action under the strong small-scale collapse of the slope provides the necessary potential energy accumulation and free surface. In addition, the side etching effect exacerbates the slope collapse. Steep-dip slope topography lay the foundations of the formation of landslide.
     2. The deformation mechanism of right bank slope are mainly progressive collapse; collapse instability control by basalt layered structure, conjugate shear fracture, unloading cracks and columnar joints and other structural surface.
     3. The stability analysis of steep bank slope associated control by angle Fault 18 and low-angle fault zone between layers found that the side slope obviously control by weak structural surface. The total displacement of rock slope along the tuff layers gently inclined fault zone and the steep-dip slip fault zone of the crack, is typical slip-crack model.
     4. The results of 3D slope stability analysis show that:the x direction displacement of layer fault zone where the relative density higher than the relatively low-rise areas, and exists a critical depth, If the vertical depth goes beyond the critical depth,the same depth plane displacement will be no longer parallel to the unloading zone boundary surface; the y opposite direction displacement control by its height, the displacement mainly from overlie rocks of the interlayer fractured belt; the total displacement mainly tend to the displacement of interlayer fractured belt; the concentrated stress area exist in the north (south) boundary region and the toe of study area.
     5.The slope deformation destroying phenomenon in the dam area of Baihetan hydropower station are the unloading dynamic-relaxing rock mass formed by epigenetic deformation and landslide that controlled by low-angle structural plane and steep-dip structural plane, which is dominated by creeping slip and tensile cracking. The slope deformation destroying will be dominated by block sliding, decomposition and avalanche, the stability of whole sliding is good.
引文
[1]黄润秋.岩石高边坡发育的动力过程及其稳定性控制[J].岩石力学与工程学报,2008,8(27):1525-1544
    [2]吴刚.工程岩体卸荷破坏机制研究的现状及展望[J].工程地质学报2001,9(2):174-181
    [3]Griffith A. A. The Phenomena of Rupture and Flow in Solids [J]. Phil. Trans. Roy. Soc. London:1921, A221:163~198
    [4]Griffith A. A. Theory of Rupture [A]. Proc. First Int. Congress Appl. Mech. [C],1924, Delft:55~63
    [5]徐志英.岩石力学[M].北京:水利电力出版社,1986
    [6]朱浮声.岩石的强度理论与本构关系[J].力学与实践,1997,05(19):8-14.
    [7]Hoek E, Brown E T岩石地下工程.连志升等译,北京:冶金工业出版社,1986
    [8]周小平,张永星.卸荷岩体本构理论及其应用[M].北京:科学出版社,2007
    [9]王芝银,李云鹏.岩体流变理论及其数值模拟[M].北京:科学出版社,2008
    [10]Kemeny J M, Cook N G W. Determination of rock fracture parameters from crack models for failure in compression.28th,11.S. Symp. On Rock Mech.1987
    [11]Zhou XP, Ha QL, Zhang YX, Zhu KS. Analysis of deformation localization and the complete stress-strain relation for brittle rock subjected to dynamic compressive loads. Int. J. Rock Mech. Min. sci.2004,41 (2):311~319
    [12]Ravichandran G, Subhash G. A micromechanical model for high strain rate behavior of ceramics. Int. J. Solids Structures.1995,32:2627~2646
    [13]Wu M S, Niu J. Micromechanical prediction of the compressive failure of ice:Model Development. Mech. Mater.1995,20:9~32
    [14]周小平,哈秋舲,张永兴.考虑裂隙间相互作用情况下围压卸荷过程应力应变关系.力学季刊.2002,23(2),227-235
    [15]周维垣,杨若琼,吴澎.接力岩体的损伤力学模型.岩石力学新进展.沈阳:东北工学院出版社,1989
    [16]哈秋舲,李建林,张永兴,刘国霖.节理岩体卸荷非线岩体力学.北京:中国建筑工业出版社,1998
    [17]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学.北京:科学出版社,1995
    [18]李新平,朱维申.多裂隙岩体的损伤断裂分析与工程应用.岩土工程学报.1992,14(2)
    [19]沈新普,慕容子,徐秉业.岩土材料弹塑性正交异性损伤耦合本构理论.应用数学与力学.2001,22(9),927-932
    [20]Hoek E. Strength of jointed rock masses. Geotechnique.1987,33 (3).187~223
    [21]Goodman R E, Shi G. Block theory and its application to rock engineering. Prentice-Hall, New Jersey,1985
    [22]Cundall PA, A computer model for simulating progressive, large-scale movements in blocky rock systems. Proc. Symp. Int. Soc. Rock Fracture. Nancy.1971,2~8
    [23]周维垣等.岩体边坡非连续非线性卸荷及流变分析[J].岩石力学与工程学报,1997,16(3):210-216
    [24]吴刚等.复杂应力状态下完整岩体卸荷破坏的损伤力学分析[J].河海大学学 报,1997,25(3):44-49
    [25]赵明阶,徐锡宾,徐蓉.岩石在三轴加卸荷过程中的一种本构模型研究[J].岩石力学与工程学报,2002,21(10):626-631
    [26]周小平等.单轴拉伸条件下细观非均匀性岩石本构关系研究[J].土木工程学报,2005,38(2):87-93
    [27]颜峰,姜福兴.卸荷条件下的裂隙岩体力学特性研究[J].金属矿山,2008,6:36-40
    [28]哈秋舲.李建林.张永兴.节理岩体卸荷非线性岩体力学[M].北京:中国建筑工业出版社.1998:135-316
    [29]李建林.卸荷岩体力学[M].北京:中国水利水电出版社.2003
    [30]聂德新.岩质边坡岩体变性参数及松弛带厚度研究[J].地球科学进展,2004,3(19)472-477
    [31]李建林,周济芳.三峡工程卸荷岩体声波测试及其参数研究[J].岩石力学与工程学报,2005,8(24):4642-4646
    [32]张志增,高永涛,张晓平.边坡岩体力学参数反分析方法[J].北京科技大学学报,2006,12(28):1106-1110
    [33]盛佳,李向东.基于Hoek-Brown强度准则的岩体力学参数确定方法[J].采矿技术,2009,2(9):12-14
    [34]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1981
    [35]陈喜昌.长江三峡工程库岸类型与稳定性[M].成都:四川科学技术出版社,1993
    [36]徐志文,许向宁,黄润秋.金沙江宜宾-白鹤滩段岸坡类型与稳定性[J].重庆大学学报,2006,7(29):128-133
    [37]陈化然,陈连旺,马宏生等.川滇地区应力场演化与强震间相互作用的三维有限元模拟.地震学报,2004,26(6):567-575
    [38]李桂芳,程万正,曾健等.川滇交界地区构造应力场及强震趋势的统计预测.四川地震,1994,4,1-7
    [39]孙广忠.岩体力学基础[M].科学出版社,1983
    [40]黄润秋,王士天,张倬元,等.中国西南地壳浅表层动力学过程与工程环境效应研究[M].成都:四川大学出版社,2002
    [41]Weinan E, Bjorn Engquist. Multiscale Modeling and Computation. Notices of the AMS, Vol.50 (2003), No.9, p.1062~1070.
    [42]张曙光,金沙江白鹤滩水电站高拱坝建设工程地质适宜性研究,成都理工大学,博士论文,2007
    [43]黄运飞,冯静.计算工程地质学,北京:兵器工业出版社,1992
    [44]郝文化,ANSYS土木工程应用实例[M],北京:中国水利水电出版社,2005
    [45]邓凡平,ANSYS10.0有限元分析自学手册[M],北京:人民邮电出版社,2009,6:24-25
    [46]韩春秀,等.用ANSYS软件分析不同岩土工程问题的若干思考[J].四川建筑科学研究院,2007,1(33):129-133
    [47]Available online at:http://baike.baidu.com/view/1028685.htm 百度百科
    [48]郑达,黄润秋等.西南水电工程坝址峨眉山玄武岩卸荷分带研究[J].成都理工大学学报,2009,2(36):196-200
    [49]魏云杰.中国西南西南水电工程区坝址峨眉山玄武岩岩体结构特性及其工程应用研究,成都理工大学,博士论文2007 page at:101-105
    [50]Available online at at:http://forum.baidu.simwe/viewthread.php仿真科技论坛D01:FLAC3D/FLAC2D
    [51]宁宇,徐卫亚,郑文棠,石安池,吴关业.白鹤滩水电站拱坝及坝肩加固效果分析及整体安全度评价[J].岩石力学与工程学报,2008,9(27):1890-1899
    [52]刘鸿文,材料力学[M],北京:高等教育出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700